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Figure 1. Aesthetic QR codes (first row) and their zoom-in counterparts (second row) generated by Text2QR. Our QR codes not only exhibit
exceptional scanning robustness but also showcase allure and intricate details, accommodating a diverse range of customized styles.

Abstract
In the digital era, QR codes serve as a linchpin connect-

ing virtual and physical realms. Their pervasive integration
across various applications highlights the demand for aes-
thetically pleasing codes without compromised scannabil-
ity. However, prevailing methods grapple with the intrin-
sic challenge of balancing customization and scannability.
Notably, stable-diffusion models have ushered in an epoch
of high-quality, customizable content generation. This pa-
per introduces Text2QR, a pioneering approach leveraging
these advancements to address a fundamental challenge:
concurrently achieving user-defined aesthetics and scan-
ning robustness. To ensure stable generation of aesthetic
QR codes, we introduce the QR Aesthetic Blueprint (QAB)
module, generating a blueprint image exerting control over
the entire generation process. Subsequently, the Scannabil-
ity Enhancing Latent Refinement (SELR) process refines the
output iteratively in the latent space, enhancing scanning
robustness. This approach harnesses the potent genera-
tion capabilities of stable-diffusion models, navigating the
trade-off between image aesthetics and QR code scannabil-
ity. Our experiments demonstrate the seamless fusion of vi-
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sual appeal with the practical utility of aesthetic QR codes,
markedly outperforming prior methods. Codes are avail-
able at https://github.com/mulns/Text2QR

1. Introduction

In an age where digital interaction seamlessly converges
with the physical world, Quick Response (QR) codes serve
as vital conduits connecting these realms [2, 4, 12, 33, 39].
These ubiquitous two-dimensional codes have found exten-
sive utility, bridging the divide between the physical and
digital domains, yet their appearance remains stark, con-
sisting of black and white modules engineered primarily for
functional efficiency rather than aesthetic allure.

Amidst a growing consensus among users and stakehold-
ers, a desire has arisen for QR codes that not only fulfill their
core functions but also captivate with their visual appeal.
The simplicity of QR codes, while undeniably efficient, is
increasingly viewed as a missed opportunity to seamlessly
integrate them into the modern visual landscape. The de-
mand for aesthetically pleasing QR codes has proliferated,
transcending boundaries into marketing, advertising, and
artistic domains [2, 4, 33, 39].

Early techniques centered on image-to-image transfor-
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mations, utilizing reshuffling [33], fusion [12, 40], and style
transfer methods [33, 39]. Although effective in generating
predefined image styles, these approaches struggled to ac-
commodate the diverse stylistic preferences of users, leav-
ing a gap for a unified solution that addresses both cus-
tomization and consistency. Recent advancements in the
intersection of image generation and control have marked
a transformative era. stable-diffusion models [28, 43] have
emerged as robust engines for producing high-quality, ver-
satile, and dynamically ranged content. Concurrently, an
innovative approach for aesthetic QR code generation sur-
faced [10], leveraging ControlNet’s capability to modu-
late luminance and darkness relationships within QR codes.
However, this approach encountered a critical challenge,
often exhibiting instability, necessitating the incorporation
of auxiliary control models and manual parameter adjust-
ments [10] to ensure both scannability and content quality.

In addressing these challenges, we introduce the innova-
tive Text2QR pipeline, providing a solution for seamlessly
generating QR codes that balance user-defined aesthetics
and robust scannability. Our framework unfolds through
three key steps: (1) Users initiate the process by generat-
ing their preferred images using the stable-diffusion model,
while simultaneously encoding their desired message into
a QR Code. (2) The synergy begins with the blending of
these images in the QR Aesthetic Blueprint (QAB) mod-
ule. This module generates a blueprint image, incorporat-
ing content from the pre-generated image (guidance image)
and accurately reflecting the encoded message within the
QR code. The blueprint image is then fed into ControlNet,
guiding the stable-diffusion models to preserve user-defined
aesthetics and maintain desired relationships among light
and dark blocks of the QR code. While the generated re-
sults may pose decoding challenges, they exhibit a substan-
tially improved distribution of light and dark blocks while
remaining consistent with user preferences. (3) Subsequent
to this stage, we construct an energy equation to quantify
content and message consistency in the generated results.
Optimizing this energy equation through gradient ascent it-
erations on latent codes gradually enhances scan robustness
while preserving content consistency. Finally, the output
QR code excels in both aesthetic appeal and scannability,
achieving the delicate balance between user-defined cus-
tomization and robust utility.

