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Abstract

Garment manipulation (e.g., unfolding, folding and
hanging clothes) is essential for future robots to accom-
plish home-assistant tasks, while highly challenging due to
the diversity of garment configurations, geometries and de-
formations. Although able to manipulate similar shaped
garments in a certain task, previous works mostly have
to design different policies for different tasks, could not
generalize to garments with diverse geometries, and of-
ten rely heavily on human-annotated data. In this paper,
we leverage the property that, garments in a certain cate-
gory have similar structures, and then learn the topological
dense (point-level) visual correspondence among garments
in the category level with different deformations in the self-
supervised manner. The topological correspondence can be
easily adapted to the functional correspondence to guide the
manipulation policies for various downstream tasks, within
only one or few-shot demonstrations. Experiments over
garments in 3 different categories on 3 representative tasks
in diverse scenarios, using one or two arms, taking one or
more steps, inputting flat or messy garments, demonstrate
the effectiveness of our proposed method. Project page:
https://warshallrho.github.io/unigarmentmanip.

1. Introduction

Next-generation robots should have the abilities to manip-
ulate a large variety of objects in our daily life, including
rigid objects, articulated objects [8] and deformable ob-
jects [45]. Compared with rigid and articulated objects, de-
formable objects are much more difficult to manipulate, for
the highly large and nearly infinite state and action spaces,
and complex kinematic and dynamics. Garments, such as
shirts and trousers, are essential types of deformable ob-
jects, due to the potentially wide-range applications for both
industrial and domestic scenarios. Manipulating garments,
such as unfolding, folding and dressing up, has garnered
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significant interest in robotics and computer vision fields.
There have been a long range of studies on manipulat-

ing relatively simple shaped deformable objects, such as
square-shaped cloths [23, 45, 46], ropes and cables [33, 45,
46], and bags [2, 5]. Nevertheless, manipulating garments
presents a substantial challenge, as it necessities the com-
prehensive understanding of more diverse geometries (gar-
ments in a certain category have different shapes, let alone
in different categories), more complex states (various ge-
ometries with diverse self-deformations), and more difficult
goals (e.g., garments require multiple fine-grained actions
fold step by step). Many existing studies on garment ma-
nipulation rely on large-scale annotated data [1, 4], which
is labor-intensive and time-consuming, hindering the scala-
bility in the scenarios of real-world applications. Besides,
many works design quite different methods to tackle differ-
ent specific tasks [1, 4, 41, 50], making it difficult to effi-
ciently share and reuse information among different tasks.

Different from other object types, garments possess a
property that, in a certain category, while different gar-
ments may have different geometries, they usually share the
same structure. For example, tops (such as T-shirts, jackets
and jumpers), are composed of certain components (a body
with two sleeves and a collar), and the topological struc-
tures of the components are usually the same, even though
the length, width and geometries of a certain component in
different garments may be quite different. Thanks to such
similarity in structure shared among garments in the cate-
gory level, it is easy for humans to fulfill a task on unseen
novel garments using the experience of manipulating only
one or a few garments in the same category. Therefore,
we empower robots with the above one/few-shot general-
ization ability humans have in diverse tasks, by leveraging
such structural similarity among garments.

Among multiple ways to describe and represent gar-
ments (e.g., poses [7, 51], lines [10, 58] and keypoints [57]),
skeleton [34], i.e., a graph of keypoints covering signif-
icant points on garment edges and joints to represent the
topology of 3D objects, is suitable for describing the above-
mentioned structures shared among garments. The skele-
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Figure 1. Given a demonstration garment (Middle) and the demonstration actions to fulfill a task (Middle-Left/-Right), for a novel
object, we find the manipulation points using the proposed Dense Visual Correspondence for Garment Manipulation and execute the
corresponding action to fulfill the task (Left/Right). Color similarity denotes in the correspondence space.

ton points are sparse, distinct and ordered, and thus (1)
exist on each garment and (2) can easily distinguish with
other skeleton points, making them easy to learn. There-
fore, we use skeleton points to build structural correspon-
dence among garments. Moreover, as different-extent self-
deformations make the garments to be quite complex, while
previous works only studied skeleton points on rigid [34],
articulated [47] or fixed-posed deformable objects in the
canonical view [57], we further extend skeleton points to
garments at any deformation states, making a step to more
realistic scenarios for garment manipulation.

