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Figure 1. Left: Temporal Tri-Plane Radiance Fields structure with plane-grid hybrid representation. Middle: TeTriRF results, showcasing

novel view synthesis in dynamic scenes. Right: Comparison with existing methods in storage, speed, and quality, where larger circles

indicate better quality.

Abstract

Neural Radiance Fields (NeRF) revolutionize the realm

of visual media by providing photorealistic Free-Viewpoint

Video (FVV) experiences, offering viewers unparalleled im-

mersion and interactivity. However, the technology’s sig-

nificant storage requirements and the computational com-

plexity involved in generation and rendering currently limit

its broader application. To close this gap, this paper

presents Temporal Tri-Plane Radiance Fields (TeTriRF), a

novel technology that significantly reduces the storage size

for Free-Viewpoint Video (FVV) while maintaining low-cost

generation and rendering. TeTriRF introduces a hybrid rep-

resentation with tri-planes and voxel grids to support scal-

ing up to long-duration sequences and scenes with com-

plex motions or rapid changes. We propose a group train-

ing scheme tailored to achieving high training efficiency

and yielding temporally consistent, low-entropy scene rep-

resentations on feature domain. Leveraging these prop-

erties of the representations, we introduce a compression

pipeline with off-the-shelf video codecs, achieving an order

of magnitude less storage size compared to the state-of-the-

art. Our experiments demonstrate that TeTriRF can achieve

competitive quality with a higher compression rate.

1. Introduction

Advanced VR/AR devices are boosting interest in Free-

Viewpoint Video (FVV), which allows users to choose their

own viewing angles for a unique and immersive exploration

experience. The emergence of Neural Radiance Fields

(NeRF), as introduced in [24], has significantly advanced

FVV demonstrating unprecedented photorealism in render-

ing. However, one main challenge with this technology,

apart from its rendering speed, is the extensive storage space

required for preserving reconstructed 4D data. This require-

ment complicates the process of transferring and storing

such data on user devices, making the creation and use of

long sequence FVV increasingly impractical.

Recent advances in NeRF facilitate dynamic scene ren-

dering for FVV generation. Some models [8, 22, 26, 29]

use deformation fields to model scene motion, mapping

each frame to a canonical space. While these capture dy-

namics effectively, they are constrained by the high com-

putational load of implicit feature decoding [8, 26, 29] or

by the large storage needs of explicit 3D grid-based repre-

sentations [22]. Alternatively, novel radiance field repre-

sentations have been proposed to record dynamic scenes.

They incorporate 4D data using techniques like planar fac-

torization [9], Fourier coefficients [39], and latent embed-

dings [19]. By training jointly across multiple frames,

these methods achieve more efficient sequential frame re-

construction. However, their overly compact representation

with limited capacity compromise their performance in cap-

turing complex motions and long sequences. Most recently,

several methods [28, 34, 40] have been developed to signif-

icantly improve the storage-performance trade-off. How-

ever, NeRFPlayer [34] suffers from a notably slow render-

ing speed, which prevents real-time playback for FVV. Dy-

namic MLP Maps [28] and ReRF [40], on the other hand,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6487



achieve real-time rendering, but they require the use of a

high-end GPU for decoding.

In this paper, we present a novel FVV modeling

approach called Temporal Tri-Plane Radiance Fields or

TeTriRF, which achieves efficient FVV generation and ren-

dering with extremely compact storage. This is achieved

via three main innovations. First, we propose a learn-

ing scheme that results in temporally consistent and low-

entropy sequential feature representations that can be ef-

fectively compressed. At the core is a training strategy

that groups consecutive frames from sequential data and re-

duces the entropy of the frame representations via imposing

feature temporal consistency by deploying intra-group and

inter-group regularizers. By sharing temporal information

during training, TeTriRF is able to dramatically accelerate

training compared to the per-frame training methods. We

also deploy a two-pass progressive scaling scheme to re-

duce the cost of preprocessing while enhancing rendering

quality and compression rate by discarding noise in empty

space.

Second, we introduce a hybrid representation that com-

bines tri-planes with voxel grids for frames within the se-

quence. Specifically, for each frame in the stream, we fac-

torize the radiance field to a tri-plane and a 3D density grid.