The contributions of this work can be summarized as:
• An integrated pipeline, Text2QR, that harmonizes user-
defined aesthetics and robust scannability in QR code gen-
eration.
• The introduction of the QR Aesthetic Blueprint (QAB) for
creating template images and the Scannability-Enhancing
Latent Refinement (SELR) process for optimizing scan ro-
bustness while maintaining aesthetics.
• Superior performance compared to existing techniques,

establishing Text2QR as a state-of-the-art solution for QR
code generation that excels in both visual quality and scan-
ning robustness.

2. Related Works

Aesthetic 2D Barcode. In the era of digital interaction, QR
codes play a pivotal role in bridging the virtual and phys-
ical realms. A variety of aesthetically pleasing 2D bar-
codes have been proposed as alternatives to the less ap-
pealing QR codes. Halftone QR codes, proposed by Chu
et al. [5], rearrange the black/white modules of QR codes
into an outline that semantically matches an input image.
QR Image [12, 40] leverages the redundancy in the coding
rules of QR codes to embed color images within QR codes.
Recently, Su et al. [32, 33] have combined QR codes with
style transfer to create artistic QR codes. These methods
adhere to the standard QR code encoding rules and can be
scanned and decoded by a common mobile phone scanner.
To minimize the visibility of the locating patterns, Chen et
al. [3, 4, 21] have designed encoding rules to satisfy the sen-
sitivity of human visual system, making the locating pat-
terns less noticeable. Additionally, TPVM [11] hides QR
codes in videos, utilizing the frame rate difference between
screens and human eyes. Similarly, invisible information
hiding is applied to make information invisible but decod-
able after camera shooting [8, 9, 13, 14, 34, 36].

Diffusion Based Generative Models. Deep learning-based
image processing [16–20, 29–31, 35, 37, 38] and generation
methods [22, 24, 27, 42] has been fastly developed recently.
Diffusion models such as GLIDE [24], DALLE-2 [27], La-
tent Diffusion [28], and Stable Diffusion [28], are proposed
as a novel kind of generative model. These models create
images through iterative denoising of initial random Gaus-
sian noise and are able to outperform existing methods in
many generative tasks. Of these, Stable Diffusion [28] is
particularly innovative, as it transitions the denoising pro-
cess from the image domain to a variational autoencoder’s
latent space, leading to significant reductions in data dimen-
sions and training time. Alongside these advancements, var-
ious recent studies have presented methods for introducing
diverse conditions to control the diffusion process. Con-
trolNet [43] and T2I-Adapter [23] focus on structural con-
trol, with the former introducing an adapter mirroring sta-
ble diffusion’s structure and trained under structural con-
ditions, while the latter fine-tunes a lightweight adapter
for detailed control over the produced scenes and content
from the diffusion model. Instead, BLIP-Diffusion [15]
and SeeCoder [41] aim to achieve controllable results based
on image style. BLIP-Diffusion [15] extracts multi-modal
topic representations and combines them with text prompts.
While SeeCoder [41] discards text prompts and use refer-
ence images as control parameters.
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3. Preliminary

Prior to presenting our method, we elucidate the process by
which a QR code scanner decodes binary information from
an aesthetic QR code image. Given an colored image featur-
ing a QR code, we initially transform it into a grayscale rep-
resentation by extracting its luminance channel (Y-channel
of the YCbCr color space), denoted as I ∈ RH×W , encom-
passing L gray levels (typically 256). The scanner initially
locates the Finder and Alignment markers [25, 40] to iden-
tify the QR code region and extract essential information
such as the number of modules and module size. Let the
QR code encompass n × n modules, each of size a × a
pixels, where n · a ≤ min(H,W ). Using the marker infor-
mation, we construct a grid comprising n2 modules denoted
as Mk, k ∈ [1, 2, . . . , n2]. This grid divides image I into n2

patches, represented as IMk
∈ Ra×a.

