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Figure 1. The visual search mechanism enables humans to identify a target within a multitude of stimuli, streamlining the organization of
information critical for problem-solving and reasoning. In this work, we explore this core mechanism in the context of MLLMs, addressing
its absence, which currently impedes precise visual grounding, especially for high-resolution images. In this example, the VQA LLM could
not immediately answer the question, thus activating V*, an LLM-guided visual search process that uses common sense and contextual
cues to search for the required details. Throughout this informed search, it builds a visual working memory (VWM), tokenizing the overall
context and the areas of interest related to the targets, which are then re-fed to the VQA LLM, enabling it to accurately answer the question.

Abstract

When we look around and perform complex tasks, how
we see and selectively process what we see is crucial. How-
ever, the lack of this visual search mechanism in current
multimodal LLMs (MLLMs) hinders their ability to focus
on important visual details, especially when handling high-
resolution and visually crowded images. To address this, we
introduce V*, an LLM-guided visual search mechanism that
employs the world knowledge in LLMs for efficient visual
querying. When combined with an MLLM, this mechanism
enhances collaborative reasoning, contextual understand-
ing, and precise visual grounding. This integration results
in a new MLLM meta-architecture, named Show, sEArch,
and TelL (SEAL). We further create V*Bench, a benchmark
specifically designed to evaluate MLLMs in their ability to
process high-resolution images and focus on visual details.
Our study highlights the necessity of incorporating visual
search capabilities into multimodal systems. The code is
available here.

T Work done during an internship at NYU.

1. Introduction

One of the hallmarks of human intelligence is being able
to process and integrate multi-sensory information to per-
form complex tasks. A salient aspect of our cognitive rea-
soning process involving visual information is the ability
to conduct visual search — the process of efficiently recog-
nizing and localizing key objects within intricate real-world
scenes. This mechanism plays a fundamental role in the
interaction with the environment and happens everywhere,
from finding keys on a cluttered table to searching for a
friend in the crowd. Besides, it is also an indispensable step
for complex tasks that require multiple reasoning steps. The
intricacy of visual search has been studied for a long time
in cognitive science and vision science [37, 46, 48, 50-52].

While visual search seems intuitive for humans, it is ac-
tually a complex process underpinned by a series of com-
plex behaviors. To accomplish this task efficiently, top-
down feature guidance and contextual scene guidance are
two fundamental factors, guiding humans’ visual search
process [51]. The top-down feature guidance directs hu-
mans’ attention to items with specific features or attributes
(e.g. color, shape, and orientation) based on the specifica-
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tion of the target object or knowledge about its general cat-
egory. The contextual scene guidance is based on the fact
that objects are usually well-organized in structured scenes
in real-world scenarios. Therefore, one can use the seman-
tics of the scene, object co-occurrence, and other physical
constraints based on common sense knowledge to pay at-
tention to specific regions, accelerating the search process.

As an important step towards achieving artificial general
intelligence, multimodal LLMs (MLLMs) [1, 8, 23, 28, 63]
try to emulate humans’ ability to integrate multimodal in-
formation and perform general tasks. Significant advances
have been made in this domain, leveraging the strong rea-
soning capabilities of large language models. However, a
key limitation of current MLLMs is their dependence on
pre-trained (and often frozen) vision encoders, such as the
CLIP [39] image encoder. This dependency forms a major
bottleneck for visual information processing. The vision en-
coder is often trained on images with low resolution, such as
224 %224 or 336336 pixels. During deployment, images
are also often resized to a lower resolution. As a result, the
encoder may overlook important details in high-resolution
images. Additionally, current MLLMSs struggle to identify
which essential visual details are missing or unclear in the
images they process, nor can they proactively seek out or
request this missing information.

Inspired by human capabilities, we propose SEAL
(Show, SEArch, and TelL), a general meta-architecture
to integrate an LLM-guided visual search mechanism into
MLLMs to address the aforementioned visual limitations
(illustrated in Fig 1). The SEAL framework consists of
a VQA LLM and a visual search model. Unlike typical
MLLM models that might refuse to answer or make unin-
formed guesses (i.e. hallucinations) due to insufficient in-
formation from the vision encoder, the VQA LLM in SEAL
can explicitly pinpoint the visual details that are missing,
thus creating target objects for focus. Then, using the rich
world knowledge and common sense of language models,
the visual search component locates these identified ele-
ments, adding them to a Visual Working Memory (VWM).
This additional visual data in the VWM enables the VQA
Language Model to provide more accurate and informed re-
sponses. SEAL’s adaptability allows it to work with various
MLLM base models; in our case, we use LLaVA [28] as
both the VQA LLM and the MLLM in the visual search
model. With this new visual search capability, the MLLM
is better equipped to handle situations that require accurate
visual grounding in high-resolution images, as highlighted
in our comparison (Fig 2).

