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Abstract

We introduce a new task – language-driven video in-
painting, which uses natural language instructions to guide
the inpainting process. This approach overcomes the lim-
itations of traditional video inpainting methods that de-
pend on manually labeled binary masks, a process often
tedious and labor-intensive. We present the Remove Ob-
jects from Videos by Instructions (ROVI) dataset, contain-
ing 5,650 videos and 9,091 inpainting results, to support
training and evaluation for this task. We also propose
a novel diffusion-based language-driven video inpainting
framework, the first end-to-end baseline for this task, in-
tegrating Multimodal Large Language Models to under-
stand and execute complex language-based inpainting re-
quests effectively. Our comprehensive results showcase the
dataset’s versatility and the model’s effectiveness in var-
ious language-instructed inpainting scenarios. We have
made datasets, code, and models publicly available at
https://github.com/jianzongwu/Language-
Driven-Video-Inpainting.

1. Introduction
Video inpainting, a technique for restoring missing or cor-
rupted segments in video frames, finds extensive applica-
tion in areas such as video completion [4], video restora-
tion [15], and object removal [6]. Despite continuous ad-
vancements in enhancing image quality and temporal co-
herence of inpainting results [10, 23, 47, 69], current meth-
ods predominantly depend on manually annotated binary
masks to identify restoration areas. This manual process
is time-consuming and impractical for long videos. While
automatic labeling tools, such as segmentation and object
tracking models [57, 61, 64], offer some relief, they often
necessitate manual refinement due to imperfect labeling.

*The work is done during the internship at Shanghai AI Laboratory. †:
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Certainly! The video shows two individuals and two dogs. I guess 
you are the woman in the center, and you want to remove the 
woman in the background. Here is the new video: 

Hello, I took a photo of my dog training session in my 
room! Could you make the video more focus on me and
my dogs without any distractions in the background?

(a) Referring Video Inpainting

Remove the woman on the left

Implicit Requests

(b) Interactive Video Inpainting

Model Reasoning

Running…

Figure 1. Language-driven video inpainting. It contains two
sub-tasks based on the expression types. The referring video in-
painting task takes simple referring expressions as input, while in-
teractive video inpainting receives chat-style conversations. The
conversation may encounter implicit requests, and the model needs
to reason for a correct understanding.

Perhaps a more natural way to perform video inpaint-
ing is through natural language, as shown in Fig. 1. The
task would become much easier if we could leverage nat-
ural language descriptions to specify the inpainting areas,
like “woman on the left,” thereby preventing the need for
pixel-level manual annotations. Importantly, the language-
driven setting can benefit from the flexibility of natural lan-
guage. For example, with richer sentences, one can easily
refer to multiple or abstract objects, which is much more
effective than labeling masks. Extending from this notion,
one could divide the task into two subtasks, namely “Refer-
ring Video Inpainting” and “Interactive Video Inpainting.”
The former takes simple referring expressions as inputs, and
the latter considers more complex conversation-like interac-
tions to accomplish the inpainting task.

To establish a model for the proposed tasks, it is essential
to have an appropriate dataset for both training and evalu-
ation. Currently, no publicly available dataset comprises
the triplets of original videos, removal expressions, and in-
painted videos. In response to this gap, we build a new

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Input MagicBrush Ours

“Remove the guy in black shorts jumping on the stairs.”

InstructPix2Pix

“Remove the lizard looking back at the water bowl its tail touching.”

Figure 2. Comparison with general image editing models. In-
structPix2Pix [1] and MagicBrush [66] are general image editing
methods based on diffusion models. They produce inferior results
when instructed to remove objects in videos.

dataset named the Remove Objects from Videos by Instruc-
tions (ROVI) dataset. Specifically, we employ referring ob-
ject segmentation datasets, which are pre-annotated with
object masks and descriptive expressions. These datasets
are further augmented with corresponding inpainted videos
generated using a state-of-the-art video inpainting model.
However, we find existing referring expressions for interac-
tive video inpainting tasks too simplistic. To address this
limitation, we employ Multimodal Large Language Models
(MLLMs) [3, 63, 70] to create conversation-like dialogues.
These dialogues are designed to simulate real-world sce-
narios, encompassing user requests and corresponding ma-
chine responses. This approach enriches the dataset, mak-
ing it more representative of the complexity and variability
found in practical video inpainting applications.