The k-th module is decoded into a 1-bit information Ĩk,
represented as 0 or 1, where Ĩ ∈ Rn×n is the resulting bi-
nary image. Typically, scanners sample pixels within a cen-
tral subregion of each module [39, 40]. Let θ be a square
region with a size of x × x centered on module Mk, and
p ∈ {1, 2, . . . ,H} × {1, 2, . . . ,W} denotes pixel coordi-
nates of I . The decoded binary value Ĩk by a scanner is
expressed as:

vk =
1

x2

∑
p∈θ

IMk
(p); Ĩk =


0, if vk ≤ Tb,
1, if vk ≥ Tw,
−1, otherwise.

(1)

Here, Tb and Tw are thresholds for binarization. To account
for symmetry, we set Tb = L · (1− η)/2 and Tw = L · (1+
η)/2, where η ∈ (0, 1). The hyperparameter η governs the
strictness of the binarization process.

Conventional QR code markers, traditionally character-
ized by square patterns, have shown adaptability to diverse
styles while maintaining readability for conventional QR
code scanners, as indicated by recent studies [3, 10, 21].
Achieving this adaptability involves specific pixel ratios,
such as 1:1:3:1:1 for black and white modules, as detailed
in [10, 25]. This flexibility includes preserving a cross cen-
ter region to convey relevant information. Moreover, within
the data regions of QR codes, maintaining binary results de-
spite variations in sampled pixel colors is crucial for scan-
ning robustness. As shown in Figure 2, even when colors
and shapes subtly blend and vary, the sampled pixels con-
sistently yield binary results aligned with ideal QR codes,
ensuring robust decoding by standard QR code readers.

To facilitate analysis, we define the probability e(I) =
p(Ĩk = Mk) to assess the error level of image I with re-
spect to the code target M ∈ Rn×n. Notably, the function e
only characterizes the error proportion within data regions,
omitting Finder and Alignment regions in a QR code.

Code target

Our QR code

Zoom in

𝐼!!

𝐼!"

White region Black region

Grayscale ImageZoom inOur QR Code

Code target

Zoom in

Zoom in White region Black region

Grayscale Image

IMi

IMj

Figure 2. Illustration of preserving scanning-robustness. Each
module in our QR code (e.g. IMi and IMj ) is correspondingly
mapped to white (green arrow) or black (yellow arrow) blocks,
collectively forming a standard QR code target We use blue masks
to filter the white and black modules for better visualization.

4. Method
4.1. Overall

Figure 3 illustrates the overall structure of Text2QR, which
is grounded in the Stable Diffusion (SD) model denoted as
G. The powerful customization capability enables the SD
model to generate a user-preferred image Ig = G(c, z0)
with customized prompts c and input noise z0. Simulta-
neously, the input message is encoded into a QR code tar-
get M, comprising n × n binary values (1 for white, 0 for
black), representing the ideal color of each module.

Given Ig and M, Text2QR is designed to yield an aes-
thetically pleasing QR code denoted as Q. In pursuit of vi-
sual allure, Q faithfully mirrors the semantic content, aes-
thetic style, and figure layout inherent in Ig . Simultane-
ously, for practical functionality, Q is engineered to seam-
lessly reveal the encoded message upon scanning, adaptive
to any standard QR code reader. The architectural frame-
work of our pipeline unfolds across three distinct stages:

In the first stage, users prepare Ig and M, recording the
associated parameters (c and z0). During the second stage,
a pivotal step entails the seamless integration of information
encapsulated within Ig and M to formulate a comprehen-
sive blueprint image, denoted as Ib, through the innovative
QR Aesthetic Blueprint (QAB) module. Subsequently, Ib

undergoes processing in a ControlNet C to exert influence
on the SD model. This influence involves adjusting inter-
mediate features through a controlled process defined as:

Is = G(c, z0|C(Ib, c, z0)). (2)

This integration ensures a synergistic output Is that harmo-
niously balances the aesthetic preferences derived from Ig

with the structural constraints imposed by M. In the con-
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QR Aesthetic 
Blueprint 
(QAB)

Scannability Enhancing 
Latent Refinement (SELR)

Prompt 𝑐 , Noise 𝑧! (user-customized)

Guidance Image 𝐼!
(Un-scannable)

Blueprint Image	(𝐼")
(Scannable)