While skeleton points build topological correspondence
between different garments in the skeleton keypoint level,
the state and action spaces of garments are exceptionally
large and each point on the garment could be the manipula-
tion point, making the sparse skeleton points unable to fully
represent garments for manipulation. To represent objects
with large state and action spaces, dense (i.e., point-level or
pixel-level) object representations, including dense object
descriptors [9] and dense visual actionable affordance [28],
which indicate the actionable information on each point of
the object, have demonstrated its superiority on rigid [9],
articulated [43], and simple-shaped deformable object ma-
nipulation [45]. We further extend dense object representa-
tions to garments, with the awareness of garment correspon-
dences, using the proposed skeleton points, and thus achieve
fine-grained manipulation for complicated garments.

With dense visual correspondence aware of garment
structures, one demonstration can roughly guide manipu-
lating a novel garment by indicating corresponding action
points and policies. Furthermore, as manipulation for spe-
cific tasks rely on not only garment structures but also task-
specific knowledge, we further transform the representation
from task-agnostic structural to task-specific functional for
more accurate manipulation in various downstream tasks,

using few-shot demonstrations to achieve this adaptation.
To demonstrate the performance of our proposed repre-

sentations, we conduct experiments on 3 different kinds of
garments over 3 representative tasks. The experimental re-
sults showcase the superiority of our proposed framework in
manipulating diverse novel garments in multiple tasks using
the proposed dense visual correspondence and one or few-
shot demonstrations.

In summary, our contributions include:
• We propose to learn category-level dense visual corre-

spondence to reflect the topological and functional cor-
respondence across garments in different styles or defor-
mations, which is an unified representation that facilitates
manipulating diverse unseen garments in multiple tasks
with one or few-shot demonstrations.

• We propose a novel learning framework with novel de-
signs to efficiently learn the proposed dense visual repre-
sentation for garments.

• Experiments over diverse representative tasks demon-
strate the effectiveness of our proposed dense correspon-
dence and the learning framework.

2. Related Work
2.1. Dense Representations for Manipulation

Dense object descriptors [9] that learn point- or pixel-level
object representations are proposed by and for robotic ma-
nipulation. A series of works extend such descriptors to pro-
pose grasp pose [35, 53], manipulate ropes [36], smooth and
fold fabrics [11]. Another series of works learn point-level
dense affordance for articulated object [22, 25], deformable
object [45], language-guided [48] and bimanual [56] manip-
ulation, as well as exploration for interaction [29, 40], facil-
itating point-level contact point selection for diverse down-
stream tasks. Our proposed dense correspondence extends
dense object representations in manipulating garments.
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2.2. Visual Correspondence Learning

Learning visual correspondence aims to reflect the shared
information (e.g., geometric, topological and functional in-
formation) between different objects, which facilitates gen-
eralization in diverse tasks, including functional percep-
tion [19], pose estimation [14], grasping [30, 52, 53] and
fabric manipulation [11]. For garments, although different
garments have quite different geometries and deformations
in different states, they share similar structural and topolog-
ical information in the category level, which can help in ma-
nipulating novel garments with the demonstration of a gar-
ment with the similar structure. So we propose to learn cor-
respondence between garments to facilitate novel garment
manipulation in diverse downstream tasks.

2.3. Cloth and Garment Manipulation

Manipulating a square-shaped cloth is relatively well-
studied, with previous works leveraging flow and dynam-
ics [23, 42], tactile feedback [37, 38], dense representa-
tions [33, 45] and reinforcement learning [16, 27] to tackle
different tasks. Garment manipulation is more challenging,
for the diversity of garment types and shapes, requiring the
method to handle diverse objects and states. While previ-
ous works mainly learn the policy for a certain task, such
as folding [1, 4, 50], unfolding [20], grasping [6, 54] and
dressing-up [41, 55], on similar shaped garments, we focus
on learning garment representations that can generalize to
diverse objects in a category and facilitate many tasks.

