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Figure 1. Multi-dataset synergistic training with Point Prompt Training (PPT). (a) Our PPT Framework is comprised of two key
components: 1. The domain prompt adapter adapts the backbone to various dataset-specific contexts with a set of domain-specific prompts;
2. The categorical alignment process empowers the model to effectively undergo training within multiple category spaces concurrently in
the supervised setting. (b) The Result Comparison plot reveals that PPT delivers state-of-the-art performance across both datasets only
with one single shared-weight backbone, and fine-tuning on any single specific dataset can further enhance the results.

Abstract
The rapid advancement of deep learning models is of-

ten attributed to their ability to leverage massive training
data. In contrast, such privilege has not yet fully bene-
fited 3D deep learning, mainly due to the limited avail-
ability of large-scale 3D datasets. Merging multiple avail-
able data sources and letting them collaboratively train
a single model is a potential solution. However, due to
the large domain gap between 3D point cloud datasets,
such mixed supervision could adversely affect the model’s
performance and lead to degenerated performance (i.e.,
negative transfer) compared to single-dataset training. In
view of this challenge, we introduce Point Prompt Train-
ing (PPT), a novel framework for multi-dataset synergis-
tic learning in the context of 3D representation learning
that supports multiple pre-training paradigms. Based on
this framework, we propose Prompt-driven Normalization,
which adapts the model to different datasets with domain-
specific prompts and Language-guided Categorical Align-
ment that decently unifies the multiple-dataset label spaces
by leveraging the relationship between label text. Exten-
sive experiments verify that PPT can overcome the negative
transfer associated with synergistic learning and produce
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generalizable representations. Notably, it achieves state-of-
the-art performance on each dataset using a single weight-
shared model with supervised multi-dataset training. More-
over, when served as a pre-training framework, it outper-
forms other pre-training approaches regarding representa-
tion quality and attains remarkable state-of-the-art perfor-
mance across over ten diverse downstream tasks spanning
both indoor and outdoor 3D scenarios.

1. Introduction

The rapid advancement of deep learning models in vari-
ous domains, e.g., 2D vision [27, 48, 92, 102] and natu-
ral language processing [1, 46, 66, 93], are often attributed
to the availability of massive training data, which enable
them to learn rich and discriminative representations and
generalize well to a wide spectrum of downstream appli-
cations. Such privilege, in contrast, has not yet fully ben-
efited 3D vision, primarily due to two challenges: previ-
ous representation learning frameworks exhibit constraints
in processing larger-scale point cloud data efficiently (i.e.,
they build on raw frames rather than the scene-level point
cloud [35, 110]), and current 3D datasets are often limited
in scale (e.g., the commonly used ScanNet [21] only con-
tains 1.6K scans, while image datasets are often at million
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scale [23, 80]). As a complement to one recent work [108]
which explores the first problem, we tackle the second chal-
lenge: scaling up 3D representation learning with limited
data in separated domains.

A potential approach to circumvent the data scarcity is-
sue is to merge multiple available data sources and train
on them collaboratively (termed multi-dataset synergistic
training) to supervise a single model, which is expected
to leverage the information from all sources and learn
more generalizable representations. However, large do-
main gaps exhibit between 3D datasets, and directly com-
bining multiple data sources can lead to negative trans-
fer, a phenomenon where differences in data distribution
among the sources adversely affect the model’s perfor-
mance. As shown in Tab. 1, naively joint training with
merged data (ScanNet [21], S3DIS [2], and Structured
3D [124]) leads to degenerated performance on the target
dataset. In other words, leveraging additional training data
from other datasets could be harmful. Though similar prob-
lems have been studied in 2D scene understanding [47, 95,
99, 117, 127], the large domain gap between 3D datasets,
and their sparse and heavily long-tailed nature makes it a
much harder task that requires non-trivial solutions.

To tackle the challenge, we present a novel framework,
termed Point Prompt Training (PPT), specifically designed
for multi-dataset synergistic training within the 3D repre-
sentation learning context (see Fig. 1a). Unlike the 2D
counterparts that adopt prompt learning to adapt pre-trained
models to specific downstream tasks [42, 45, 118, 126], our
framework tackles pre-training directly. Moreover, the pro-
posed framework is universal, supporting both supervised
and unsupervised pre-training, and evaluation on the target
dataset could be done either directly (if the target dataset is
included in supervised pre-training) or via transfer learning.

Based on this framework, we explore multi-dataset
synergistic training for 3D representation learning from
two perspectives: learning a domain prompt adapter
that allows the network to model the intrinsic variance
within different data sources while maintaining optimal
generalizable representations and forming a unified label
space that avoids inconsistency in categorical supervision
and allows aligned guidance between datasets. Multiple
design options are investigated, and we adopt the Prompt-
driven Normalization and Language-guided Categorical
Alignment as our final strategies.