In addition to the dataset, we introduce the first end-
to-end baseline model, Language-Driven Video Inpainting
(LGVI), for the proposed tasks. Our model is built upon
diffusion-based generative models. In particular, we inflate
the text-to-image (T2I) model to become a text-to-video
(T2V) architecture by extending the parameters with an ad-
ditional temporal dimension. We propose an efficient visual
conditioning approach that minimally increases the num-
ber of parameters. To further enhance our model’s capa-
bilities for the interactive task, we extend the LGVI frame-
work to LGVI-I (Interactive). This extension incorporates
an MLLM specifically designed to process and understand
user requests phrased in a conversation-like format. The
LGVI-I model is trained in an end-to-end manner. This in-
teractive architecture enables the system to interpret com-
plex instructions accurately. As a result, it can produce ap-
propriate inpainting results and relevant responses within
the conversational context, thus paving the way for more in-
tuitive and flexible user interactions with interactive video
inpainting systems.

In summary, our key contributions are as follows:
• We introduce a novel language-driven video inpainting

task, significantly reducing reliance on human-labeled
masks in video inpainting applications. This task includes

two distinct sub-tasks: referring video inpainting and in-
teractive video inpainting.

• We propose a dataset to facilitate training and evalua-
tion for the proposed tasks. This dataset is the first of
its kind, containing triplets of original videos, removal
expressions, and inpainted videos, offering a unique re-
source for research in this domain.

• We present a diffusion-based architecture, LGVI, as a
baseline model for the proposed task. We show how one
could leverage MLLMs to improve language guidance for
interactive video inpainting. To our knowledge, it is the
first model to perform end-to-end language-driven video
inpainting.

2. Related Work
Video inpainting. Video inpainting is a technique aimed
at restoring or filling missing or corrupted parts in a video
plausibly. While related to image inpainting methods [18,
19, 24, 25, 36, 60], video inpainting techniques [4, 10, 16,
23, 27, 47, 65, 69] extend the problem to the more com-
plex domain of moving visuals. This technique can be ap-
plied for various applications, such as object removal, vi-
sual restoration, and completion. With the advent of deep
learning, visual inpainting networks usually employ convo-
lutional neural networks (CNNs) [10, 47, 60] and genera-
tive adversarial networks (GANs) [18, 24, 25, 36]. Recent
works also apply vision Transformers [5, 30, 33, 40, 59] to
enhance the global interaction among visual features [16,
19, 23, 65, 69]. State-of-the-art methods show strong abil-
ities in restoring missing parts and removing objects. Most
of these works require the input of a binary mask to define
the restoring area [4, 19, 23, 24, 27, 65]. However, the gen-
eration of object-like masks, particularly for lengthy videos,
poses a significant and labor-intensive challenge,
Language-driven visual editing. Diffusion-based text-
to-image generation models (DMs) [34, 39, 41, 42, 44]
show excellent abilities in generating images and videos fol-
lowing text guidance. Recent studies also achieve image
editing [1, 9, 32, 45, 66], image segmentation and group-
ing [20–22, 50–52, 56, 62, 68] and video editing [12, 53]
with DMs. Among these, Prompt2Prompt [9] manipulates
the cross-attention maps within the model to enable vari-
ous editing operations such as object modification, addition,
and style transfer. InstructPix2Pix [1] leverages this ap-
proach to create an image editing dataset. Similarly, Tune-
A-Video [53] proposes a training-free architecture to edit
videos by language references. However, these works are
intended for general visual editing. They tend to yield sub-
optimal results when applied to more specific challenges,
such as language-driven video inpainting. Figure 2 shows
two examples where these models produce inferior results
when instructed to remove objects. A few works have ex-
plored the image inpainting task using DMs. Repaint [31]
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Table 1. Comparison between the ROVI dataset and related datasets. We choose two commonly used image inpainting (II) datasets,
two video inpainting (VI) datasets, and one language-guided image inpainting (LII) dataset. Our ROVI dataset is the first for language-
guided video inpainting (LVI) and interactive video inpainting (IVI) tasks.