As humans’ visual search process is guided by top-down
feature guidance and contextual scene guidance, we design
an informed visual search algorithm dubbed V* with a vi-
sual search model following similar principles. For hu-
mans, such guidance largely comes from their knowledge

and experiences about the physical world. Thus, our visual
search model is built atop another MLLM which contains
vast common sense knowledge about the world and can ef-
fectively reason about the possible locations of the target in
the scene based on this knowledge.

The existing MLLM benchmarks [10, 21, 30] primarily
focus on providing comprehensive evaluations across var-
ious task categories, and do not adequately challenge or
expose the specific limitations of current paradigms men-
tioned above. To bridge this gap and evaluate our pro-
posed framework, we introduce V*Bench, a new ded-
icated VQA benchmark that focuses on detailed visual
grounding on high-resolution images. V*Bench is a vision-
focused benchmark, requiring multimodal models to accu-
rately ground specific visual information that could be eas-
ily overlooked by a standard, static vision encoder lacking
visual search capabilities. In a world increasingly domi-
nated by rich and complex visual content like images and
videos, it’s crucial for MLLMs to be able to actively fo-
cus on critical visual information for complex reasoning
tasks. This benchmark aims to highlight the significance
of this fundamental mechanism and guide the evolution of
MLLMs towards mirroring the multimodal processing and
reasoning aptitudes inherent in human cognition.

In summary, our contributions are threefold: 1) We pro-
pose SEAL, an MLLM meta-architecture designed to ac-
tively reason about and search for needed visual informa-
tion, a vital capability for vision-intensive multimodal tasks,
especially when dealing with high-resolution images. 2) We
develop a visual search algorithm V* that utilizes the com-
mon sense understanding inherent in LLMs to perform ef-
ficient informed searches across images of any resolution.
3) We introduce V*Bench to thoroughly evaluate the ability
of MLLMs in accurately processing and grounding detailed
visual information in high-resolution images.

2. Related Work
2.1. Computational Models for Visual Search

Inspired by guiding factors in humans’ visual search pro-
cess, several computational models have been proposed to
mimic the human visual search process. Sclar et al. [41]
proposes a Bayesian searcher combined with a saliency map
as prior. Torralba et al. [46] combines the local saliency
map with the global scene priors to form a scene-modulated
saliency map. IVSN [59] uses convolutional networks to
compute the similarity map between the search image and
the target template and perform the search greedily. Yang
et al. [55] uses inverse reinforcement learning (IRL) to learn
the reward function and policy of human visual search.
Nevertheless, such models mainly focus on mimicking
the human gazing trajectory, without requiring accurately
localizing the target object. Besides, their usage of categor-
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Figure 2. Examples on which GPT-4V fails (Accessed: Oct 31, 2023) while SEAL with the V* visual search mechanism succeeds. Even
though GPT-4V has a much more powerful LLM (GPT-4) than ours (Vicuna-7B), it still occasionally struggles in scenarios that demand
extensive visual processing. These situations require precise visual grounding in high-resolution images, a task where the visual search
mechanism becomes essential. Best viewed on screen with zoom. Image sources are provided in Appendix.

ical information about the target objects and the contextual
scene information is limited to simple statistics and does
not generalize to general domains. Our visual search model
utilizes the rich common sense knowledge from LLM to
expedite the search process. We note that our active search
strategy is linked to System II cognitive processes [16] —
for complex tasks, dynamic computation allocation for vi-
sual search becomes necessary. Our approach can also
be thought as a visual counterpart to the chain-of-thought
(CoT) technique used in LLMs [49].