The effectiveness of PPT is demonstrated through exten-
sive experiments, which show that our proposed method can
overcome the negative transfer associated with synergistic
learning and produce generalizable representations. No-
tably, PPT attains state-of-the-art performance across var-
ious benchmarks, including ScanNet [21] and S3DIS [2],
using a shared-weight model trained on multiple indoor
datasets. Additionally, it achieves comparable state-of-

the-art results on SemanticKITTI [6], nuScenes [8], and
Waymo [86] using a shared-weight model trained on diverse
outdoor datasets. Furthermore, as a pre-training strategy,
PPT outperforms other techniques in terms of representa-
tion quality, demonstrating superior performance across an
array of tasks encompassing both indoor and outdoor sce-
narios (partially in Fig. 1b).

In conclusion, as an effort toward large-scale 3D repre-
sentation learning, this work introduces the multi-dataset
synergistic training setting, points out the negative trans-
fer issue in naive baselines, and presents a unified point
prompt training framework that addresses this problem with
Prompt-driven Normalization and Language-guided Cate-
gorical Alignment.

2. Multi-dataset Synergistic Training
In this section, we briefly demonstrate the setting (Sec. 2.1)
in multi-dataset synergistic training for 3D representation
learning and uncover the challenges in this setup through a
pilot study (Sec. 2.2).

2.1. Problem Setup

Training objective. In the context of supervised multi-
dataset synergistic learning, the objective is to learn a single
model capable of effectively performing downstream tasks
on multiple datasets. Specifically, denote each dataset as
Di = {(xi

j ,y
i
j)}, where 1 ≤ i ≤ n, n stands for the num-

ber of datasets, and (xi
j ,y

i
j) represents data-label pairs that

construct a dataset. Our goal is to train a model f(x; θ) pa-
rameterized by θ, such that the cumulative loss across all
datasets is minimized:

argmin
θ

n∑
i=1

1

|Di|
∑

(xi
j ,y

i
j)∈Di

L
(
f
(
xi
j ; θ

)
,yi

j

)
, (1)

where L denotes the sample-wise loss function. Besides,
substituting the supervised loss function with an unsuper-
vised objective allows for reformulation in the context of
unsupervised learning.
Task. The nature of 3D scene understanding has a higher
level of complexity and richer contextual information [35,
110], which requests a challenging and versatile task for
developing and evaluating advanced learning techniques.
Specifically, we mainly target scene-level semantic segmen-
tation for supervised training, which requires dense label-
ing on individual points or voxels in 3D scenes, thus in-
tricate contextual perception is required to accomplish this
element-wise recognition task. This characteristic makes
semantic segmentation a promising foundation for further
exploring scene-wise and object-wise recognition tasks, i.e.,
classification and detection.
Dataset. In our initial investigation into multi-dataset col-
laborative learning for 3D perception, we consider Scan-
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Table 1. Datasets summary and joint training transfer among tasks. The entry at row i and column j indicates the semantic segmenta-
tion mIoU on dataset i using a SparseUNet [16, 18] joint-trained on datasets i and j. The All column represents combining all data sources.
The diagonal elements represent using only the original dataset i. Note that Structured3D is originally panoramic images, and we con-
verted it to point cloud data following Swin3D [116]. Moreover, we compute the sampling ratio based on each dataset’s best performance
necessary iteration number. The effects of different sampling strategies are further explored in the ablation study (Sec. 4.1) and Appendix.

Dataset details Baseline results w/ diff. joint training data Ours
(All)

Target data Source Sparsity Complexity Scans ScanNet S3DIS Struct.3D All

ScanNet Real Sparse Large rooms 1613 72.2 71.8 65.9 68.9 (-3.3) 75.7 (+3.5)

S3DIS Real Dense School office 272 64.1 65.4 62.8 63.3 (-2.1) 72.2 (+6.8)

Struct.3D Synth. Dense Suite 3500 73.7 74.2 74.5 72.9 (-1.6) 75.8 (+1.3)

Net [21], S3DIS [2], and Structured3D [124] as the datasets
of interest, all of which include segmentation annotations.
ScanNet and S3DIS represent the most commonly used
real-world datasets in the realm of 3D perception, while
Structured3D is a larger-scale synthetic RGB-D dataset that
we specifically incorporated to establish an experimental
context for addressing the domain gap between synthetic
and real data, ultimately aiming to achieve mutual gains
across datasets. As illustrated in the left side of Tab. 1,
although all three datasets represent indoor point cloud
scenes, they exhibit distinct characteristics in terms of data
scale, scene variety, and point cloud density. Our objec-
tive is to examine methods for overcoming the domain
gap among these diverse datasets, facilitating collaborative
learning across multiple sources and thereby taking an es-
sential step towards large-scale representation learning for
3D perception.
Evaluation. As a proof of concept, we consider joint train-
ing by default, in which the model is jointly trained on all
datasets under the supervised setting, and directly evaluated
on all datasets without fine-tuning. In the final experiments,
we will also consider two standard transfer learning set-
tings: 1) supervised pre-training, where the model super-
vised pre-trained during joint training is further fine-tuned
on the target dataset; and 2) unsupervised pre-training,
where the model is unsupervised pre-trained on all datasets,
and fine-tuned on each target dataset for evaluation.