Dataset Task Scene #Images #Videos #Frames Annotations #Objects #Exprs #Chats Sourcemask expr inpaint chat
Places [67] II Buildings & Places 10,624,928 - - × × × × - - - -
CelebA [29] II Human Face 202,599 - - × × × × - - - -
YouTube-VOS [55] VI General - 4,453 197,272 ✓ × × × 7,755 - - YouTube
DAVIS [37] VI General - 50 3,455 × × × × 3,455 - - -
GQA-Inpaint [58] LII General 49,311 - - ✓ ✓ ✓ × 97,854 107,252 - GQA [11]
ROVI LVI + IVI General - 5,650 247,018 ✓ ✓ ✓ ✓ 9,091 12,534 9,091 Refer-YouTube-VOS [43] + A2D-Sentences [7]

Refer-YouTube-VOS
2683

A2D-Sentences
2967

226
252

2715

2457

test

test

train

train

(a) Number of videos and split. (b) Word cloud of expressions.

I took a picture of a parked bus with a surfing event advertisement 
on its side. I want to remove a specific car in the background that 
seems out of place. Could you help me by getting rid of the black 
car behind another black car?

Sure, I can help you with that. This image shows a parked bus with a surfing 
event advertisement on its side. There is a black car in the background that 
seems out of place. I will remove the black car behind another black car for you. 
{{prompt}} remove the black car behind the other black car {{/prompt}}

1

I love the photo of the panda in the natural setting, but there's 
something off about it eating. Could you please make it as if the 
panda just sits there and relaxes without eating anything?

Sure, I can modify the image to show the panda sitting in the natural setting 
without eating anything. Here's the updated prompt:\n\n{{prompt}2

Can you modify this image? I want an empty enclosure but with the 
same attractive background.

Sure, here is the new image: {{prompt}} remove the giant gorilla sitting in a 
caged area chewing on a stick and breaking it {{/prompt}}

Requests Responses

3

The frisbee seems to interrupt the harmony of the beach scene. Can 
you make it look like a harmonious gathering of people on the beach?

Sure, here is the new image: {{prompt}} remove the frisbee being 
thrown {{/prompt}}

4

This picture would probably look better without that person walking 
in black. Could you help me remove them please?

Sure, I can help you remove the person walking in black. They are located in 
the middle of the image. The new video will be: {{prompt}} remove the person 
walking in black {{/prompt}}

5

(c) Examples of interactive requests and responses.
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(d) Relative segmentation mask size.
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(e) Relative object motion distribution.
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(f) Sentence lengths distribution.

Figure 3. The ROVI dataset statistics. Best viewed in color.

takes the image and mask as input and lets the DM re-
store the original image. SmartBrush [54] takes mask and
text as input to guide a region-controlled generation on the
masked area, which aims to generate new concepts rather
than remove the object. Recently, Inst-Inpaint [58] proposes
a method to perform object removal on images based on
the language descriptions. Despite its innovative approach,
Inst-Inpaint’s training samples are constrained by a lack of
interactive expressions and video resources, which limits its
practical effectiveness in complex scenarios.

Multi-Modal Large Language Models. Large language
models (LLMs) have demonstrated exceptional perfor-
mance across a variety of text-based tasks and applica-
tions [2, 3, 8, 17, 35, 46]. Recent works extend the capa-
bilities of LLMs to include image processing and computer
vision. A notable example is LLaVA [26], which translates
image tokens into a language feature space, thereby trans-
forming the fine-tuned model into an MLLM. This adap-
tation enables MLLMs to interpret and understand visual
content. Subsequent research uses MLLMs in diverse ap-
plications, including visual reasoning, object detection, and
segmentation [8, 17, 26, 38, 63, 70]. To the best of our
knowledge, this study is the first to integrate MLLMs into

the domain of language-driven video inpainting.