2.2. Multimodal LLMs

Propelled by the success of large language models, vision
language model research begins to explore how to equip
LLMs with additional vision input to solve various multi-
modal tasks. Currently, MLLMs can be categorized into
two types: end-to-end models and LLM tool-using systems.
End-to-end MLLMs. End-to-end MLLMs[1, 8, 22, 23,
28, 63] connect the pre-trained LLM with a vision encoder
through projection or alignment modules, and the whole
system is jointly trained in an end-to-end manner. These
models aim to project the visual features to the input em-
bedding space of language or intermediate feature space,
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enabling the LLM to process visual information and per-
form vision-language tasks. While vision encoders like
CLIP [39], which are pre-trained through image-text align-
ment, can translate visual features into a form of ‘language
tokens’ understandable by LLMs, this process introduces
an information bottleneck. The conversion and projection
of visual features often lead to inherent information loss,
especially since vision encoders are typically constrained
to low-resolution images. Consequently, these models may
struggle to provide accurate results or might produce hallu-
cinated answers if crucial visual information is poorly cap-
tured or inadequately focused upon.

LLM-tool-using systems. LLM-tool-using systems or
LLM-based agents treat the LLM as a black box and give
them access to some vision expert systems to perform cer-
tain vision-language tasks through reasoning [14, 31, 53,
54, 56, 62]. Such systems utilize different vision experts to
provide information about the visual input in the form of
text. They usually adopt captioning and detection models
to create general textual information about an image, based
on which the LLM further decides what visual information
is needed and which visual experts to call through reason-
ing. The LLM decides to terminate the process and provide
the final answer when it thinks the information is enough.
However, one main problem of such systems is that as the
whole system is running based on text only, certain visual
information might be inevitably ignored or distorted when
translated into text. Moreover, as the vision experts are not
perfect themselves, cascaded errors exist and the complex
and lengthy process makes the whole system prone to fail.

3. Method

Our proposed Show, Search and Tell (SEAL) framework
is a general meta-architecture for MLLMs. It has a VQA
LLM and a visual search model which collaborate and in-
teract through the visual working memory (VWM). An il-
lustration of the SEAL is shown in Fig 3. In this work, we
provide an instantiation of SEAL to validate its effective-
ness and choose the LLaVA-7B model as the MLLM in the
framework. We now elaborate on the model structures of
each of these two parts. The training data curation process
and the training details are provided in the Appendix A.3.

3.1. VQA LLM with Visual Working Memory
3.1.1 Model Structure

Modern MLLMs usually have three components: a vision
encoder, a projection module, and an LLM. The type of
projection module varies across different models. including
options like Resampler [1, 22, 47], QFormer [8, 23], and
linear layer [5, 28]. The placement of the projected vision
tokens within the LLM also differs among models, such as
in the input layer [8, 23, 28, 63], or middle cross-attention

layers [1, 22]. Despite these variations, most of these mod-
els adopt pre-trained CLIP as their vision encoder. When
tackling high-resolution and visually-crowded images, the
visual features extracted by CLIP may not capture the nec-
essary information required to answer the question.

Algorithm 1: SEAL Working Pipeline

1 Function SEALVQA (I, T, §):

2 list of needed target objects L <— VOALLM (I, T')

3 Initialize VWM

4 VWM.add(I), VWM.add(T")

5 for target s in L do

6 Priority queue ¢

7 q.add((I, 00))

8 search result +— Visual Search (g, s, d)

9 if search result is None then

10 |  VWM.add(“{target} not existent in the image”)
11 else

12 Cropped the object patch from I

13 VWM.add(“{target} <object patch> at location

[z1, y1, 22, y2]")

14 response <— VQALLM (VWM)

15 return response

The visual search mechanism is not always engaged.
The model first evaluates if the encoder’s initial (global)
visual features suffice for answering the question. If not,
it explicitly lists all the needed but missing information
in the format of a list of target objects. Then, it initial-
izes a visual working memory (VWM). The VWM has four
blocks, the <quest ion> block contains the initial textual
question; <global image> contains the initial image;
<searched targets> stores the target object crops
after search; and <target location> stores the co-
ordinates of the searched targets. Next, the visual search
model searches over the image and localizes each required
target. A region containing the identified target is then
cropped from the whole image. The cropped targets, along
with their coordinates, are added to the VWM. After that,
the VQA LLM processes the data contained in the VWM to
generate the response accordingly. The working pipeline of
the SEAL framework is illustrated in Algorithm 1.