2.2. Pilot Study: Uncovering the Negative Transfer

As a pioneering effort, MSC [108] involved unsupervised
pre-training using a combination of two indoor datasets,
ScanNet [21] and Arikitscene [5]. However, even with the
addition of three times more data, the performance improve-
ment over the single-dataset pre-training baseline on Scan-
Net was relatively limited. To investigate the underlying
causes of this limited performance gain, we take a step back
and reassess this phenomenon by studying a straightforward
supervised multi-dataset learning setup, i.e., the joint train-
ing setting aforementioned in Sec. 2.1.

Negative transfer [10] refers to the phenomenon where
learning from one dataset may negatively impact the perfor-
mance on another dataset due to differences in data distri-

bution. Despite restricting our focus to indoor scene point
clouds, a significant negative transfer occurs during direct
multi-dataset mixed segmentation training. As illustrated in
Tab. 1 (right side), we conduct training by pairwise merg-
ing the three datasets as well as a combination of all, and
evaluate the model’s performance on each related individual
dataset. The experimental results reveal that direct merg-
ing training data gives rise to negative transfer between
datasets, underscoring the challenges associated with attain-
ing effective collaborative learning across multiple datasets
in the 3D domain.

3. Point Prompt Training

Due to the risk of negative transfer discussed in Sec. 2.2,
adapting a single model to diverse domains with distinct
contexts still remains a significant challenge. Nevertheless,
recent advances suggest that prompt tuning may be a viable
approach for effectively adapting pre-trained models with
large-scale datasets to downstream tasks. Inspired by this,
we propose a different paradigm named Point Prompt Train-
ing (PPT) to mitigate negative transfer and enable multi-
dataset training.

As shown in Fig. 2, PPT has two essential components:
(1) a prompt adapter, which adapts a single model to vary-
ing contexts of different datasets using a set of learnable
domain-specific prompts, and (2) a categorical alignment
process, which enables the model to be decently trained
within multiple category spaces simultaneously with super-
vised learning. Details of them are presented as follows.

3.1. Learning with Domain Prompting

Issues with prompt tuning. In the prompt tuning
paradigm [59], a model pre-trained by a large-scale dataset
is fine-tuned for specific tasks or datasets by incorporating
additional information or context through prompts. These
prompts facilitate the model’s adaptation to new tasks with
minimal parameter changes, often outperforming that with
full fine-tuning [42, 125, 126] and laying the ground for a
unified foundation model [7].
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Figure 2. Prompt adapter and categorical alignment. (a) As a prompt adapter, Prompt-driven Normalization adaptly encodes domain-
specific prompts into the scale and shift vectors in normalization layers. This adaptation helps adapt the model to the specific dataset
domain. (b) Language-guided Categorical Alignment aligns point representations to a unified category-language embedding, shared across
all datasets and extracted by a pre-trained text encoder.

However, in 3D perception, the lack of a large-scale pre-
trained model hinders the applications of prompt tuning.
Furthermore, prompt tuning aims to address the domain gap
between pre-training and fine-tuning datasets rather than
improving the model’s ability to fit multiple datasets si-
multaneously during either pre-training or fine-tuning. To
tackle this issue, we introduce a novel method termed do-
main prompting. Instead of merely fine-tuning prompts on
pre-trained models, we incorporate learnable prompt tokens
as conditions for varying dataset contexts and (pre-)train the
domain prompt with backbone cooperatively.
Domain prompting. Specifically, for each interested
dataset Di, we generate a learnable d-dimensional vector
as the domain-specific prompt. The collection of n contexts
is denoted as C = {ci ∈ Rd|i ∈ N, 1 ≤ i ≤ n}. Then the
multi-dataset training objective in Eq. 1 becomes:

argmin
θ, C

n∑
i=1

1

|Di|
∑

(xi
j ,y

i
j)∈Di

L
(
f
(
xi
j , ci; θ

)
,yi

j

)
. (2)