Re-generated Image (𝐼#)
(Un-scannable)

Output (𝑄)
(Scannable)

QRCode (ℳ)
(Scannable) Stage 1

Stage 2
Stage 3

Stable Diffusion Model ControlNet

Message

Figure 3. Overall Structure of the Text2QR. The pipeline consists of three stages, denoted with orange, blue and black lines. We propose
the QAB module for generating a blueprint image used as controlling guidance, and propose the SELR module for refining the controlled
output to enhance its scanning robustness.

clusive stage, Is undergoes iterative fine-tuning through the
Scannability Enhancing Latent Refinement (SELR) mod-
ule. This refines the scanning robustness of Is while metic-
ulously preserving its aesthetic qualities. The output of this
process is an aesthetically impressive QR code Q. Subse-
quent sections delve into detailed expositions on both QAB
and SELR modules.

4.2. QR Aesthetic Blueprint

The module aims to create a scannable blueprint by inte-
grating QR code information and guidance image details.
Initially, we extract the luminance channel, denoted as Igy ,
from the guidance image Ig . To ensure comparable distri-
butions, we preprocess Igy and M using histogram polariza-
tion for luminance adjustment and a module reorganization
method for pixel rearrangement, respectively. Finally, the
Adaptive-Halftone method is applied to blend them, yield-
ing the blueprint image Ib.

Histogram polarization. The primary aim of this mod-
ule is to harmonize the histogram distribution of Igy with
that of the QR code. This process enhances the contrast of
Igy , yielding a high-contrast grayscale image Ihc. The his-
togram polarization operation is represented by a look-up
table H, which maps pixel values from one gray level to an-
other. For each pixel p, let τ = Igy (p) and τ ′ = Ihc(p), we
express this transformation as follows:

τ ′ = H(τ). (3)

Let nτ denote the occurrences of gray level τ ∈ [0, L), we
introduce the Cumulative Distribution Function (CDF) cor-

Ig
y

Frequency

Ihe

Frequency

Ihc

Frequency

IntensityIntensityIntensity

L-Tw+Tb Tw Tb

Figure 4. Visualization of the process of Histogram Polarization.

responding to gray level τ as:

cdf(τ) =
τ∑

i=0

ni

H ×W
. (4)

The objective is to generate Ihc with a flat histogram in the
data range [0, Tb)

⋃
[Tw, L), while excluding occurrences in

the data range [Tb, Tw). To achieve this, we first create
a new image Ihe, with a linearized CDF across the value
range [0, L− Tw + Tb]. Let τ̃ = Ihe(p), we have:

τ̃ = (L− Tw + Tb) · cdf(τ). (5)

Subsequently, we shift the pixels within the value range
[Tb, L) by adding Tw − Tb to obtain Ihc:

τ ′ = H(τ) =

{
τ̃ , if τ̃ < Tb,
τ̃ + Tw − Tb, if τ̃ ≥ Tb.

(6)

Figure 4 shows visualization of these processes, illustrating
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e=0.057 e=0.353 e=0.171

Figure 5. Comparison of blueprint images and their correspond-
ing ControlNet output. Utilizing a pure QR code as the blueprint
(first column) yields a low error level e but lacks semantic fea-
tures. Employing a fixed size of u = a

3
(second column) leads to

a substantial error level. Our Adaptive-Halftone blending method
preserves realistic image content with a minimal error level.

the transformation of the image with a polarized histogram
and high-contrast luminance.

Module reorganization. To blend the QR code M with
Ihc, we first binarize the Ihc to a binary image Ibin. This
binary image guides the module reorganization method, de-
noted as Er, which rearranges the modules of M while
keeping the encoded information. The process can be for-
mulated as:

Ibin(p) =

{
0, if Ihc(p) < Tb,
1, if Ihc(p) > Tw,

(7)

Mr = Er(M, Ibin). (8)

Adaptive-Halftone blending. Considering the k-th module
region Mk, we input an image patch after histogram polar-
ization IhcMk

and a target value Mr
k = 0 or 1. Our goal is to

obtain the blueprint image Ib, where IbMk
can be decoded

to the correct information while preserving as much image
content as possible.