3. Problem Formulation
Given an N -point (N = 10, 000) 3D partial point cloud ob-
servation of a garment O ∈ RN×3, garment manipulation
aims to manipulate the garment by a sequence of n actions
to complete different tasks. As explained in [11, 32, 33],
each action ai includes grasping at a pick point ppicki

,
pulling to a place point pplacei without changing the orien-
tation of the end-effector. Additionally, for dual-arm manip-
ulation, each action ai includes a pair of pick points p1picki

,
p2picki

and corresponding place points p1placei , p
2
placei

.
Given two garments O1 and O2, dense correspondence

evaluates the correspondence (normalized to [−1, 1]) in
topology or function between each point pair (p1, p2), with
p1 from O1 and p2 from O2.

Given a task T , a demonstration includes the observa-
tion Ô of a demonstration garment, and its corresponding
demonstration action (including single and dual-arm ac-
tions) sequence (p̂pick1

, p̂place1 , ..., p̂pickn
, p̂placen) that

can fulfill T . Given the observation O of a new garment
to fulfill T , manipulation using dense correspondence first
finds the points (ppick1 , pplace1 , ..., ppickn , pplacen) on
O, where ppicki

and pplacei have the best correspondence
score to p̂picki

and p̂placei among all points on O, and then
executes the corresponding actions to fulfill the task on O.

4. Method
4.1. Overview

Our framework first learns topological dense visual cor-
respondence aware of different garment deformations and
shapes respectively using self-play and skeleton points
(Section 4.2), with further coarse-to-fine refinement (Sec-
tion 4.3). After the few-shot adaptation for different down-
stream tasks, the learned correspondence turns from topo-
logical to functional (Section 4.4), and thus could facilitate
manipulating unseen novel garments on various tasks using
one or few-shot demonstrations (Section 4.5). Section 4.6
describes network architectures and the training strategy.

4.2. Self-supervised Topological Dense Visual Corre-
spondence Learning

The diversity of garments in different states mainly comes
from two perspectives: self-deformations, and styles of ob-
jects in the same category. To empower the Dense Visual
Correspondence with the alignment ability for different gar-
ments in different states, we decouple the learning process
into two parts, respectively learning cross-deformation cor-
respondence and cross-object correspondence.

4.2.1 Cross-Deformation Correspondence

Many tasks, such as unfolding and hanging, require manip-
ulating the garment at any random states (e.g., after a ran-
dom drop). As demonstrated in [11], while garments have
complex states and infinite deformations, the manipulation
policies (manipulation points) are usually invariant to defor-
mations. To empower the model with the ability to handle
garments in different deformations, we introduce learning
correspondence across deformations of the same garment.

Given two partial observations O and O′ of the same gar-
ment in different deformations generated by self-play, and a
visible point p on O, we can easily get its corresponding po-
sition point p′ in O′ using point tracing in simulation. If p′

is visible, the representations fp and fp′ ∈ R512 of p and p′

extracted by the backbone network F, should be the same,
as the representations are agnostic to self-deformations. We
normalize point representations to be unit vectors, and thus
the similarity between fp and fp′ can be computed by the
dot product of fp and fp′ , i.e., fp · fp′ . For p on O, we use
p′ on O′ as the positive point, and sample m negative points
(m = 150): p′1, p

′
2, ..., p

′
m. We pull close fp and fp′ , while

push away fp and other point representations. Following
InfoNCE [18], a widely-used loss function in one-positive-
multi-negative-pair contrastive representation learning, we
identify the positive p′ amongst m negative samples:

LCD = −log(
exp(fp · fp′/τ)∑m
i=1 exp(fp · fp′

i
/τ)

) (1)

, where τ denotes the balancing coefficient in InfoNCE.
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Figure 2. Our Proposed Learning Framework for Dense Visual Correspondence. (Left) We extract the cross-deform correspondence
and cross-object correspondence point pairs respectively using self-play and skeletons, and train the per-point correspondence scores in
the contrastive manner, with the Coarse-to-fine module refines the quality. (Middle) Learned correspondence demonstrates point-level
similarity across different garments in different deformations. (Right) The learned point-level correspondence can facilitates multiple
diverse downstream tasks using one or few-shot demonstrations.

4.2.2 Cross-Object Correspondence

In a certain category, while garments highly vary in origi-
nal shapes, such as sizes, length-width ratios, sleeve lengths
and styles, they share the same topological structure. The
awareness of such structures will make it easy to manipu-
late unseen novel garments with demonstrations.