These learnable domain prompts facilitate the discovery of
distribution differences among datasets, enabling the back-
bone to surmount domain gaps encountered in multi-dataset
training. As a result, the model focuses more on learn-
ing the representations that can be decently shared across
datasets. This method fosters mutual benefits among dis-
tinct datasets and promotes a collaborative synergy between
the backbone model and the prompts. Similar to VPT [42],
we also observe that the shared prompt within each domain
can achieve comparable or even better performance than the
independent ones for different backbone blocks, and we put
the discussion in the Appendix. We believe this approach
can benefit both supervised and unsupervised pre-training,
as well as fine-tuning, by addressing the negative transfer
that may exist within multiple datasets.
Domain prompt adapter. With the domain prompts
that possess unique characteristics specific to individual

datasets, enabling the model to effectively engage with
domain-specific prompts becomes another challenge. Pre-
vious research on visual prompt tuning has demonstrated
that the adapters utilizing shared prompts to exert block-
wise control over models are more effective than those that
inject prompts at the input level [42]. Building on this in-
sight, we investigate various designs for prompt adapters as
outlined below and mark our main proposal with ∗. More
specific illustrations and details regarding the alternative de-
signs are available in our Appendix.

• Direct Injection. The domain-specific contextual cues
of various datasets are encoded within their respective
prompts. The incorporation of domain priors can be
achieved by simply adding channel-aligned prompts to
the intermediate feature maps with a linear projection.

• Cross Attention. Drawing inspiration from DETR [9],
we leverage a cross-attention-based domain prompt
adapter as another alternative design for multi-dataset
training. This scheme introduces a cross-attention block
with a skip connection at the beginning of each encoder-
decoder stage, injecting domain-specific information
into the intermediate feature maps. Our design allows
broad applicability to versatile 3D backbones without
structural constraints while still preserving the advan-
tages of the VPT technique.

• Prompt-driven Normalization∗. The objective of do-
main prompt adapter is to learn a shared represen-
tation that is robust and generalizable across various
datasets, akin to how the style transfer methods[24, 94]
retain the content essence while only transferring the
contextual styles across images. Also, adapting the
normalization layer to varying individual contexts is
found beneficial for achieving better style transfer per-
formance [40, 68]. With the analogy to style transfer,
we introduce the context adapter of Prompt-driven Nor-
malization (PDNorm), a novel approach to tackle the
transfer challenges associated with multi-dataset train-
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ing illustrated in Fig. 2a. Formally, with a given domain
prompt c, PDNorm adaptively learns the γ and β values
in normalization:

PDNorm(x, c) =
x− E[x̄]√
Var[x̄] + ϵ

· γ(c) + β(c), (3)

where γ(c) and β(c) are linear projections, x̄ for com-
puting E[x̄] and Var[x̄] is contingent on the specific
normalization employed by the backbone. It’s impor-
tant to note that E[x̄] and Var[x̄] are statisticized inde-
pendently for each dataset involved. We substitute the
original backbone’s normalization layers with PdNorm
layers. This approach promotes a more efficient yet ef-
fective alignment of feature distributions across datasets
in the scenario of multi-dataset training.

Zero-initialization and learning rate scaling. Unlike
prevalent prompt tuning methods that only adjust inserted
prompts while retaining the pre-trained models, our pro-
posed domain prompts are joint-trained with the backbone.
Nevertheless, in our paradigm, the introduction of randomly
initialized prompts may disrupt the representation learning
of the rest of the model, resulting in unstable training with
large loss values at early training stages. We conjecture that,
during the initial stages of training, the model is acquiring
general knowledge that can be applied across diverse do-
mains. However, as training proceeds, the model gradually
begins to generate domain-specific representations based on
general representations. To address this issue, we employ
zero-initialization [41] and learning rate scaling [33], en-
suring stability during early training stages and yielding su-
perior results. Specifically, we zero-initialize the γ(c) and
β(c) parameters of PDNorm, and we start with a smaller
base learning rate of prompt-related parameters to prioritize
the backbone during the initial training stage. We also per-
form a similar design to our alternative prompt adapters for
a fair comparison, and details are shown in the Appendix.

3.2. Categorical Alignment

In PPT, an additional critical issue that needs to be ad-
dressed is the inconsistency of the label space across differ-
ent datasets with supervised learning. To tackle this prob-
lem, we have investigated various approaches to unify the
categories for multi-dataset training as follows. Also, more
details and discussions can be found in the Appendix.

• Decoupled. One straightforward approach is to employ
separate linear projection heads for each dataset. While
this method is effective in handling inconsistencies, it
introduces redundant parameters for decoding the same
categories shared by different datasets. Besides, it over-
looks the commonalities among the datasets and fails to
account for their potential correlations.

• Unionized. Another intuitive approach is to construct
a shared linear segmentation head that projects the rep-

resentation space into a unified label space encompass-
ing all datasets while the loss computation remains sepa-
rate and constrained to the distinct label spaces for each
dataset. This method effectively resolves the inconsis-
tency in point representations pertaining to the shared
label space across datasets.