3. ROVI Dataset

3.1. Comparing with Existing Datasets

Table 1 summarizes the differences between ROVI and re-
lated datasets. In image and video inpainting research,
prevalent training and evaluation datasets mainly include
vision-centric ones like Places [67], CelebA [29], YouTube-
VOS [55], and DAVIS [37], without human annotations.
These datasets typically employ random masking in train-
ing to simulate missing areas for inpainting. However, for
object removal tasks, specifically labeled masks are essen-
tial. While YouTube-VOS provides object masks, it lacks
corresponding inpainting ground truths. The GQA-Inpaint
dataset [58], although rich in object expressions and inpaint-
ing results, is limited to image data and does not accommo-
date video or interactive contexts. Our ROVI dataset ad-
dresses these limitations with comprehensive annotations
covering a wide array of regions, including object masks,
referring expressions, inpainting results, and conversation-
like dialogues. Unlike Places and CelebA, which focus on
specific image categories like buildings or faces, ROVI en-

12503



Referring Video 
Segmentation 
Dataset

➊ Propagate Mask to Every Frame

Produce Inpainting Results

man riding a skateboard

 mask
 video
 expression

➌
Video Inpainting Model
with different hyper-parameters 𝑑

➍

remove the man riding a skateboard

· · · · · ·

Human Selection

➎

𝑑 = 0 𝑑 = 15

Object Tracking ModelSample Video Data ➋

Select and Revise Results by Humans

𝑑 = 5𝑑 = 3

Correct Inaccurate Expressions

<one frame from video> describe this image

Get Video Description with MLLM

The image features a young man skillfully 
riding a skateboard on a concrete floor. He is 
wearing a white shirt and black shorts, and he 
appears to be enjoying his time skateboarding. 
The skateboard is positioned underneath him, 
with its wheels visible on the ground

➏ Get User Request with LLM

<description> <object to be removed> 
Please generate a user request

Could you provide an image of just an empty 
concrete floor and skateboard without the 
skateboarder? I want to use it as a background 
for a project.

➐ Get Response with MLLM

<request> <one frame from video> 
Please generate a response with prompt

Sure, the video depicts a skateboarder boarding 
on the floor. I will remove the skateboarder for 
you. Here is the new image: {{prompt}} remove 
the man riding a skateboard {{/prompt}}"

Figure 4. ROVI dataset annotation pipeline. The building process of the ROVI dataset involves two distinct phases: inpainting annotation
and interactive annotation. In the inpainting annotation phase, the primary objective is to incorporate inpainting results into existing
referring video segmentation datasets, which initially contain object masks and expressions. During the interactive annotation pipeline, we
follow a multi-step approach incorporating LLMs and MLLMs. Best viewed in color.

compasses a broader spectrum of general scenes, making it
more adaptable for diverse inpainting applications.

3.2. Dataset Statistics

Figure 3 presents a comprehensive statistical analysis of the
ROVI dataset. The dataset encompasses 2,967 videos from
A2D-Sentences and 2,683 videos from Refer-YouTube-
VOS, divided into train and test splits, as shown in Fig. 3a.
Figure 3b illustrates the diversity of referring expressions
with word clouds. Figure 3c shows several examples of our
dataset’s interactive requests and responses, showing the di-
versity and complexity of the dialogues. Figure 3d details
the relative sizes of segmentation masks (mask area divided
by image area). We drop objects with a relative size larger
than 0.25 because the inpainting results for large objects
usually have worse qualities. Figure 3e analyzes the dis-
tribution of object motion. Figure 3f delivers a histogram of
sentence lengths within the dataset.

3.3. Dataset Construction Pipeline

Video data selection. As depicted in Fig. 4, we have chosen
referring video object segmentation datasets for the source
of video data. Referring video object segmentation aims
to segment an object referred to by a given language de-
scription. These datasets have pre-annotated object masks
and descriptive expressions, making them well-suited for
the proposed task. Specifically, we select Refer-YouTube-
VOS [43] and A2D-Sentences [7] as our data sources.
Annotation pipeline. We use a video inpainting model
to generate the inpainting ground truth. Specifically, we

choose E2FGVI [23], a state-of-the-art video inpainting
model, to produce the inpainting results. This model,
trained on video data, guarantees temporal consistency in
the inpainting results.