This hybrid approach effectively captures high-dimensional

appearance features in compact planes and enables efficient

point sampling through the explicit density grid, achieving a

balance between compactness and representation effective-

ness. Building upon this hybrid representation, we adopt

a deferred shading model [13, 30] paired with lightweight

MLP decoders to bring real-time rendering within reach.

Third, we show how to compress our FVV hybrid repre-

sentation compactly using off-the-shelf video codecs. To

achieve this, we develop a compression pipeline specifi-

cally for TeTriRF, which includes processes such as value

quantization, removal of empty spaces, conversion into 2D

serialization, and subsequent video encoding. The tempo-

rally consistent and low-entropy properties of our repre-

sentation significantly enhance data compression efficiency.

With our model, we’re able to produce high-quality results

with just 10-100 KB/frame. This means that a one-hour

video could be stored in 1-10 GB, which is for the first

time, within range of memory available on AR/VR devices.

TeTriRF, with its compact size and our hybrid representa-

tion, is capable of handling long sequence FVV effectively.

Together with our lightweight renderer and hardware accel-

erated video decoding, our approach takes another step to-

wards streaming and rendering photorealistic FVV for end-

users.

Fig. 1 illustrates TeTriRF’s representation structure and

comparison with other methods. TeTriRF distinguishes it-

self with superior advantages in storage efficiency, render-

ing speed, and rendering quality.

2. Related Work

Neural Scene Representations. NeRF [24] achieves

photo-realistic novel view synthesis using a simple implicit

representation. Despite the quality and compactness of

NeRF, the scene reconstruction and rendering times are sub-

stantial and prohibitive for the reconstruction of both static

and dynamic scenes. Subsequent works distill the volumet-

ric representation of the scene into voxel grids to achieve

real-time rendering speeds [13, 23, 45] or also fast volu-

metric scene reconstruction [32, 35]. Nonetheless, these ap-

proaches encounter the drawback of increased storage size

due to the use of 3D grid representations. These issues have

partly been mitigated by substituting the 3D voxel grid rep-

resentation with more compact and memory-efficient ten-

sor decompositions [4]. Further improvements in training

and rendering speed have also been achieved by leverag-

ing trainable multi-resolution hash tables [25] or representa-

tions based on 3D Gaussians [16]. While efficient and com-

pact photo-realistic reconstruction and rendering for static

scenes are now achievable, the main challenge remains in

dynamic scenes. In such scenarios, storage requirements

typically increase linearly with the number of frames, lead-

ing to greater difficulties.

Free-Viewpoint Video Representations. Previous

works use textured animated meshes [5, 20, 21] or lay-

ered meshes [1], which consist of temporally coherent ge-

ometries for compression, to represent FVV content, but

the mesh-based representations limit their rendering qual-

ity. The other methods [36, 47] utilize a neural blend-

ing approach to achieve photo-realistic rendering based on

meshes. NeRF-based methods have significantly enhanced

rendering quality. Some approaches reconstruct dynamic

scenes by conditioning an implicit representation on time

[7, 10, 43] or time-varying latent codes [18, 28]. Alter-

natively, other methods [7, 8, 18, 26, 27, 29, 37, 46] op-

timize a deformation field to predict the displacement of

the scene across time between each frame and a refer-

ence canonical frame. Most implicit time-conditioned or

deformation-based methods suffer from slow training and

rendering speeds. To accelerate the speeds, methods have

been developed using grid representations [12, 22], 4D

plane-based representation [3, 33, 44], and tensor factor-

ization [2, 9, 15]. Even though they provide faster training

or rendering times but they usually suffer from storage ef-

ficiency or network capacity issues. Our proposed method

resembles K-planes [9], a method based on planar factoriza-

tion. However, rather than using an additional tri-plane for

spatio-temporal variations we simply unfold a triple-plane

representation along the temporal dimension. Combined

with our training and compression schemes, our method

achieves improved rendering speed and compactness with

competitive quality.