• Language-guided∗. The aforementioned options treat
each category independently and assume that they are
uncorrelated. However, it is a natural fact that labels
with close meanings should have similar representa-
tions [76]. Leveraging such prior information can fur-
ther benefit the discovery of robust representations in
our scenario. To this end, we propose language-guided
categorical alignment, which aligns projected point rep-
resentations with the category-language embeddings ex-
tracted by a pre-trained text encoder, such as CLIP [74].
To achieve this goal, we employ the InfoNCE [65] as
alignment criteria and restrict negative samples to the
specific dataset category space as shown in Fig. 2b.

4. Experiments
In this section, we conduct extensive experiments to sub-
stantiate the efficacy of our proposed framework across
multiple data sources with different evaluation settings.
Specifically, in Sec. 4.1, assess the effectiveness of differ-
ent design choices via detailed ablation studies. After that,
in Sec. 4.2, we conduct system-level comparisons with ex-
isting methods. All experiments are conducted on compute
nodes equipped with 8 NVIDIA A100 GPUs.

4.1. Ablation Study

In this part, we ablate different design choices of PPT from
the perspective of module design and data engineering. We
employ supervised joint training with SparseUNet, train it
on ScanNet, S3DIS, and Structured3D, and evaluate it on
ScanNet 20-category semantic segmentation. For evalua-
tion, we consider both direct evaluation (joint training) and
fine-tuning (see details in Sec. 2.1). More details of the set-
ting are available in the Appendix.
Prompt adapter. In Tab. 2a, we show results with dif-
ferent designs of the domain prompt adapter. Compared
with the vanilla baseline (none) without a prompt adapter,
all designs show effectiveness in learning good represen-
tations from multiple datasets. Moreover, compared with
simpler designs like direct injection (add) and cross atten-
tion (c.a.), our novel design prompt-driven normalization
(p.n.) achieves significantly stronger results, verifying its
effectiveness.
Zero-initialization and learning rate scaling. In Tab. 2b,
we verify the effect of zero initialization and learning rate
scaling. Overall, it shows that zero initialization, a tech-
nique often adopted for adapting pre-trained models, could
also benefit training from scratch. Besides, scaling the
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case none add c.a. p.n.

joint 68.9 70.9 73.5 75.7
f.t. 73.6 73.8 75.4 76.4

(a) Prompt adapter. Here c.a. denotes cross attention, and p.n. denotes
prompt-driven normalization. p.n. is a superior domain prompt adapter.

zero-init w/o w/

joint 75.2 75.7
f.t. 75.6 76.4

lr scaler 1 0.1 0.01

joint 75.4 75.7 75.2
f.t. 76.0 76.4 75.8

(b) Zero-initialization & Learning rate scaling. Zero-init. benefits our
training scheme, and 0.1 is a suitable lr scaler for domain prompting.

location initial encoder decoder all

joint 68.7 74.2 73.2 75.7
f.t. 73.9 74.9 74.7 76.4

(c) Prompt location. An in-depth prompt adapter that runs through the
entire backbone is necessary.

length 128 256 512 1024

joint 75.2 75.7 75.7 75.5
f.t. 75.9 76.4 76.1 76.2

(d) Prompt length. Domain prompt with 256 dimensions achieves a
good balance.

case decoupled unionized l.g. l.g. w/ tpl.

joint 74.4 75.3 75.7 75.8
f.t. 74.7 75.8 76.4 76.0

(e) Categorical alignment. l.g. denotes languages-guided categorical
alignment, which achieves best f.t. results, and tpl. stands for template.

criteria L2 Disc. [22] TC [76] InfoNCE

joint 12.8 65.4 70.2 75.7
f.t. 72.1 73.5 73.2 76.4

(f) Language-guidance criteria. TC represents Text-supervised Con-
trastive loss. While InfoNCE loss makes l.g. the best C.A..

ratio 4:2:1 2:2:1 2:1:1 1:1:1

ScanNet 75.7 75.8 73.3 74.6
S3DIS 72.2 71.9 71.2 71.9
Struct.3D 75.8 73.5 72.7 74.7

(g) Sampling ratio. The ratios below indicate the sampling rate of
Struct.3D, ScanNet, and S3DIS, and 4:2:1 achieved the best result.

data ScanNet S3DIS Struct.3D all

ScanNet 72.2 73.9 76.0 75.7
S3DIS 69.6 65.4 70.2 72.2
Struct.3D 74.8 75.0 74.5 75.8

(h) Joint training data. Joint training results with different joint training
data similar to Tab. 1. Datasets benefit each other in our PPT framework.