To further ensure the ground truth is of high quality, we
incorporate a human selection process on the hyperparam-
eter of the inpainting method. Specifically, the input mask
can be expanded with different pixel sizes, denoted as d.
The bigger the d is, the larger the input mask is developed so
that it may cover the whole object. The best d value varies
through objects, causing an unstable performance in the in-
painted videos if set to a fixed value. Therefore, through-
out the data generation process, we experiment with various
hyperparameters to generate multiple results for each object
and involve human annotators to select the best result. More
details are provided in the supplementary.

For interactive annotations, we need to collect expres-
sions through chat-style conversations. Unlike the straight-
forward “remove” sentences, these interactive requests
should be implicit, necessitating the model to discern the
user’s underlying intent. Rather than relying solely on hu-
man annotators to articulate these requests, we explore a
more automated approach: we employ LLMs and MLLMs
to simulate a human user and generate potential requests
and responses. We propose a multi-step approach with de-
tails illustrated in Fig. 4. By employing this dual-faceted
annotation pipeline, the ROVI dataset is enabled to handle
complex user requests.
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Figure 5. The training process of LGVI and LGVI-I. We inflate the U-Net with a temporal dimension to allow video input. To
ensure temporal consistency in the generated videos, we introduce a temporal attention module between cross-attention and FFN layers.
Additionally, we propose a mask decoder module for explicit guidance in inpainting tasks. We augment LGVI with MLLM joint training
for interactive video inpainting, resulting in LGVI-I as the baseline. The output of MLLM includes a set of prompt tokens, which is fed
into the cross attention of the U-Net.

4. Methodology

In this section, we introduce our Language-Driven Video
Inpainting framework (LGVI) and the MLLM-enhanced
LGVI-I (Interactive) architecture. The latter is built from
the former architecture by adding extra LLM as language
controllers.

4.1. LGVI

The LGVI framework is shown in Fig. 5, which is built
on the architecture of Stable Diffusion [41]. To extend the
framework to video inputs, we perform temporal inflation
by reorganizing the network’s structure following [44, 53].
For a batch video input with T frames, denoted as X ∈
RB×T×H×W×3, where B is the batch size, and H ×W are
the size, we transpose the tensor to X ∈ R(B×T )×H×W×3.
This transformation converts the input into a 4-dimensional
image batch input format. The pre-trained 2D networks
can process video clips as they are separate images. Ad-
ditionally, we introduce a parameter-efficient Temporal At-
tention module positioned between the cross-attention and
FFN network. Given latent feature v ∈ R(B×T )×D×C ,
where D is the length of patched visual tokens, and C is
the channel size, we transpose it to v′ ∈ R(B×D)×T×C .

The Temporal Attention module is formulated as follows:

Q = Wqv, K = Wkv, V = Wvv,

Attention(Q,K,V) = Softmax(
QKT

√
C

) ·V,
(1)

where Wq , Wk, and Wv are learnable matrices to project
the inputs to query, key, and value. The computational com-
plexity of the Temporal Attention module is O(CT 2), while
spatial self-attention has a complexity of O(CD2). Consid-
ering T ≪ D. The Temporal Attention module is a time-
efficient tool to ensure the consistency of video sequences.

Diffusion models learn to gradually remove noises in a
noised video. During training, the target video Y is added
with noises to be the start point of the noised video. Besides
the noised target video input, LGVI also takes the original
video X as a control signal input. Concretely, we encode
the original video X to the latent space and concatenate its
feature with the noised target video in the channel dimen-
sion. Note that the noise is added only to the target video
latent, and during testing, the noised target video is a ran-
domly generated noise.

z0 = E(Y), cx = E(X),

zt = AddNoise(z0),

vt = Convv(zt) + Convx(cx),

(2)
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where E is the pre-trained VAE encoder, t is the sampled
timestamp, Convv and Convx are convolutional layers with
3 × 3 kernels to transfer the latent codes into U-Net fea-
ture dimensions. The initial weights of Convx are set to
all-zero. This technique allows the model to add video con-
dition guidance during training. Due to mask annotations in
the ROVI dataset, we can leverage masks as an additional
supervision signal in our LGVI framework. Concretely, we
implement a mask decoder to predict the object’s mask in
the video that needs to be inpainted or removed. This de-
coder uses the outputs from U-Net up-blocks and consists of
convolutional and temporal convolutional layers. The use of
mask supervision enables the model to focus on the region
described in the natural language input, thereby facilitating
precise and targeted inpainting. The effectiveness of mask
supervision can be seen in Sec. 5. The training objective of
LGVI is:

Ldiff = EX,ϵ∼N (0,I),t

[
||ϵ− ϵθ(vt, c, t)||22

]
,

Lmask = CrossEntropyLoss(M̂,M),

L = λ1Ldiff + λ2Lmask,

(3)

where Ldiff and Lmask are the diffusion model training ob-
jective and mask loss, respectively; c is the language guid-
ance features from the referring expressions; M̂ is the mask
prediction and M is the ground truth mask. The parameters
λ1 and λ2 are loss weights to balance training.

4.2. LGVI-I with MLLM

In the interactive video inpainting task, models are expected
to extract valuable information from complex conversa-
tions. To overcome this problem, we propose incorporating
MLLMs to extend the LGVI from work to LGVI-I (Inter-
active). MLLMs have demonstrated strong capabilities in
visual comprehension and multimodal reasoning, making
them well-suited for our proposed interactive video inpaint-
ing task. As shown in Fig. 5, the MLLM takes both the
image frame and the chat-style user request as inputs, gen-
erating the language response and a pair of special indica-
tors: <PROMPT> and </PROMPT>. The hidden states of
the last layer between these two indicators are then passed
through an MM head, implemented as a two-layer linear
layer with activation functions. The transformed features
are fed to the cross-attention module to guide the U-Net in-
painting process. Mathematically, given the input video X
and user request s, the computation pipeline of the MLLM
can be summarized as follows:

el = f(s), ei = Wtrans · g(X0),

h = MLLM([el, ev]),

ŵ = Wlm · h,
hp = Wmm · find prompt(ŵ,h),

(4)

Table 2. Quantitative results on the referring video inpainting
task. E∗

warp denotes Ewarp(×10−2).

Method PSNR ↑ SSIM ↑ VFID ↓ E∗
warp ↓

Image Models
InstructPix2Pix [1] 18.12 0.600 0.361 1.343
Inst-Inpaint [58] 19.00 0.896 0.310 1.206
MagicBrush [66] 20.39 0.725 0.310 0.934

Multi-Stage Video Model
Inpaint Anything* [61] 22.84 0.728 0.283 0.874

One-Stage Video Model
LGVI (Ours) 22.85 0.756 0.308 0.901

where f is the language token embedding and g is a pre-
trained image backbone to extract image features. Wtrans

is a linear layer that transforms image features into language
token space. h is the last layer’s hidden states of the MLLM.
ŵ is the predicted language token distribution through the
LM head. Wlm is the weights of the LM head. Among the
predicted words, we use find prompt function to find the
<PROMPT> and </PROMPT> indicator and extract the
hidden states that lie between these two indicators. Wlm

is the weights of MM head. The MM head transfers the
selected tokens into hp, which is then fed into the U-Net
cross-attention module. In this process, hp serves as vision-
aware language guidance for the inpainting process. The
training objective of LGVI-I is:

Ldiff = EX,ϵ∼N (0,I),t

[
||ϵ− ϵθ(vt,hp, t)||22

]
,

Llm = CrossEntropyLoss(ŵ,w),

L = λ1Ldiff + λ2Lmask + λ3Llm,

(5)

where hp is the MLLM-enhanced language condition, Llm

is language modeling loss, implemented as the Cross-
Entropy Loss, w is the ground truth sentence, and λ3 is
the loss weight for language modeling loss. By integrating
an MLLM into the LGVI framework, the system achieves a
higher level of user interactivity. This enables users to guide
the visual inpainting process with interactive language in-
structions, thus establishing a more user-friendly and acces-
sible approach for the interactive video inpainting task.