Neural Radiance Field Compression. Implicit neural
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Figure 2. Illustration of the Hybrid Representation. Our Hybrid

Tri-Plane approach models each frame using a density grid and a

tri-plane. We adopt the deferred shading model in our rendering

pipeline.

representations like NeRF [24] are relatively compact but

at the same time extremely slow to train and render. Im-

proved compression in the context of neural radiance fields

has been achieved via vector quantization [17], wavelet

transforms on grid-based neural fields [31], parameter prun-

ing [6], and Fourier transform [14]. These approaches are

primarily focused on static scenes and lack the capability to

compress temporal information. Recent works extend the

compression into dynamic scene by using tensor decompo-

sition [34] , residual radiance fields with specialized video

codecs [41], and reducing spatio-temporal redundancies of

feature grids [11]. However, fast decoding and rendering

time is still an issue with these methods. Our method, on

the other hand, achieves both high compression and fast de-

coding and rendering times thanks to our proposed repre-

sentation, lightweight renderer, and off-the-shelf encoding.

3. Methodology

Our method is able to generate free-viewpoint videos from

synchronized multi-view video inputs to support novel view

synthesis in dynamic scenes with long-duration sequences

and complex motions. We represent each frame using a spe-

cialized hybrid representation with disentangled and com-

pactly organized geometry and appearance, complemented

by an efficient rendering pipeline. We propose a fast train-

ing scheme (Sec. 3.2) that trains multiple frames in groups

and lowers the entropy of features by improving their tem-

poral consistency. This facilitates extremely compact com-

pression in our proposed pipeline. We demonstrate that

these representations can be efficiently compressed using

off-the-shelf video codecs (Sec 3.3).

3.1. Hybrid Tri­Plane

In this work, as illustrated in Fig. 2, we use a hybrid rep-

resentation composed of a 3D density grid Vσ and a fea-

ture Tri-Plane P = {Ps|s ∈ S} to represent each frame,

where each element in P is a 2D grid with h = 10 chan-

nels and S = {xy, xz, yz}. The purpose of this hybrid de-

sign is to attain a good trade-off between effectiveness and

compactness. The utilization of an explicit density grid al-

lows the direct and fast acquisition of density values. This

enables the straightforward construction of a grid mask to

efficiently discard sample points in free space without net-

work inference and hence speed up both training and ren-

dering. A feature Tri-Plane, on the other hand, contains

three orthogonal feature planes factorizing the spatial space

of higher-dimensional appearance features. We adopt the

compactness of this plane-based representation, which has

been shown in [9], to elevate the compression rate to a new

level.

Rendering. TeTriRF queries the density σ of a 3D point

x by applying trilinear interpolation ϕt(·) on the 3D density

grid Vσ . Appearance features, on the other hand, are ac-

quired by projecting the point onto the three feature planes

P and applying bilinear interpolation ϕb(·) for each 2D pro-

jection. These operations are formulated as:

σ = ϕt(x, Vσ)

fs = ϕb(x, πs(Ps)),
(1)

where πs is a function that projects a 3D point onto plane s,

and fs is the fetched h-dimensional feature vector from that

plane. Then we concatenate the appearance features from

the three planes to compose the feature vector f = [fs|s ∈
S].

Since having the explicit density grid, we adopt the

masking mechanism from DVGO to discard points in empty

space and thus reduce the associated overhead in acqui-

sition, processing, and volume rendering. Inspired by

[13, 30], we also adopt the deferred shading model which

performs volume rendering on the appearance features of

sample points along a ray, rather than their radiance. The

radiance value (pixel RGB color) c of the ray is then de-

coded through a shallow MLP:

c(r) = Φ(f̃(r), ω(d)), (2)

where Φ denotes the decoding operation performed by the

shallow MLP, responsible for transforming appearance fea-

tures into radiance and f̃(r) is the integrated feature vec-

tor form the deferred shading model. Additionally, d de-

notes the viewing direction of the ray and ω(·) represents

the positional encoding used in [24]. This deferred render-

ing approach is also differentiable as gradients are back-

propageted from the RGB color to the tri-plane, density

grid, and MLP network parameters.
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Figure 3. Grouped Multi-frame Training Overview. TeTriRF group frames in sequential data and trains a group of N frames together.

We deploy photometric loss Lcolor , intra-group loss Lintra, and inter-group loss Linter among the frames. For a given viewpoint, the

Renderer (Sec. 3.1) takes the corresponding frame’s representation to synthesize novel views.