In this work, we choose the CLIP ViT-L/14 model [39] as
the visual feature extractor, with input resized and padded
to 2242, We use it to process both the initial image and
the crops of searched targets. To adapt the visual features
for input into the LLM, we consider two types of projec-
tion modules, the linear layer and the resampler. The linear
layer projection module keeps the number of visual tokens
from the vision encoder, and the cross-attention based re-
sampler projection reduces the number of tokens (i.e. 256
to 32). To manage the token length corresponding to differ-
ent contents in VWM, we have designed a simple scheme
to flexibly switch between these two projection modules. In
scenarios where the input comprises only the initial image
feature without any searched targets, we apply the linear
layer projection to maintain all visual tokens. When one
or two searched targets are present in the VWM, it’s pre-
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Figure 3. An instantiation of the proposed SEAL framework. The left section represents the VQA LLM, which utilizes all the data within
the Visual Working Memory to respond to questions. On the right, we illustrate the operational pipeline of the V* visual search algorithm.

sumed that the model needs to focus on these targets. In
such cases, we use the linear layer projection for the visual
features of these targets and employ the resampler to sub-
sample the global image features. For situations where the
VWM holds more than two searched targets, the resampler
is used for all visual features to reduce computational cost.

3.2. Vv*: LLM-guided Visual Search

3.2.1 Problem Formulation

At a high level, the objective of visual search shares simi-
larities with the task of referring expression comprehension
(REC) [32] in computer vision. REC aims to localize a spe-
cific object in the image as described by a textual referring
expression. However, unlike REC, which is restricted to im-
ages of a specific size, visual search must adapt to images of
any resolution. Sometimes, a thorough search across the en-
tire image is needed to find the target object. Consequently,
visual search efficiency matters: an effective visual search
algorithm should not only locate the target accurately but
also do so as quickly as possible.

3.2.2 Model Structure

Similar to how people often zoom in on their phones for
a clearer view, when dealing with a high-resolution image,
it’s possible that the target object cannot be precisely identi-
fied and located if only the entire image is viewed as a small
thumbnail. To address this, one straightforward approach is
to patchify an image into uniformly sized small patches and
perform the localization on each patch exhaustively. This
brute-force strategy is often used in aerial image detection
and whole slide image analysis [6, 36]. However, it tends to
be too inefficient for effectively managing images with very
high resolutions — we need a smarter solution.

Drawing inspiration from how humans utilize contextual
scene and top-down feature guidance in their visual search
process, we’ve incorporated similar concepts into the design
of the visual search model in V*. This process utilizes an
MLLM that encapsulates a vast amount of common sense
knowledge, serving as heuristic guidance. In order to local-
ize and crop the searched targets for VWM, it’s also nec-
essary to enhance the MLLM with additional localization
capabilities, comparable to those mentioned in [20, 58].

Our visual search model consists of an MLLM and a
localization module with an image backbone and two de-
coders, i.e. a target localization decoder Dy; and a search
cue localization decoder D.;. The MLLM has an additional
localization ability with a localization token <LOC> added
to its vocabulary. Given an image and a textual expression
of an object or region, the textual expression is first trans-
formed into a fixed-format instruction (i.e. “Please locate
the [object] inthe image.”) and then fed into the MLLM
together with the image. The MLLM outputs the local-
ization token <LOC> containing contextual and location-
related information of the queried textual expression. We
process the <LOC> token embedding v;,. with two sepa-
rate MLPs to get two additional embeddings vy; and v,;.
The image tokens from the visual encoder are then com-
bined with vy; and v, processed by decoders Dy; and D,
respectively, and output target coordinates (with confidence
scores) and search cue heatmap respectively.

3.2.3 Search Algorithm

With this visual search model, our V* algorithm works as
follows. Given an image and a textual expression of the tar-
get object, the V* MLLM first attempts to locate the target
directly. In this step, we obtain the farget coordinates and
the search cue heatmap from v, corresponding to the tar-
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get object. When no object is located (i.e. the confidence
score falls below a threshold), we examine the heatmap for
possible target-specific cues.

The search cue heatmap highlights regions that could po-
tentially contain the queried target object. When the rarget-
specific cue is prominent (i.e. when the highest value in the
heatmap exceeds the threshold §), we use it to guide the
search directly. Otherwise, we ask the MLLM what is the
most likely location of the target object in the image. This
requires the MLLM to utilize its common sense knowledge
and integrate it with the image’s context to provide the con-
textual cue about the target’s whereabouts. Upon receiving
a description of the region where the target object is likely
located, we then prompt the MLLM to locate the described
area with the D,; decoder and produce a search cue heatmap
corresponding to the contextual cue.