To leverage the shared structural information and gen-
eralize to novel shapes, we propose to use skeleton, i.e., a
graph of keypoints that represents topology of the 3D ob-
ject, as the shared bridge for different garments with similar
structures. The reasons for using skeleton include:
• Skeleton points are distinct and sparse, thus easy to learn

and generalize, compared to complicated representations;
• Skeleton points are distinct and ordered, making it easy

to build topological correspondence between two objects
by aligning each specific skeleton point on them;
To learn garment skeletons in the category level, we em-

ploy the designs of Skeleton Merger [34], which can gen-
erate skeletons for rigid objects, or canonically-posed (e.g.,
flat) deformable objects. So we generate skeletons for flat
garments. Specifically, we generate s (s ≤ 50) ordered
points on the point cloud observation O as skeleton points,
with s × (s − 1)/2 activation scores ai,j (1 ≤ i, j ≤ s)
indicating whether each edge between 2 skeleton points ex-
ists on the object. We sample points on each edge, with
trainable offset for each sample, merging them into the re-
constructed object Ō. The training signal is whether Ō cov-

ers O (trains skeleton point positions) and whether sampled
points on each edge exists in O (trains ai,j), As a result,
skeleton points will exist on significant positions on gar-
ments (e.g., boundaries, corners and intersections of parts)
and meaningful edges will retain, as shown in Figure 2 (the
Left-Down part). More implementation details can be seen
in the original paper of Skeleton Merger [34].

As skeleton points are ordered, given observation O of a
flat garment with one of its skeleton point p, we can get the
corresponding skeleton point p̃ on the observation Õ of an-
other flat one, by applying the skeleton network on Õ and
get the skeleton point in the same order of p in O. Then,
the topological correspondence between flat garments have
been built in the skeleton-point level. As the features ex-
tracted by neural networks are continuous when point po-
sitions continuously change, and skeleton points cover the
whole garment, the feature of any point can be reflected by
its nearby skeleton points (like interpolation) with topologi-
cal information. Therefore, the representation of each point
on the garment will reflect its topology, and dense corre-
spondence between flat garments has been naturally built.

4.2.3 Integration of Cross-Deformation and Cross-
Object Correspondence

Since we have designed dense correspondence between the
same garment in different deformations, and dense corre-
spondence between different flat garments, the next step
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is to aggregate them into one dense representation system
on diverse garments in any deformation states.

We first project skeletons of garments in their flat states
to any deformation states using point tracing in simulation.
Thus, given the observation O in random deformation with
one of its skeleton point p, we can get the corresponding
skeleton point p̃ on the observation Õ of another garment in
random deformation. If p̃ is visible on Õ, fp and fp̃ should
be the same. For p on O, we use p̃ on Õ as the positive point,
and sample m negative points (m = 150): p̃′1, p̃

′
2, ..., p̃

′
m.

We follow InfoNCE and use LCO for training:

LCO = −log(
exp(fp · fp̃′/τ)∑m
i=1 exp(fp · fp̃′

i
/τ)

) (2)

In the meanwhile, we empower the cross-object corre-
spondence with agnosticism to deformations. We sample
the observation O′ of the first garment O in another de-
formation state as described in Section 4.2.1, and train its
Cross-Deformation Correspondence using LCD in Equa-
tion 1, together with LCO in Equation 2 to make the learned
representations aware of both cross-deformation and cross-
object point-level correspondence.

4.3. Coarse-to-fine Correspondence Refinement

Although above framework can learn the general distribu-
tions of all points’ representations using offline randomly
collected data, some difficult details (such as the boundaries
between the folded sleeve on the garment body) should be
paid more attention by the model, and there may exist inac-
curate representations on some points or areas. The above
phenomenon is also demonstrated in previous dense corre-
spondence learning studies for 3D objects [13, 15, 39].

Therefore, we propose the Coarse-to-fine (C2F) Corre-
spondence Refinement procedure to make the model more
focused on difficult points on the garment, and eliminate in-
accurate predictions, by refining the offline trained model
using its online prediction failures.