3.2. Grouped Multi­frame Training

Acquiring hybrid Tri-Plane representations for sequential

frames is a non-trivial task. Per-frame training, as employed

in ReRF [40], lacks efficiency. This is mainly because

ReRF only exploits information from adjacent frames In our

method, we train a group of N consecutive frames jointly

at one time to more effectively leverage temporal informa-

tion.We train sequential data in non-overlapping groups ac-

cording to the timeline, enabling TeTriRF to support long

or even infinite sequences. To promote information sharing

and reduce redundancy during optimization we regularize

the groups at both the intra- and inter-level as detailed in

the following paragraphs.

Intra-Group Regularization. We apply L1 loss on den-

sity grids and feature planes between adjacent frames to en-

courage sparsity and minimize density and feature changes.

This is crucial because video codecs are tasked with encod-

ing the differences between frames. Consequently, spar-

sifying and minimizing these changes, effectively reduces

the bitrate required for video encoding, leading to more

efficient data compression. Temporal information, such

as cross-frame density variations, can also be passed and

shared among frames resulting in faster training. We for-

mulate this intra-group regularization as:

Lintra =

N−1
∑

i=1

[

∥

∥V g,i
σ − V g,i+1

σ

∥

∥

1
+

∑

s∈S

∥

∥P g,i
s − P g,i+1

s

∥

∥

1

]

,

(3)

where g and i denote the group index of these frames and

the frame index inside the group, respectively. Furthermore,

sharing the MLP decoder within the group defines a shared

appearance feature space that facilitates faster convergence.

Inter-Group Regularization. To reduce calculation re-

dundancy and speed up optimization, we initialize every

frame in the current group with the feature planes from the

last frame of the previous group as shown in Fig. 3. This ap-

proach leverages existing information to provide an advan-

tageous starting point for the training process. The MLP de-

coder is also initialized with the parameters of the decoder

from the previous group for the same reason.

In addition to the initialization, we also apply an L1 fea-

ture loss between the first frame of the current group and the

last frame of the previous group, ensuring feature continu-

ity between the groups and thus increasing the compression

rate. This L1 cross-group feature loss is formulated as:

Linter =
∥

∥V g−1,N
σ − V g,1

σ

∥

∥

1
+

∑

s∈S

∥

∥P g−1,N
s − P g,1

s

∥

∥

1
.

(4)

We block the gradients to V g−1,N
σ and P g−1,N

s from the

previous group to keep their representation consistent after

being trained. This allows to train one group of frames at a

time.

Along with the photometric loss Lcolor, the total loss

Ltotal is calculated as:

Ltotal = Lcolor + λ1Lintra + λ2Linter, (5)

where λ1 and λ2 are the weights of the regularizing terms.

Two-pass Progressive Scaling. DVGO [35] and ReRF

[41] follow a two-stage coarse-to-fine training scheme. In

the first stage, diffuse color is used to reconstruct a coarse

density field for building a grid mask used to discard empty

space. This strategy helps prevent the occurrence of nu-

merous floaters and enhances the training speed. Likewise,

HumanRF [15] precomputes an occupancy grid for making

training more efficient. However, the occupancy calculation
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Figure 4. Demonstration of the proposed compression pipeline

and the visualizations after each process on a feature plane se-

quence. Colorized by the first three principal components.

highly depends on the camera setups, requiring the number

of visible views for each space to be evenly distributed. All

these extra procedures take extra time and resources to pro-

cess.

In our approach, we also maintain occupancy grids as

in [15, 41], but we make them more adaptive and efficient

for dynamic scenes regardless of the camera setups. To this

end, we introduce a two-pass progressive scaling strategy,

where at predefined iterations we rescale the resolution of

the density grid and feature planes as in [35]. The first

pass upscales the space at shorter time intervals, functioning

similarly to the coarse training stage in scene space explo-

ration. Upon completing the first pass, we revert the scale

to its initial, lowest resolution. This reduction in resolution

diminishes the presence of floaters, thereby increasing the

availability of empty space. Most importantly, as we main-

tain the same MLP decoder throughout the training process,

the down-scaled feature planes from the first pass can be

effectively reused. This serves as an effective initializa-

tion for subsequent training phases, diverging from previous

coarse-to-fine training strategies where appearance features

are typically retrained from scratch. Following the second

progressive scaling pass, we update the training rays by fil-

tering out those that do not hit occupied space inside the

bounding box, thus focusing the training on the reconstruc-

tion of fine detail. These training strategies can efficiently

remove empty space regardless of camera setups and im-

prove results with the same number of iterations as the fine

stage of ReRF even without a coarse training stage.