5. Experiments
5.1. Settings

Datasets and metrics. We use the ROVI dataset test set
for both the referring video inpainting and interactive video
inpainting tasks. The test set contains 478 videos and 758
objects, each equipped with one referring expression and
one interactive expression. During the training of our mod-
els, we incorporate a referring image inpainting dataset,
GQA-Inpaint [58], to enrich the data vocabulary. We fol-
low video inpainting works [23, 27, 65, 69] to use PSNR
and SSIM [49] to assess the statistical similarity between
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Table 3. Results on interactive video inpainting task. E∗
warp

denotes Ewarp(×10−2). MB represents MagicBrush, and IA*
represents Inpaint Anything*. The small numbers on the top 5
rows are compared with the referring video inpainting results. The
small numbers on the last row are compared with LGVI.

Method PSNR ↑ SSIM ↑ VFID ↓ E∗
warp ↓

Image Models
InstructPix2Pix [1] 16.53(-1.59) 0.558(-0.042) 0.391(-0.003) 1.789(-0.446)

Inst-Inpaint [58] 18.96(-0.04) 0.702 0.314(-0.004) 1.047
MagicBrush [66] 20.46 0.728 0.311(-0.001) 0.901

Multi-Stage Video Model
IA* [61] 20.64(-2.20) 0.664(-0.064) 0.312(-0.029) 1.182(-0.308)

One-Stage Video Model
LGVI (Ours) 20.70(-2.15) 0.707(-0.049) 0.332(-0.024) 1.191(-0.290)

MLLM-Enhanced Two-Stage Model
MB + MLLM 20.37 0.726 0.313 1.004
IA* + MLLM 21.37 0.722 0.291 0.875
LGVI + MLLM 21.45 0.738 0.311 0.923

MLLM-Enhanced End-to-End Model
LGVI-I (Ours) 22.24(+1.54) 0.732(+0.025) 0.299(+0.033) 0.867(+0.324)
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“Remove the cat on the right.”

“remove the man in the white outfit hopping over some exercise balls”

In
p
u
t

M
ag
ic
B
ru
sh

O
u
rs

Figure 6. Qualitative comparison between LGVI and Mag-
icBrush [66] on the referring video inpainting task.

predicted results and ground truth. Additionally, we use
VIFD [48] to measure the perceptual similarities. To assess
the temporal consistency and smoothness of the generated
videos, we also apply the Ewarp metric [14].
Baselines. For the baselines, we select three language-
driven image editing methods: InstructPix2Pix [1], Inst-
Inpaint [58], and MagicBrush [66]. It is worth noting that
InstructPix2Pix and MagicBrush are pre-trained on exten-
sive image editing datasets. Inst-Inpaint is proposed to per-
form referring image inpainting on images. We also com-
pare with Inpaint Anything, a multi-stage method for one-
click video inpainting. It uses Segment Anything [13] and

Input Inpaint Anything* Ours

“Remove the dog and the girl.”Referring multiple objects:

Referring nonexistent object: “Remove the giraffe on the snow.”

Figure 7. Examples of referring to multiple objects in one sentence
and referring to nonexistence objects.

OSTrack [57] to produce segmentation masks based on user
click, followed by inpainting the masked area using inpaint-
ing models [64]. We implement Inpaint Anything*, which
facilities Inpaint Anything [61] with GroundingDINO [28],
enabling it to process language inputs.
Implementation details. We initialize the U-Net weights
from MagicBrush [66]. The newly introduced modules are
trained from scratch. During training, we sample video and
image data at a ratio of 3 : 1. For the MLLM, we adopt
LLaVA-7B [26]. The learning rates are 3e-5, 1e-4, and 1e-4
for U-Net, mask decoder, and tuned parameters in MLLM,
respectively. The loss weights are set to λ1 = 1, λ2 =
0.001, λ3 = 0.1. These weights differ significantly due to
the different types of losses they represent. The input and
output video sizes are set to 512 × 320, and the video length
is 24. For LGVI, we train 50 epochs on the ROVI dataset
with a batch size of 32 for videos and 768 for images. For
LGVI-I, we load the LGVI checkpoint and fine-tune it for
50 epochs under the same batch size. All experiments are
carried out on 8 NVIDIA A100 GPUs.