Specifically, for a certain garment, we sample a point
p on the observation O in one deformation state, predict its
point-level correspondence score on O′ in another deforma-
tion state, with p′ as corresponding point of p. We collect
points {p′1, p′2, ..., p′r} that meet the following requirements:
• their correspondence scores are higher than a correspon-

dence thresh α;
• their distances to p′ in the canonical (flat) state (denoted

as dp′
i

for p′i) are longer than a distance thresh β.
These points are prediction failures of the model trained
on offline data. We augment InfoNCE by distance (failure
points farther away from p′ will receive more penalties to
take more focus) to refine the model on them:

LC2F = −log(
exp(fp · fp′/τ)∑r

i=1 dp′
i
· exp(fp · fp′

i
/τ)

) (3)

To prevent the model from forgetting the knowledge in of-
fline data, in this procedure, we simultaneously train the
model using offline data (LCO and LCD) and online pre-
dictions (LC2F ).

4.4. From Topological to Functional: Few-shot Adap-
tation for Downstream Tasks

While such topological structure of the above learned cor-
respondence is significantly aligned with cross-object ma-
nipulation policy, the point functionalities in different tasks
may differ to some extent, and thus could not be adequately
reflected by a fixed representation. To adapt the learned
topological correspondence to be functional for different
downstream tasks, we propose the few-shot adaptation.

With the trained model, for a certain task and a func-
tional action point (such as the pick point on the left sleeve
for folding) we annotate l (l ≤ 5) points p1, p2, ..., pl on l
observations O1, O2, ..., Ol of different garments in differ-
ent deformations, and fine-tune the trained model to make
fp1

, fp2
, ..., fpl

to be the same using InfoNCE loss simi-
lar to Equation 2 (replacing the topological correspondence
point with the functional correspondence point as the pos-
itive sample). Consequently, the model can generally keep
the topological information while become more aware of
the functional information of the certain downstream task.

4.5. Manipulation Policy Generation

As shown in Figure 1 and described in the last paragraph
of Section 3, for novel garments over different downstream
tasks, we can easily generate manipulation policies by se-
lecting the picking and placing points that are most close to
the demonstrations in the correspondence space. More de-
tails of policy generation for diverse representative down-
stream tasks are described in Section 5.4.

4.6. Network Architectures and Training Strategy

Segmentation-version PointNet++ [31] is used as the back-
bone feature extractor F that takes the point cloud observa-
tion O as input to extract per-point features. The per-point
features are directly used to calculate correspondences.

We set batch size to be 32. In each batch, we sample 32
garment pairs. For each garment pair, we sample 20 positive
positive point pairs, and 150 negative point pairs for each
positive point pair. Therefore, in each batch, 32 × 32 × 20
data will be used to update the model. During the Cor-
respondence training stage, we train the model for 40,000
batches. During Coarse-to-fine Refinement, we train the
model for 100 batches. During Few-shot Adaptation, we
slightly refine the model using 5 demonstration data.
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5. Experiment
5.1. Simulation and Dataset

We build our simulation environment based on the PyFleX
bindings [21, 24, 49] to Nvidia FleX [26], equipped
with 3 kinds of garments, covering 500 tops (includ-
ing shirts, hoodies, jumpers and etc.), 600 trousers and
600 dresses with diverse shapes, from the large-scale
CLOTH3D dataset [3]. An extra rack is loaded.

5.2. Tasks and Metrics

We evaluate our method over 3 different representative gar-
ment manipulation tasks:
• Unfolding that unfolds garments at random deformations

to be flat. The unfolding succeeds when the coverage area
of the unfolded garment exceeds a bar [12]. The two sub-
tasks, Unfold-RAND and Unfold-DROP, respectively
denote the garment initial states are generated by a few
random actions or by dropping (more realistic).

• Folding that folds garments. A folding succeeds when the
Intersection-over-Union (IOU) between the target and the
folded garments exceeds a bar [4, 50]. Fold-FLAT and
Fold-FLING respectively denote garment initial states
are perfectly flat or generated by flinging (more realistic).

• Hanging that hangs garments on the rack, with the suc-
cessful rate metric [6]. Hang-RAND and Hang-FLING
respectively denote garment initial states are generated by
a few random actions or by flinging (more realistic).

5.3. Baselines

For Folding, we compare with ClothFunnels [4] that learns
keypoints (e.g., endpoints of two sleeves, endpoints of the
garment bottom line) from large-scale human-annotated
data, pick and place keypoints step by step to fold garments.