3.3. Efficient FVV Generation

In our methodology, we aim to produce compact FVV

(Free-Viewpoint Video) content. This is achieved by encod-

ing the representations, which have been previously trained,

in a highly efficient manner. To facilitate this, we employ

established, commercial video codecs known for their ef-

ficiency. The process involves a necessary transformation

of our representations, ensuring their compatibility with the

adopted video codecs.

We start by linearly normalizing the numbers so they fall

between 0 and 1. According to our statistical analysis, in

most scenarios, 99.5% of density and feature values fall in

the ranges [−5, 30] and [−20, 20], respectively. Any num-

bers that fall outside of these ranges are clipped to 0 or 1.

Following this, we quantize the normalized values into 12-

bit integers. We use the density activation function from

DVGO paired with a threshold τα to generate a grid mask

and then cull empty space from density grids by setting the

value in the mask to zero. This eliminates unnecessary tem-

poral changes. Since, feature planes have multiple chan-

nels, while compressed video has only a single channel, we

flatten (or re-arrange) each channel of a feature plane onto

a 2D single-channel image while preserving the 2D spatial

continuity. Fig. 4 illustrates our compression pipeline.

In summary, we will have four images for each frame,

representing density, xy-plane, xz-plane, and yz-plane, re-

spectively, where each type forms an image sequence that

we compress using a video codec. Rendering an FVV also

requires the weights of the decoding MLPs for all frame

groups. Therefore, we quantize those weights into 16 bits

and store them directly without additional compression,

given that the size of the MLPs is already relatively small.

One benefit of leveraging off-the-shelf video codecs is that

there are a lot of available options for software and hard-

ware acceleration that can facilitate the efficient decoding

of this kind of content. In TeTriRF, we use the High Ef-

ficiency Video Coding (HEVC), also known as H.265, to

compress feature images. The H.265 video encoder calcu-

lates feature residuals between frames and transforms them

into the frequency domain. It employs various quantization

parameters to measure coefficients of different frequencies,

resulting in quantization that can save space but may lead

to some information loss. We adjust Constant Rate Factor

(CRF), which is a quality-control setting in video encoding

that balances video quality and file size.

4. Experiments

We begin by comparing our method both quantitatively and

qualitatively with previous works (Sec. 4.1). Subsequently,

we present extensive ablation studies to validate the com-

ponents we propose (Sec. 4.2). The default group size is

N = 20. For more detailed information and additional re-

sults, please refer to our supplementary materials.

In our experiments, we use three datasets: NHR [42],

ReRF [41], and DyNeRF [18]. The first two consist of

human-centric dynamic scenes, while DyNeRF contains

forward-facing dynamic scenes.

4.1. Comparison

For the human-centric scenes, our method is contrasted with

four contemporary dynamic NeRF techniques: KPlanes
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NHR Dataset ReRF Dataset

PSNR ↑ SSIM ↑ LPIPS ↓ T.T. ↓ R.T. ↓ Size ↓ PSNR ↑ SSIM ↑ LPIPS ↓ T.T. ↓ R.T. ↓ Size ↓

KPlanes 30.18 0.963 0.063 0.65 2.2 2986 27.81 0.946 0.094 0.65 2.2 2986

HumanRF 31.91 0.872 0.036 1.4 3.95 2852 28.58 0.876 0.072 1.4 3.95 2852

TiNeuVox 30.45 0.962 0.077 2.4 18.14 5580 28.86 0.947 0.082 2.8 23.65 5580

ReRF 30.34 0.972 0.055 21.2 0.21 1220 30.33 0.962 0.054 22.4 0.27 843

Ours (low) 30.42 0.966 0.059
0.55 0.1

11.76 27.60 0.950 0.083
0.58 0.12

11.72

Ours (high) 32.57 0.978 0.045 85.33 30.18 0.962 0.056 71.67

Table 1. Results on NHR [42] and ReRF [41] datasets. Training time (T.T. in minutes), Rendering Time (R.T. in seconds), and sizes (in

KB) are averaged over frames.