Table 2. Module ablation. We adopt SparseUNet and supervised multi-dataset joint training to ablate our designs. We report both joint
training and fine-tuning mIoU (%) results on ScanNet 20-category semantic segmentation. All of our designs are enabled by default, and
default settings are marked in gray . The detailed setting for joint training and fine-tuning is reported in Appendix.

learning rate for domain prompting to a relatively smaller
value (0.1) than the backbone also helps training.

Prompt location. In Tab. 2c, we study the influence of in-
jecting the prompt adapter to different stages of the back-
bone. Empirically, the benefit of the prompt adapter be-
comes higher if it is added to relatively deeper stages. Our
intuition is that features in earlier stages are more related
to low-level attributes, which could be easier shared across
datasets. And, deeper features are more related to high-level
semantics, where negative effect of the domain gap occurs
and a domain adapter is needed.

Prompt length. In Tab. 2d, we ablate the feature-level
length (dimension) of the prompt adapter. A larger dimen-
sion of the adapter often allows space for higher informa-
tion capability, but our experiments show that the adapter
is quite memory-efficient. The results with different feature
dimensions do not differ much, and a small dimension of
256 is already sufficient.

Categorical alignment. In Tab. 2e, we show results with
different methods for aligning the label space of different
training datasets. Compared with learning separate segmen-
tation heads for each dataset, obtaining a unionized head
allows better alignment of the supervision from different
datasets. Further, language guidance takes the relationship
between class names into account, resolving possible con-
flicts, and results in a further performance boost. Besides
that, we also tried a simple prompt engineering technique

that augments class names to a sentence (e.g., “A point of
[class].”), which does not show effectiveness in this case.

Language-guidance criteria. In Tab. 2f, we ablate the loss
function for aligning with category-specific language em-
beddings extracted from a pre-trained text encoder. Sim-
ple L2 loss, which does not consider negative examples,
could result in mode collapse. Compared with other special-
ized criteria, e.g., text-supervised contrastive loss proposed
in [76], our method suits well with the most commonly used
InfoNCE loss, highlighting its universality.

Sampling ratio. In Tab. 2g, we show the results with differ-
ent sampling ratios across datasets, and experiments show
that overall our method is relatively robust to this ratio. It
is important to note that, in contrast to downstream tasks
where the sampling ratio can significantly impact the fi-
nal performance, our focus is on representation learning.
Therefore, the effect of the sampling ratio may be negligi-
ble if the model is sufficiently trained on each dataset for an
adequate duration [34].

Joint training data. In Tab. 2h, we show the results with
different joint training data (see attributes of datasets in
Tab. 1). Note that though they differ in data source, spar-
sity, complexity, and scale, our final framework allows con-
sistent benefit from different data sources regardless of large
domain gaps.
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Indoor Sem. Seg. ScanNet [21] ScanNet200 [76] S3DIS Area5 [2]

Methods Params. Val mIoU Test mIoU Val mIoU Test mIoU mIoU mAcc

StratifiedFormer [50] 18.8M 74.3 73.7 - - 72.0 78.1
PointNeXt [73] 41.6M 71.5 71.2 - - 70.5 77.2
PTv1 [122] 11.4M 70.6 - 27.8 - 70.4 76.5
PTv2 [107] 12.8M 75.4 75.2 30.2 - 71.6 77.9

SparseUNet [16] 39.2M 72.2 73.6 25.0 25.3 65.4 71.7
+ PC [110] 39.2M 74.1 (+1.9) - 26.2 (+1.2) - 70.3 (+4.9) 76.9 (+5.2)
+ CSC [35] 39.2M 73.8 (+1.6) - 26.4 (+1.4) 24.9 (-0.4) 72.2 (+6.8) -
+ MSC [108] 39.2M 75.5 (+3.3) - 28.8 (+3.8) - 70.1 (+4.7) 77.2 (+5.5)
+ PPT Unsup. (f.t.) 41.0M 75.8 (+3.6) - 30.4 (+5.4) - 71.9 (+6.5) 78.3 (+6.6)
+ PPT Sup. (joint) 41.0M 75.7 (+3.5) 76.6 (+3.0) - - 72.2 (+6.8) 78.0 (+6.3)
+ PPT Sup. (f.t.) 41.0M 76.4 (+4.2) - 31.9 (+6.9) 33.2 (+7.9) 72.7 (+7.3) 78.2 (+6.5)

PTv3 [17] 46.2M 77.5 77.9 35.2 37.8 73.4 77.7
+ PPT Sup. (f.t.) 46.3M 78.6 (+1.1) 78.3 (+0.4) 36.0 (+0.8) 39.3 (+1.5) 74.7 (+1.3) 79.6 (+1.9)

Table 3. Indoor semantic segmentation results. Our method builds on SparseUNet [16] and PTv3 [17], and is evaluated on ScanNet,
ScanNet200, and S3DIS benchmarks. The framework is universal, and we report on three settings: unsupervised pre-training integrated
with MSC [108], supervised joint training, and supervised pre-training. Besides comparing with previous pre-training methods [35, 108,
110], we also conduct system-level comparisons against previous SOTAs [50, 73, 107, 122], and our method shows consistently better
results across benchmarks even with one single share-weighted model.