Then, we split the current image into smaller patches and
assign search priority scores to these patches. The search
priority score is calculated from the search cue heatmap
(either target-specific or contextual). Based on the priority
scores, the patches are then cropped and processed sequen-
tially. This recursive procedure is repeated until the target
object is located or the size of the current patch becomes
smaller than a predetermined threshold. The overall pro-
cess of the V* algorithm is illustrated in Algorithm 2.

Algorithm 2: V*: LLM-guided Visual Search

1 Function Visual Search(q, s, 0):

2 Current image I, = q.pop()

3 target coordinates&confidence, search cue heatmap <—
VisualSearchModel (instruction=“Please locate the s in the
image.”, image=1y)

if target confidence is high then
\ return target coordinates

if heatmap.max() < 0 then

contextual cue <—

VisualSearchModel (instruction="“What is the most
likely location of the s in the image?”, image=1)

8 _, search cue heatmap <—

VisualSearchModel (instruction= “Please locate the

‘contextual cue’ in the image.”, image=1p)

9 Divide I, into sub-images, calculate the priority for each sub-image

based on the heatmap, and add (sub-image, priority) pairs to q.

[T

10 while g is not empty do

1 search result +— Visual Search (g, s, §)
12 if search result is not None then

13 \ return search result

14 return None

4. Benchmark

To quantitatively evaluate MLLMs’ ability in challenging
scenarios where the image contains abundant and complex
information and the visual information needed might not
be easily found, we build a benchmark V*Bench based on
191 high-resolution images from SA-1B dataset [19] with
an average image resolution of 2246 x1582.

Our benchmark contains two sub-tasks: attribute recog-
nition and spatial relationship reasoning. The attribute

Attribute (%) Spatial (%) Overall (%)

Human 98.26 100.00 98.95
Random Guess 26.73 50.00 35.99
Open-source end-to-end MLLMs
BLIP2 [23] 26.95 53.94 37.69
MiniGPT-4 [63] 30.43 50.00 38.22
LLaVA [28] 23.47 53.94 35.59
InstructBLIP [8] 25.21 47.36 34.02
Otter [22] 26.95 56.57 38.74
LLaVA-1.5[27] 43.47 56.57 48.68
LLM tool-using pipelines
MM-React [53] 34.78 51.31 41.36
VisualChatGPT [54] 30.43 48.68 37.69
Visprog [12] 31.30 56.57 41.36
Commercial chatbot systems
Bard [11] 31.30 46.05 37.17
Gemini Pro [9] 40.86 59.21 48.16
GPT-4V [35] 51.30 60.52 54.97
SEAL (Ours) 74.78 76.31 75.39

Table 1. Evaluation of multimodal systems on V*Bench. We find
our SEAL model outperforms leading-edge systems such as GPT-
4V and Gemini by a large margin, even though we only use a
Vicuna-7B LLM. This result demonstrates the importance of in-
tegrating a visual search mechanism into MLLMs.

recognition task has 115 samples and requires the model
to recognize a certain type of attribute (e.g. color, mate-
rial) of an object. The spatial relationship reasoning task
has 76 samples requiring models to determine the relative
spatial relationship between two objects. These tasks fo-
cus on evaluating the detailed visual analysis capability of
the multimodal models. Both the test images and questions
have been carefully selected and crafted by human annota-
tors to ensure that it is difficult to directly “guess” the cor-
rect answer without accurate visual grounding of the rele-
vant objects in the image. Examples of our benchmark can
be found in the Appendix B.

For a quantitative comparison of open-source MLLM
models on our benchmark, we construct multiple choice
options for each question. We formulate four options for
open-ended questions and two for binary questions. To en-
sure clarity, these multiple choices are carefully crafted and
reviewed by human annotators for any potential ambiguity.