To achieve this objective, we introduce a novel blending
method, Adaptive-Halftone blending. Specifically, for each
module Mk, let θk be a square region of size u×u centered
on the image patch IhcMk

(u ≤ a). We fill the Ihcθk
with value

Mr
k to generate IbMk

. The square region size u is optimized
by minimizing the code distance within this module. The
simulating decoded value of this module corresponding to
u is defined as Ek(I

b
Mk

|u):

Ek(I
b
Mk

|u) = 1

a2
[
∑
p∈θk

L · Mr
k +

∑
p/∈θk

IbMk
(p)] (9)

=
1

a2
[u2 · L · Mr

k +
∑
p/∈θk

IbMk
(p)].

Optimizer

ℒ!

ℒ"

ℒ#

Objective function ℒBlueprint 
Image	(𝐼$)

ℰ% 𝑧& 𝒟%

𝐼& (Unscannable) 𝑄 (Scannable)𝐼&* (Unscannable)

Figure 6. The recurrent pipeline of SELR.

Particularly, Ek(I
b
Mk

|u) = L · Mr
k when u = a. The ob-

jective is to minimize the code distance:

uk = argmin
u

∥Ek(I
b
Mk

|u)−L · (η ·Mr
k+

1− η

2
)∥. (10)

According to the definition of thresholds Tb and Tw, Equa-
tion 10 can be further simplified as:

sk =

{
argmins ∥Ek(I

b
Mk

|u)− Tb∥, if Mr
k = 0,

argmins ∥Ek(I
b
Mk

|u)− Tw∥, if Mr
k = 1.

(11)
Having populated each module with a co-centered

square block of adaptable size, we proceed to affix mark-
ers, including Finders and Alignment markers, onto the fi-
nalized blueprint image Ib. Figure 5 showcases diverse Is

generated from distinct blueprint images. Our method dy-
namically adjusts the size of the central block for each mod-
ule in Ib. This adjustment involves shrinking the block size
when Ihc effectively encapsulates the module’s information
to preserve more image content. Conversely, it enlarges the
block size when a more pronounced control signal is neces-
sary to ensure the module’s scannability in Is.

4.3. Scannability Enhancing Latent Refinement

While the re-generated image Is adheres to the structural
constraints imposed by Mr, it often lacks scannability due
to the presence of numerous error modules. Addressing
this issue, the Scannability Enhancing Latent Refinement
(SELR) module offers a meticulous refinement process to
enhance scanning robustness. The markers, encompassing
finder and alignment patterns, are pivotal for determining
the location and angle of a QR code, thereby influencing its
scannability. Hence, we integrate their appearances onto Is

before refinement, denoted as Îs. As shown in Figure 6,
we encode the augmented image Îs into a latent code zs
using the encoder of a pre-trained Variational AutoEncoder
(VAE) model, denoted as EV . The total objective function
L is defined as the weighted sum of three terms: marker loss
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Lm, code loss Lc, and harmonizing loss Lh:

L(z) = λ1Lm(DV (z), I
b)

+ λ2Lc(DV (z), I
b)

+ λ3Lh(DV (z), I
s), (12)

where λ1 to λ3 are used to balance the multiple objectives.
Here, DV represents the decoder in the VAE model. The la-
tent feature z is initialized with zs and fine-tuned through an
optimization process to minimize the total objective func-
tion, thereby controlling the scannability and aesthetic qual-
ity of the generated QR code Q = DV (z). The code loss Lc

is derived from the methodology proposed in [33]. This ap-
proach employs the SSLayer to extract module values and
computes the module-based code loss through a competitive
mechanism.

Marker loss. In line with previous discussions, scanners
identify QR codes based on specific pixel ratios in marker
regions. Consequently, our strategy centers on constraining
the cross-center region of the marker, recognizing its cru-
cial role in preserving scannability. To implement this, we
introduce a binary mask, Kcc, tailored to filter the cross-
center region of markers. The aim is to safeguard the es-
sential marker features against potential compromise due to
aesthetic customization. Formally, the marker loss function
Lm is defined as follows:

Lm(Q, Ib) = Kcc· ∥ Qy − Ib ∥2, (13)

where Qy denotes the luminance channel of the QR code
Q. This formulation ensures marker integrity preservation
while allowing for aesthetic modifications in non-marker re-
gions of the QR code.