Outdoor Sem. Seg. SemanticKITTI [6] nuScenes [8] Waymo [86]

Methods Params. Val mIoU Test mIoU Val mIoU Test mIoU Val mIoU Val mAcc

SPVNAS [87] 10.8M 64.7 66.4 - 77.4 - -
Cylinder3D [128] 26.1M 64.3 67.8 76.1 77.2 - -
SphereFormer [51] 32.3M 67.8 74.8 78.4 81.9 69.9 -

SparseUNet [16] 39.2M 63.8 - 73.3 - 65.9 76.6
+ PPT Sup. (joint) 41.0M 70.9 (+7.1) - 78.5 (+5.2) - 70.0 (+4.1) 79.1 (+2.5)
+ PPT Sup. (f.t.) 41.0M 71.4 (+7.6) - 78.6 (+5.3) - 70.4 (+4.5) 78.9 (+2.3)

PTv3 [17] 46.2M 70.8 74.2 80.4 82.7 71.3 80.5
+ PPT Sup. (f.t.) 46.3M 72.3 (+1.5) 75.5 (+1.3) 81.2 (+0.8) 83.0 (+0.3) 72.1 (+0.8) 81.3 (+0.8)

Table 4. Outdoor semantic segmentation results. We also examine the efficacy of PPT in an outdoor context using SparseUNet [16]
and PTv3 [17]. Our evaluation encompasses SemanticKITTI, nuScenes, and Waymo semantic segmentation benchmarks. We report
on two main settings: supervised joint training and supervised pre-training. We conduct comprehensive comparisons against previous
SOTAs [51, 87, 107, 128], and our method shows multiple superior results across benchmarks.

4.2. Results Comparision

Indoor semantic segmentation results. In Tab. 3, we
present the main results of different variants of our method
on multiple standard semantic segmentation benchmarks,
and compare with previous state-of-the-art methods at both
system-level and module-level. Following the common
practice of pre-training methods [35, 108, 110], our method
is built on both convolution-based architecture Sparse-
UNet [16] and transformer-based architecture PTv3 [17].
Under the unsupervised setting, our framework could
smoothly integrate MSC [108] and enable it to benefit from
joint training on multiple datasets, e.g., improving on Scan-
Net200 Val split by 1.6 points, and on S3DIS Area5 mIoU
by 1.8 points. More importantly, the results also surpass all
previous SOTAs, verifying the effectiveness and potential
of large-scale unsupervised pre-training for 3D scene un-
derstanding. When further considering the supervised joint
training setting, and fine-tuning upon it, our method further

sees consistent performance gains across tasks and secures
position as a new SOTA.

Outdoor semantic segmentation results. In Tab. 4, we
expand our methodology to outdoor scenarios by present-
ing additional results of our approach on multiple out-
door semantic segmentation benchmarks. We systemati-
cally compare these results with those of previously es-
tablished SOTA methods. Our method is still based on
SparseUNet [16], a classic framework within the outdoor
perception community, and PTv3 [17], which is the latest
SOTA backbone for outdoor perception. Under the super-
vised joint training paradigm, our method showcases sig-
nificant enhancements across all tasks when contrasted with
scratch results, even with a single shared-weight model. For
instance, on the SemanticKITTI Validation split, our ap-
proach elevates by 7.1 points, underscoring the potential of
all-data learning in the realm of 3D understanding. Through
subsequent fine-tuning on each dataset, PPT consistently
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Indoor Ins. Seg. ScanNet Val [21] ScanNet200 Val [76]

PointGroup [44] Params. mAP@25 mAP@50 mAP mAP@25 mAP@50 mAP

SparseUNet [16] 39.2M 72.8 56.9 36.0 32.2 24.5 15.8
+ PC [110] 39.2M - 58.0 (+1.1) - - 24.9 (+0.4) -
+ CSC [35] 39.2M - 59.4 (+2.5) - - 25.2 (+0.7) -
+ LGround [76] 39.2M - - - - 26.1 (+1.6) -
+ MSC [108] 39.2M 74.7 (+1.9) 59.6 (+2.7) 39.3 (+3.3) 34.3 (+2.1) 26.8 (+2.3) 17.3 (+1.5)
+ PPT (f.t.) 41.0M 76.9 (+4.1) 62.0 (+3.1) 40.7 (+4.7) 36.8 (+4.6) 29.4 (+4.9) 19.4 (+3.6)