GT KPlanes TiNeuVoxHumanRF ReRF Ours(high)
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Figure 5. Qualitative comparison. The rendering quality of TeTriRF compared to four baselines KPlanes [9], HumanRF [15], ReRF [41],

TiNeuVox [8] on human-centric scenes box, basketball and kpop from NHR and ReRF datasets.

[9], HumanRF [15], TiNeuVox [8], and ReRF [41]. For

forward-facing scenes, our approach is compared with

KPlanes [9], NeRFPlayer [34], and MixVoxels [38]. For

a fair comparison, we use their official codes and align the

experimental setups for different datasets. Details can be

found in the supplementary materials. We evaluate two

versions of TeTriRF: one compressed using a high-quality

option in the video codec (denoted as ’Ours(high)’ with

CRF=20), and another compressed with a lower quality

option (denoted as ’Ours(low)’ with CRF=33).

Experiment Protocol. For consistency and comparabil-

ity, we limit the scope of training and evaluation to the ini-

tial 200 frames of each scene unless stated otherwise. We

specify viewpoints 5 and 41 in the NHR dataset, viewpoints

6 and 39 in the ReRF dataset, and viewpoint 0 in the DyN-

eRF dataset as the test views, which are excluded during

training. All models are benchmarked on an NVIDIA V100

GPU.

Evaluation metrics. Our evaluation framework focuses

on three aspects: image quality, running time, and storage.

For image quality, we use three standards: Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index (SSIM),

and Learned Perceptual Image Patch Similarity (LPIPS)

with VGG backbone. We assess storage by calculating the

average model size per frame in kilobytes (KB), which is

essential for rendering. We measure time efficiency by the

average training time per frame in minutes (T.T.) and ren-

dering time per frame in seconds (R.T.). Please note that we
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Ours(high)KPlanes

NeRFPlayerGround Truth

Figure 6. Qualitative results on the forward-facing scene in DyN-

eRF dataset. Visual comparisons on coffee martini. our method

can also preserve more details accurately compared to the others,

as evident in the clear geometry of fingers and the coffee flow.

evaluate the rendering time in the Python implementation,

which includes system overhead. Therefore, it only pro-

vides a relative comparison, not the actual rendering time in

efficient implementations.

Results. In the assessment of the human-centric dataset

detailed in Tab. 1, ‘Ours(low)‘ demonstrates rendering qual-

ity that is on par with those of the KPlanes, TiNeuVox. No-

tably, it achieves this while requiring significantly less stor-

age, over two orders of magnitude lower. Moreover, it offers

a rendering time that is at least twice as fast as the most stor-

age efficient SOTA method ReRF [41]. ‘Ours(high)‘ yields

further improvements.

Tab. 2 shows the results on the DyNeRF dataset. In this

table, we report the rendering quality of NeRFPlayer as it

appears in the original paper, and additionally provide test

results for running time and storage size, which were ob-

tained by executing the official code. We use MixVoxels-

M [38] in our experiments. ‘Ours(high)‘ delivers a render-

ing quality comparable to that of the other models while

achieving significantly better time efficiency and requiring

less storage space.

Qualitative comparison between the baselines and our

method can be found in Fig. 5 and Fig. 6. Our approach

demonstrates the capability in handling intricate details of

highly dynamic objects with a reduced model size. For in-

stance, in Fig. 5, our method can effectively capture details

of a rapidly spinning basketball.

4.2. Evaluation

Ablation Study We evaluate the progressive scaling (PS)

module and group training regularization (Reg) module by

PSNR SSIM LPIPS T.T. R.T. Size

NeRFPlayer 30.293 0.909 0.309 0.25 3.5 2427

KPlanes 31.38 0.940 0.212 0.57 11.5 539

MixVoxels 30.69 0.918 0.236 0.18 0.11 1733

Ours(low) 28.71 0.867 0.321
0.65 0.24

21.46

Ours(high) 30.43 0.906 0.248 62.5

Table 2. Comparison on the forward facing dataset DyNeRF. The

training time (T.T. in minutes), rendering time (R.T. in seconds)

and model size (Size in KB) are averaged out over the number of

frames.