5. Experiments
5.1. Evaluation on V* Bench

In this work, we implement the VQA LLM in our SEAL
framework with Vicuna-7B[61] as the language model. We
evaluate it with other open-source end-to-end MLLMs and
LLM-tool-using systems on the proposed V*Bench. For
end-to-end models, we include representative methods in-
cluding [8, 22, 23, 27, 28, 63] and use the likelihood ap-
proach to evaluate their performance following [2, 21]—
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Experiment ID LLM VWM  Search

Attribute  Spatial Overall

Vicuna-7B X N/A
Vicuna-7B v
Vicuna-7B v
Vicuna-7B v

AWM —

V*-Search

38.26 5526  45.02

Querying Detection (GD [29]) 62.60 61.84 62.30
Querying Detection (OWL-VIT [34]) 60.86 65.78 62.82

74.78 76.31 75.39

Table 2. Ablation studies on the necessity of the visual search mechanism. Detection (GD) and (OWL-ViT) denote replacing the visual

search model with GroundingDINO and OWL-ViT respectively.

Search Length |
Random-DFS 8.94
Random-BFS 7.18
Sequential-DFS 11.39
Sequential-BFS 6.62
LLM-guided visual search 4.65
w/o target-specific cue 5.22
w/o contextual cue 5.36

Table 3. Evaluation of different search strategies on V*Bench.

Human Fixation

Image with Target

LLM-guided Cues

Figure 4. Comparison with the human fixation on COCO-
Search18 [7]. Humans tend to focus on center regions or salient
objects while our model focuses on a larger contextual region.

Search Length |
Random-DFS 9.97
Random-BFS 4.90
Sequential-DFS 9.82
Sequential-BFS 4.20
Human Fixation (y=0.9) 2.52
Human Fixation (y=0.8) 2.70
LLM-guided visual search 2.80

Table 4. Comparison with the human fixation on COCO-Search18.

we select the choice with the highest log-likelihood as the
model’s prediction. For the LLM-tool-using systems, we
evaluate methods including MM-React [53], VisualChat-
GPT [54], and Visprog [12]. Additionally, we also evaluate
industrial multimodal chatbots: Bard [11], Gemini Pro [9],
and GPT4-V [35]. For the LLM-tool-using systems and the
multimodal chatbots, we prompt them to directly answer the
option as the likelihood does not apply to them, and we ask
them to choose the most likely option when they find that

it is impossible to answer the question or none of the op-
tion is correct. We evaluate Bard and GPT4-V through the
web chatbot (Accessed: Oct 31, 2023) and evaluate the
Gemini Pro through the API (Accessed: Dec 16, 2023).
As shown in Table 1, the performance of most MLLMs is
merely chance level. The GPT-4V and Gemini systems can
handle some relatively easy scenarios in the attribute recog-
nition task, but the overall performance is still not satisfac-
tory. It’s also noteworthy that the LLaVA-1.5 model, com-
pared to the initial LLaVA, shows a significant improve-
ment in the attribute recognition task. This could be par-
tially attributed to the adoption of a new vision encoder with
a higher training resolution (CLIP-ViT-L-336px). How-
ever, there is still a considerable gap in performance when
compared to our visual search strategy. With the visual
search process, our model greatly improves performance.
Nonetheless, considering that humans can achieve near-
perfect results, there remains considerable potential for fur-
ther improvement for MLLMs. Our visual search incurs an
average time cost of 6.0 seconds per target on one A100
GPU. This is a reasonable trade-off, as, akin to human vi-
sual search and reasoning, allocating more computational
resources is necessary for tackling challenging tasks.

5.2. Ablation Study

We conducted ablation experiments to verify the effective-
ness of our key designs. First, we start with the LLaVA
model that has the same structure (without the VWM) as
our VQA LLM and train it on the same training data. Then,
we replace the visual search mechanism with open-world
detectors GroundingDINO [29] and OWL-ViT [34] and use
the detection results to fill in the VWM. The experiment
results are shown in Table 2. We can see that, although we
include attribute recognition and spatial relationship reason-
ing data in the VQA LLM training data, the MLLM without
the visual search mechanism (ID 1) still struggles. Direct
querying detection models (ID 2&3) as a substitute for the
search process also results in significantly inferior perfor-
mance compared to V*. Moreover, off-the-shelf detectors
would encounter practical difficulties when applied to im-
ages of very high resolution.