For Hanging, we compare with GCSR [6] that detects
Structural Regions for manipulation (collars for hanging).
Besides, we compare with DefoAfford [45] that learns
point-level actionable affordance scores for accomplishing
the task and selects the best point for interaction.

For Unfolding, we compare with FlingBot [12] that pre-
dicts the garment coverage area after flinging each two-
point grasp pair, and selects the best pair for fling. Besides,
we compare with DefoAfford as it demonstrates the capa-
bility to unfold fabrics using one gripper.

5.4. Manipulation Policy Generation
For Unfolding, we use fling [12] as the action for its

quickness in unfolding garments using only a few steps. It
picks up 2 points simultaneously with 2 arms to lift the gar-
ment, pull the 2 points apart to stretch the garment, fling the
garment and place it on the workplace. As some keypoints
for flinging may be occluded, we design 4 candidate pick
pairs (e.g., the 2 endpoints of the shoulder, the 2 endpoints
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Figure 3. Correspondence Guided Manipulation on Different
Garment Types and Tasks. From left to right: observation, cor-
respondence, manipulation points (colored points) selected using
correspondence to demonstrations and the manipulation action.

of the bottom line), and select pick point pair of the obser-
vation with the highest correspondence to designed candi-
dates. We execute the fling action for at most 3 steps.

For Folding, we pick and place keypoints (defined in
ClothFunnels [4]) on the garments to step by step fold gar-
ments with one or two arms. Given the pick and place points
sequence in the demonstration, we select their closest pick
and place points on each unseen object in the correspon-
dence space and execute the pick-place action sequence.
Moreover, to demonstrate the dense representations can fa-
cilitate multiple manipulation strategies with slight human
annotations, we show 4 folding strategies achieved by our
method using one or few-shot demonstrations (Figure 5).

For Hanging, we pick the point ppick that is most close
to the demonstration pick point p̂pick, pull the garment up,
and place it on the rack.

5.5. Results and Analysis

Table 1, 2 and 3 present quantitative comparisons with base-
lines. Figure 4 shows the learned correspondence on differ-
ent garments shapes and deformations. Figure 3 demon-
strates the manipulation actions guided by correspondence.

For folding, as ClothFunnel’s keypoint detection model
is trained on garments in fully unfolded states, it is difficult
to generalize to garments unfolded using FlingBot or our
method, as garments could not be perfectly unfolded into a
fully flat state. In contrast, as our method is trained with the
awareness of self-deformations, it is easier to detect such
keypoints in diverse garment states. While UniFolding
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Tops

Dress

Trousers

Figure 4. Learned Dense Visual Correspondence. For each cat-
egory, we show correspondence for 5 objects in different deforma-
tions. Color similarity denotes correspondence similarity.

Method Unfold-RAND (%) Unfold-DROP (%)

FlingBot 80.3 / 82.1 / 79.9 84.3 / 86.7 / 81.9

DefoAfford 70.1 / 63.9 / 61.7 73.8 / 60.9 / 66.7

Ours 83.6 / 86.9 / 81.6 85.3 / 88.1 / 83.6

Table 1. Results for Unfolding. Numbers in the first / middle /
last denote results for top / dress / trouser (the same below).

Method Fold-FLAT (%) Fold-FLING (%)

ClothFunnels 82.2 / 83.9 / 79.6 61.7 / 63.5 / 60.3

UniFolding 83.5 / 82.9 / 81.6 78.7 / 81.5 / 78.6

Ours 83.5 / 84.0 / 83.3 77.9 / 82.5 / 81.3

Table 2. Results for Folding.

Method Hang-RAND (%) Hang-FLING (%)

GCSR 78.5 / 72.3 / 77.9 81.2 / 80.9 / 78.7

DefoAfford 73.4 / 69.2 / 71.6 79.4 / 76.4 / 73.8

Ours 81.9 / 77.4 / 83.3 83.8 / 89.6 / 81.5

Table 3. Results for Hanging.

trains using and thus works well on deformed states, it is de-
signed for the specific folding task. In contrast, our method
can facilitate multiple downstream tasks. Furthermore, as
shown in Figure 5, our method can work well on different ,
while policies trained on large-scale annotated data cannot
easily generalize to novel manipulation methods.