Pxy Pxz Pyz Vσ MLPs

Ours(low) 431 315.2 577.6 558.2
490

Ours(high) 4032 2758.6 5353.8 3350

Table 3. Analysis of storage components in ‘Ours(low)’ and

‘Ours(high)’ based on 200 frames of sport1 scene (Values in KB).

disabling them one at a time during training to analyze their

individual contribution to the complete TeTriRF model. For

this ablation study, we selected the ’sport1’ scene from the

NHR dataset. In our experiments, we also replace the H265

codec with the MPEG-2 codec to assess how video codecs

with different efficiency affect the compression rate and ren-

dering quality. MPEG-2, being an earlier video encoding

technology, has simpler algorithms that are akin to those

used in ReRF’s compression algorithm. By doing this, we

aim to draw a comparison between our hybrid representa-

tion and the 3D voxel grid utilized in ReRF. Fig. 7 illustrates

the rate-distortion curves for various settings. The exclu-

sion of either PG or Reg leads to a deterioration in the per-

formance of TeTriRF. Even when employing a basic video

codec like MPEG-2, TeTriRF still manages to outperform

ReRF. This suggests that our proposed hybrid representa-

tion offers advantages in compressing dynamic scenes.

Fig. 8 presents a qualitative comparison between the

complete TeTriRF models at varying sizes and their variants

in similar sizes. In the absence of the PS module, the vari-

ant generates density floaters around the geometry surfaces,

resulting in a marginally blurred RGB image. The variant

lacking Reg struggles with geometry reconstruction, pri-

marily due to insufficient temporal consistency. Both ReRF

and the variant using MPEG-2 display significant inadequa-

cies at this level of storage.

Storage Breakdown. We analyze the storage compo-

nents of both ‘Ours(low)‘ and ‘Ours(high)‘, breaking down

each component within them. The data is compiled from

statistics on 200 frames of the ‘sport1‘ scene. Table 3 shows

the results. In the table, we exclude their metadata (e.g. the

bounding box), which is less than 1KB..

Long Sequence. We tested the TeTriRF on an ultra-long

sequence, specifically the ‘Kpop‘ sequence in the ReRF

dataset. Fig. 9 shows the per-frame PSNR curve of TeTriRF
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Figure 7. Rate-distortion curves. TeTriRF outperforms alternative versions and ReRF. Disabling progressive scaling (PS) or group-based

regularization (Reg) reduces TeTriRF’s performance. Even with MPEG-2, TeTriRF excels in compressing dynamic scenes. In the first two

line graphs, the closer to the top left corner, the better; in the last one, the bottom left corner is optimal.

Figure 8. Qualitative results of complete TeTriRF model, its variants and ReRF. The variants are compared at approximately matched sizes.

PSNR

Frame ID

Figure 9. TeTriRF performance on the Kpop sequence, showcas-

ing the first 3000 frames.

over time under ‘ours(high)‘ setting.

5. Conclusion and Future Work

Our proposed innovative training scheme elevates the

sequential representation’s temporal coherence and low-

entropy characteristics, resulting in a dramatic enhancement

of compression efficiency. Our evaluation has demonstrated

the compactness and effectiveness of TeTriRF’s hybrid rep-

resentation that plays an important part in the compression

process. Leveraging our compression pipeline, TeTriRF is

able to support long-duration FVV experiences, while re-

markably minimizing storage requirements. TeTriRF’s ren-

dering pipeline is efficient, straightforward, and opens the

door to leveraging GLSL shaders for our method, paving

the way for real-time performance on diverse devices, sup-

ported by hardware-accelerated video decoding. Training

efficiency, fast rendering speed, and compact data storage of

TeTriRF enable photo-realistic FVV applications in AR/VR

contexts. TeTriRF’s rendering speed relies on scene spar-

sity, sampling only non-empty space. A more efficient

pipeline could be beneficial. Currently we tested with sta-

tionary cameras, future plans include dynamic scenes from

moving cameras.
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