Harmonizing loss. Having addressed the marker and code-
related scannability concerns, our approach further ensures
the preservation of aesthetic qualities through a harmoniz-
ing loss. To maintain the intrinsic aesthetic style of the gen-
erated QR code Q, we employ a harmonizing loss focused
on optimizing visual quality while upholding its original ap-
peal. This loss function computes the L2-Wasserstein dis-
tance, denoted as W2, between the feature maps of Q and
Is. Specifically, feature map fi is extracted from i-th layer
of a pre-trained VGG-19 network (i ∈ [1, 6, 11, 18, 25]).
The loss is formulated as:

Lh =
∑
i

W2(fi(Q), fi(I
s)), (14)

where fi denotes the feature map extracted from the i-th
layer (i ∈ [1, 6, 11, 18, 25]) of the VGG network. The L2-
Wasserstein distance, assuming the feature distributions ap-
proximate Gaussian distributions described by means and
co-variances, can be expressed in a closed form [1]. Let
P1 and P2 be Gaussian measures on Rn with means µ1

and µ2 ∈ Rn and non-singular covariance matrices C1 and
C2 ∈ Rn×n, respectively. The L2-Wasserstein distance
W2(P1, P2) is given by:

A = trace(C1 + C2 − 2(
√
C1C2

√
C1)

1
2 ),

W2(P1, P2) =
√
∥ µ1 − µ2 ∥2 +A. (15)

The integration of the harmonizing loss ensures that the op-
timized output not only meets the functional requirements
but also preserves aesthetic qualities. In essence, the SELR
module leverages marker, code, and harmonizing losses to
optimize both the scannability and aesthetic appeal of the
generated QR code.

5. Experiments
We evaluate the performance of our QR codes in two as-
pects, aesthetic quality and scanning-robustness.

5.1. Implementation

We implement our program in PyTorch and conduct exper-
iments on a NVIDIA GeForce 3090 GPU. For scanning-
robustness assessment, we display QR codes on a 27-inch,
144Hz IPS-panel monitor. Default settings include η = 0.6
(following the work [33]) and a controlling strength of 1.4
for the pre-trained ControlNet (i.e., QR-Monster [10]). The
VAE model aligns with the SD model, featuring frozen pa-
rameters, and VGG-19 that is pre-trained on MS-COCO ex-
tracts feature maps in SELR. During refinement, we employ
Adam optimizer for 400 iterations with the learning rate set
to 0.002 and default weights λ1, λ2 and λ3 set to 1.0. QR
codes (M) are generated in version 5 of size 592×592 (i.e.,
37 × 37 modules, each of 16 × 16 [33]). In this paper, we
conduct comparisons on dataset comprising 100 generated
images of 1, 024 × 1, 024, span various visual content and
artistic styles.

Table 1. Average scanning success rates are assessed across var-
ious scanners, considering different sizes and angles. “Scanner”
denotes the native scanner of each system. We compare the accu-
racy (%) of our method and ArtCoder [33].

Mobile
Phone APPs

Accuracy (%)

(3cm)2 (5cm)2 (7cm)2

45◦ 90◦ 45◦ 90◦ 45◦ 90◦

iPhone
14Pro

Scanner 100 100 100 100 100 100
TikTok 100 100 100 100 100 100
WeChat 100 100 100 100 96 96

Huawei
P40

Scanner 100 100 100 100 100 100
TikTok 100 100 100 100 100 100
WeChat 100 100 96 100 96 100
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Table 2. Visual comparison of different methods. More results can be found in the supplementary material.

Input QArt [6] Halftone QR [5] ArtCoder [33] Quick QR [26] Text2QR (ours)

5.2. Scanning Robustness

We assess the performance of our QR codes across various
mobile devices and readers in this paper. Initially, we gen-
erate a set of 20 aesthetic QR codes with a resolution of 512
× 512. These codes are displayed on the screen in three
commonly used sizes: 3cm × 3cm, 5cm × 5cm, and 7cm
× 7cm. Positioned at a distance of 20cm, we scan each
code using different mobile phones and apps, varying scan-
ning angles. We record the average number of successful
scans in 50 attempts, defining success as decoding within
3 seconds. Table 1 presents experimental results indicating
that the average success rates consistently exceed 96%. It is
worth noting that even in the case where decoding exceeds 3

seconds, our QR codes are still decodeable eventually. This
robust performance demonstrates the reliability of our QR
codes for real-world applications.