PTv3 [17] 46.2M 77.5 61.7 40.9 40.1 33.2 23.1
+ PPT (f.t.) 46.3M 78.9 (+1.4) 63.5 (+1.8) 42.1 (+1.2) 40.8 (+0.7) 34.1 (+0.9) 24.0 (+0.9)

Table 5. Indoor instance segmentation results. We conduct PPT supervised pre-training on SparseUNet [16] as described in Tab. 3 and
further fine-tuning on ScanNet and ScanNet200 instance segmentation driven by PointGroup [44]. We compare mAP@25, mAP@50, and
mAP results with previous pre-training methods, and our method shows significant superior results across benchmarks

Pct. SC CSC [35] MSC [108] PPT

1% 26.0 28.9 (+2.9) 29.2 (+3.2) 31.3 (+5.3)
5% 47.8 49.8 (+2.0) 50.7 (+2.9) 52.2 (+4.4)
10% 56.7 59.4 (+2.7) 61.0 (+4.3) 62.8 (+6.1)
20% 62.9 64.6 (+1.7) 64.9 (+2.0) 66.4 (+3.5)

100% 72.2 73.8 (+1.6) 75.3 (+3.1) 75.8 (+3.6)

(a) Limited reconstructions. Pct. denotes the percentage of scene recon-
struction that could be used for training.

Pts. SC CSC [35] MSC [108] PPT

20 41.9 55.5 (+13.6) 60.1 (+18.2) 60.6 (+18.7)
50 53.9 60.5 (+6.6) 66.8 (+12.9) 67.5 (+13.6)
100 62.2 65.9 (+3.7) 69.7 (+7.5) 70.8 (+8.6)
200 65.5 68.2 (+2.7) 70.7 (+5.2) 72.2 (+6.7)
Full 72.2 73.8 (+1.6) 75.3 (+3.1) 75.8 (+3.6)

(b) Limited annotations. Pts. denotes the number of points per scene that
are annotated for training.

Table 6. Data efficient results. We follow the ScanNet Data Efficient benchmark [35] and compare the validation results of the PPT
unsupervised setting with previous pre-training methods. All methods are trained with SparseUNet, and SC denotes train from scratch.

demonstrates superiority over the latest literature. For in-
stance, it outperforms SphereFormer [51] by 5.0 points in
terms of mIoU on the SemanticKITTI validation set.
Indoor instance segmentation results. In Tab. 5, we con-
duct fine-tuning experiments on instance segmentation us-
ing SparseUNet [16] and PTv3 [17] as the backbone, pow-
ered by PointGroup [44]. The fine-tuning outcomes are re-
ported on both the ScanNet [21] and ScanNet200 [76] in-
stance segmentation benchmarks. Our findings consistently
reveal the superior performance of our approach compared
to the prior state-of-the-art method, MSC [108]. To be
specific, PPT outperforms MSC by 2.4 points in terms of
mAP@50 on the ScanNet validation split, and by 2.6 points
on the ScanNet200 validation split. This underscores the
effectiveness of the point representation learned by PPT in
enhancing instance segmentation performance.
Data efficient benchmark. In Tab. 6, we report results for
the ScanNet Data Efficient benchmark [35], where scene
reconstruction or annotation percentages are limited. Our
method, integrating MSC [108], is compared with prior pre-
training methods and consistently outperforms them under
data efficient settings.

5. Conclusion and Discussion
This paper introduces PPT, an effort toward large-scale 3D
representation learning with a novel 3D multi-dataset syn-
ergistic training setting. We identify the negative trans-
fer issue and present a unified framework that addresses
this problem with the proposed Prompt-driven Normaliza-
tion and Language-guided Categorical Alignment, deliver-

ing consistent and significant performance gains.
We discuss limitations and broader impacts as follows:

• Module design. As a preliminary work in 3D multi-
dataset pre-training, this paper first verifies the effec-
tiveness of this setting and opens doors for large-scale
3D representation learning. Yet current explorations are
still restricted to a limited scope and the designs could
be sub-optimal, thus further study on more advanced
techniques is necessary. For example, one could ver-
ify the effectiveness of this framework when combined
with more advanced unsupervised pre-training methods
and explore more effective prompting techniques.

• Data domain. Our study demonstrates the potential ben-
efit of simultaneously utilizing both synthetic and real
point cloud data. It would be exciting to see this abil-
ity extended to more specific scenarios in different do-
mains, e.g., jointly learning from both indoor and out-
door scenes.

• Multi-task training. Our current formulation only con-
siders one pre-training task. Upon that, as it has shown
the ability to achieve superior results across datasets
with a single model, a promising direction is to enable
multi-task training for 3D scene understanding with a
unified framework.
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