For unfolding, DefoAfford cannot perform well in 3

(a) (b)

(c) (d)
Figure 5. Visualization of Different Folding Policies.

steps as it only utilizes one gripper. For FlingBot, although
it is trained using large-scale different states and interac-
tions, without training on many garments, it cannot gener-
alize well to novel garments. Besides, it is costly in time and
computing resources, in that it requires separately training
96 models to generate affordance maps in 12 garment ro-
tation types and 8 garment scale types, and then selecting
the best pick points pair in all the 96 rotation-scale combi-
nations. In contrast, as the learned dense correspondence is
aware of different garment scales and rotations, we can di-
rectly use one model to select the grasp points for flinging.

For the comparison with GCSR in folding, as it requires
collar detection as Structural Regions, it cannot perform
well on garment states where collars are occluded.

It is worth mentioning that, while the baselines are
mostly designed for specific tasks and may pose require-
ments to garment initial states, our proposed dense visual
correspondence is an unified representation for garments,
and thus makes it easy to generate policies for multiple
downstream tasks on different garment deformations.

5.6. Ablation Studies

We compare our method with the ablated versions on the
representative folding task, to demonstrate the effectiveness
of our method’s different components:

• Ours w/o CO: our method without learning the cross-
object correspondence. This version is similar to [11]
that learns correspondence and policies on square-shaped
fabrics and similar T-shirts with very short sleeves.

• Ours w/o CD: our method without learning the cross-
deformation correspondence.

• Ours w/o C2F: our method without C2F Refinement.
• Ours w/o FA: our method without few-shot adaptation on

different downstream tasks.

Table 4 shows quantitative comparisons with ablations.
Clearly each component improves our method’s capability.

As shown in Figure 6, Coarse-to-fine Refinement elimi-
nates many inaccurate areas of correspondence prediction,
and makes the boundaries of garment parts more clear.
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Method Top (%) Dress (%) Trouser (%)

Ours w/o CO 75.3 70.8 77.6

Ours w/o CD 63.9 65.2 59.4

Ours w/o C2F 78.0 80.3 76.7

Ours w/o FA 81.9 82.3 78.6

Ours 83.6 86.9 81.6

Table 4. Ablation Studies.

Tops

Dress

Trousers

Figure 6. Coarse-to-fine Refinement. From left to right: the
garment, correspondence in its flat pose, initial correspondence,
correspondence after 50 and 100 refinement batches.

Garment Before 
Adaptation

Before 
Adaptation

After
Adaptation

After
Adaptation

Figure 7. Ablation on Few-shot Adaptation.

As shown in Figure 7, after few-shot adaptation, the ma-
nipulation points tend to be more functional, and thus the
folded garments become more organized.

5.7. Real-world Evaluation

Setup. As shown in Figure 8, our real-world experiment
setup consists of two Franka Panda robot arms, and a Mi-
crosoft Azure Kinect camera (which has demonstrated high-
precision with slight noises for robotic manipulation [29,
44]) capturing top-down point cloud. We use Segment Any-
thing (SAM) [17] to segment the garment from the scene
and project the segmented image with depth to point cloud.

Please refer to the supplementary materials for more de-
tails and videos of real-world manipulations.

To align the scanned point cloud with those in simula-
tion, we annotate a few skeleton points on 3 real-world gar-

c (1)

a (1) a (2)

b (1) b (2)

c (2)

Figure 8. Real-world Setup and Experiments.

Method ClothFunnel UniFolding Ours

Fold 8 / 15 10 / 15 11 / 15

Table 5. Real-world Evaluation on Folding.

ments (Figure 8, a), with the correspondence between an-
notated skeleton points and those in simulation shown in
b(1) and b(2), and fine-tune the pre-trained model by push-
ing close the representations of skeleton points on garments
in simulation and the real world using InfoNCE. The corre-
spondence is adapted from c(1) to c(2) in Figure 8.

We use 5 real world different-shaped tops, each conduct-
ing folding on 3 different initial deformations, and report
the number of successful executions in Table 5.

6. Conclusion

We propose to learn dense visual correspondence for di-
verse garment manipulation tasks with category-level gen-
eralization using only a few annotations. We first train
topological correspondence self-supervisedly using self-
play and garment skeletons, and then fine-tune it using few-
shot demonstrations to transform the topological correspon-
dence to be functional to different downstream tasks. Exten-
sive experiments demonstrate the superiority of our method.
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