5.3. Aesthetic Quality

Although scanning robustness is preserved well, we also
concern the visual appeal of the QR code.

Comparison with existing methods. We benchmark our
methods against various aesthetic QR code approaches, in-
cluding QArt [6], Halftone QR code [5], ArtCoder [33], and
Quick QR [26], as detailed in Table 2. For ArtCoder that
utilizes the neural-style transfer technique, we designate Ig

as both the content and style target. For QArt, Halftone
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Figure 7. Statistical results of user study (left) and scores of Aes-
Bench [7] (right).

e=0.20

e=0.18

e=0.29

e=0.46

e=0.27

e=0.17

e=0.38

e=0.35

Input (Ig) Is w/o. MR w/o. HP w/o. A-H

Figure 8. QAB Ablation Study: We assess the impact of
Module Reorganization (MR), Histogram Polarization (HP), and
Adaptive-Halftone Blending (A-H) on the generated Is. Our
result exhibits high consistency with the customized input Ig

and achieves a lower error level. (Note: These images are not
scannable.)

QR code, and Quick QR, we employ Ig as their reference
input images. ArtCoder’s results exhibit visible, undesired
round spots, indicating repaired modules that can be dis-
tractable. Quick QR, on the other hand, yields inconsistent
outcomes with the customized input. In contrast, our QR
codes seamlessly integrate with the customized input im-
age, featuring modules that are nearly invisible, ensuring
superior aesthetic quality characterized by personalization,
diversity, and artistic appeal.

In Figure 7, we showcase the outcomes of a user study
involving 24 subjects comparing 200 generated QR-code
images from various methods, where the ratio values in-
dicate the percentages of participants preferring the cor-
responding model. Concurrently, we also employ Aes-
Bench [7] (ranges from 0 to 100, the higher the better) as
an Aesthetic Assessment Metric to systematically score the
different methods. Our method achieves superior perfor-
mance across all evaluated aspects.

5.4. Ablation Study

We conduct a comprehensive ablation study, validating the
necessity of each module in Text2QR.

QAB Module. In Text2QR, the QAB module generates a
guidance blueprint image Ib for the SD model to produce a
high-quality aesthetic image Is. Our objective is to ensure
that Is not only shares a similar aesthetic style with Ib but
also maintains a low error level. This is achieved through

Input (Is) Our result w/o. Lh w/o. Lm w/o. LR

Figure 9. SELR Ablation Study: The first row presents results
with various losses and without Latent Refinement (LR), while the
second row zooms in on the red box region.

module reshuffling, histogram polarization, and Adaptive-
Halftone blending steps. Figure 8 illustrates the impact of
these steps on the error level e and aesthetic quality of Is.
Our results demonstrate a high consistency between Is and
the customized input Ig , accompanied by a notably lower
error level.

SELR Module. During the SELR process, we initialize Q
with Is and iteratively refine its latent code. The marker loss
and code loss actively enhance scanning robustness, while
the harmonizing loss meticulously controls aesthetic qual-
ity. Figure 9 illustrates the importance of SELR module.
Results refined directly on Q (denoted as “w/o. LR”) dis-
play visible, undesired round spots. Outputs without the
marker loss resemble standard outputs but are unscannable.
Omitting the harmonizing loss results in outputs with dis-
cordant appearances, underscoring its crucial role in achiev-
ing harmonious results. In conclusion, SELR refines the QR
code result, ensuring a harmonious blend of functionality
and aesthetic quality.

6. Conclusion
In summary, Text2QR utilizes the Stable-Diffusion (SD)
model to effectively address the dual challenge of achieving
user-defined aesthetics and scanning robustness in QR code
generation. The strategic integration of the QR Aesthetic
Blueprint (QAB) module that ensures generation stability
and the Scannability Enhancing Latent Refinement (SELR)
process that iteratively operates in the latent space, enhanc-
ing scanning robustness of the output. This innovative ap-
proach adeptly balances image aesthetics and scanning ro-
bustness, showcasing visual appeal and practical utility and
surpassing previous approaches by a large margin, marking
a substantial advancement in QR code generation.
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