5.3. Visual Search Evaluation

First, we record all 245 target object locations in the
V*Bench. We then evaluate different search strategies in
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V*Bench MME POPE MMBench  SEED-Bench(Img) MM- Vet LLaVAW
LLaVA* (7B) 45.0 1051.2 76.5 34.4 41.8 30.4 62.6
SEAL (7B) 753 (+30.30) 1128.9 (+77.70) 82.4 (+5.85) 33.1(-1.36) 41.7 (-0.17) 27.7 (-2.70)  59.1 (-3.50)

Table 5. When tested on a broader range of multimodal benchmarks,

the addition of the visual search module mostly maintains the overall

multimodal capability. The LLaVA* denotes our VQA model without the visual search mechanism.

Contextual cue
The guard is most

likely to appear next
to the building.

Contextual cue

W The guard is most
likely to appear

- near the entrance
28 of the building.

Search for the guard
(Question: Tell me the guard's detailed
posture.)

Search for the guitar
(Question: s the guitar on the left or
of the keyboard?)

Contextual cue Contextual cue

The bicycle is most

likely to appear on
the street.

The guitar is most
likely to appear on
the stage.

Target-specific
cue

Search for the bicycle
(Question: What is the color of the bicycle?)

right side

Figure 5. Examples of the LLM-guided visual search process. Each row in each example represents a step in the visual search process and

the heatmap of contextual cue or target-specific cue is shown on the

terms of search length, which is defined as the number of
search steps from the initial image to the patch where the
target is located. We only include samples that can be suc-
cessfully located after the search for evaluation. We com-
pare our LLM-guided V* algorithm with two baselines. The
Random baseline adopts the random search strategy that
picks a random patch to explore, and the Sequential baseline
searches the patches sequentially, following a reverse raster
scan order. These two strategies are evaluated in breadth-
first search (BFS) and depth-first search (DFS) settings re-
spectively. As shown in Table 3, V* could greatly reduce
the average search length, and both the target and contex-
tual search cues are helpful. We provide visualizations of
the search process in Fig 5.

To further study the efficiency of V* algorithm and
draw parallels with cognitive science research in visual
search, we conduct comparisons between our search out-
comes and human behaviors using the COCO-Searchl18
dataset [7]. COCO-Search18 records people’s eye fixations
when searching for a specific target object in natural scene
images. We use the validation set and select samples where
a visual search is needed to successfully locate the target.
We convert the ground-truth human fixation sequence on
each sample to a 2D heatmap and use it as guidance dur-
ing the search. Specifically, the fixation sequence is an or-
dered sequence of points on the image, and we convert it to
a dense 2D heatmap by adding Gaussian distributions cen-
tered at each fixation point to assign scores to each pixel.
Considering the order of the points in the fixation sequence,
for the *" fixation point, we multiply a weight v* where
0 < v < 1. Then we use this heatmap generated from hu-
man fixations as guidance to guide our search process and
compare it with V* in terms of search length. Interestingly,
V* algorithm can achieve similar efficiency to the human
fixations (Table 4). Examples are shown in Fig 4.

right.

5.4. General Multimodal Benchmarks Evaluation

To verify that adding the visual search ability does not im-
pede the general multimodal ability, we evaluate our model
on several multimodal benchmarks including MME[10],
POPE [24], MMBench [30], SEED-Bench [21], MM-Vet
[57], and LLaVA-Bench%W [28]. For fair comparisons, we
compared with the LLaVA model trained on our VQA
training data. In Table 5, we show that with the visual
search mechanism, the performance on the comprehensive
benchmark MME is improved and the hallucination prob-
lem is alleviated on POPE. For the larger-scale benchmarks
MMBench and SEED-Bench, the performance basically re-
mains the same. There is a slight decline in performance
on MM-Vet and LLaVA-Bench". This could be attributed
to the use of a GPT4-based evaluation method, which may
introduce more uncertainty and potential biases. Moreover,
certain questions in them trigger a visual search for items
in diagrams. This often results in the model failing to lo-
cate objects accurately because it was trained on common
objects. Overall, while most common multimodal bench-
marks focus on prominent visual elements, our model, sup-
plemented with the visual search mechanism, still upholds
its general multimodal capabilities.

6. Conclusion

We introduce the SEAL framework, featuring the LLM-
guided visual search algorithm V* for accurate visual
grounding in high-resolution images. Our new benchmark
V*Bench highlights the critical role of visual search capa-
bilities in MLLMs. At present, our visual search model is
primarily tailored to natural images and common objects.
To extend its applicability to document and diagram images,
long-form videos, or open-world environments, additional
training and new algorithm design are necessary.
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