5.2. Referring Video Inpainting

Quatitative results. We report quantitative results on the
referring video inpainting task. Compared with baseline
models, our model is the first one-stage language-driven
video inpainting model. As shown in Tab. 2, our model
outperforms MagicBrush [66] in all metrics and achieves
on-par results with Inpaint Anything* [61], even if Inpaint
Anything* uses a mask-based inpainting model [64]. The
results demonstrate the effectiveness of our model.
Qualitative results. Figure 6 shows qualitative results.
We compare with MagicBrush [66], a robust generalized
language-driven image editing model. In the first exam-
ple, where the language refers to the cat on the right, the
MagicBrush model removes all the cats in the scene, while
our model successfully inpaints the right cat. In the sec-
ond example, the referring expression becomes more com-
plex. MagicBrush struggles to identify the object requir-
ing inpainting and removes the wrong object (the balls) in
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Input Frame Inpaint Anything* (Mask) LGVI-I (Ours)Inst-Inpaint InstructPix2Pix MagicBrush

“Can you make it seem like the bird on the right was alone on the blinds?”

I have a perfect action shot of a tennis player, but my friend was also caught in the frame. Could you help me to create an image where only the player who is about to hit the ball is visible, please?

Can you help me edit this picture? I'd prefer the image if it showed just the man preparing to kick but without the ball in the frame.

Could you make the highway appear less crowded? I'd love to see it without the white sports car in the middle.

Figure 8. Qualitative comparison between LGVI-I and baseline models on the interactive video inpainting task. The chat-style
conversation inputs are listed above each row. Columns 2 and 3 are the results and predicted masks from Inpaint Anything*. It removes
the inaccurate objects according to the wrongly predicted masks due to the difficult interactive language inputs.

the last frame. In contrast, our model generates a plausi-
ble output, demonstrating its superior performance in han-
dling complex language-driven inpainting tasks. Further-
more, in Fig. 7, we compare with Inpaint Anything* on sen-
tences referring to multiple objects or nonexistent objects.
Inpaint Anything is driven by a simple combination of re-
ferring segmentation and video inpainting models. Thus, it
is fixed to produce one mask for each sentence. When refer-
ring to multiple or nonexistent objects, it outputs inaccurate
results, while our model produces the correct output. This
demonstrates the robustness of the language-driven setting.

5.3. Interactive Video Inpainting

Quatitative results. We report the interactive video in-
painting task results in Tab. 3. As shown in the top 5 rows,
when the models are trained using referring expressions,
their performance drops correspondingly in this task. This
is intuitive because interactive expressions are much longer
and more implicit. For the MLLM-Enhanced Two-Stage
Models, we combine the baseline models with an MLLM
in a zero-shot manner. The interactive inputs are transferred
into shorter referring expressions by simply prompting the
MLLM. These models exhibit improved performances. Our
LGVI-I model achieves the highest performance, demon-
strating the effectiveness of the proposed architecture.
Qualitative results. Figure 8 presents examples of the in-
teractive video inpainting task. The user requests pose a sig-
nificant challenge and complexity for the baseline models to
comprehend. In particular, Inpaint Anything* predicts in-
correct masks, leading to inaccurate results. Similarly, other
diffusion-based models struggle to interpret the users’ in-

tentions accurately, resulting in less satisfactory outcomes.
In contrast, our LGVI-I model, which harnesses the power
of MLLM, consistently delivers the best performance in
these challenging scenarios. This underscores the superior-
ity of our proposed approach. More detailed ablations can
be seen in the supplementary due to the page limitation.

6. Conclusion

In this paper, we propose a novel language-driven video
inpainting task that uses language to guide inpainting ar-
eas. For training and evaluation, we collect a video dataset,
namely ROVI. Comprehensive statistics demonstrate the
uniqueness and diversity of our dataset, especially the chat-
style interactive conversations generated by powerful LLMs
and MLLMs. We further propose a diffusion-based baseline
model, LGVI. Quantitative and qualitative experimental re-
sults show the effectiveness and robustness of our model.
We hope our proposed benchmark and baselines can pro-
vide valuable insights into multi-modal models of low-level
vision. In addition, there are several challenges to solve, in-
cluding scalability and generalization of the model. We list
the more discussion in the appendix.
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