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Abstract

Source-free domain adaptation (SFDA) assumes that
model adaptation only accesses the well-learned source
model and unlabeled target instances for knowledge trans-
fer. However, cross-domain distribution shift easily triggers
invalid discriminative semantics from source model on rec-
ognizing the target samples. Hence, understanding the spe-
cific content of discriminative pattern and adjusting their
representation in target domain become the important key to
overcome SFDA. To achieve such a vision, this paper pro-
poses a novel explanation paradigm “Discriminative Pat-
tern Calibration (DPC)” mechanism on solving SFDA is-
sue. Concretely, DPC first utilizes learning network to infer
the discriminative regions on the target images and specifi-
cally emphasizes them in feature space to enhance their rep-
resentation. Moreover, DPC relies on the attention-reversed
mixup mechanism to augment more samples and improve
the robustness of the classifier. Considerable experimental
results and studies suggest that the effectiveness of our DPC
in enhancing the performance of existing SFDA baselines.

1. Introduction
Deep learning [1, 14] recently attracts considerable atten-
tions due to its powerful representation capability, espe-
cially ResNet [9] and ViT [46]. Their appearance indeed
provides a promising direction on solving the challenging
tasks, i.e., image classification [31], object detection [35],
semantic segmentation [27], from computer vision and ma-
chine learning community. However, deploying them into
the real-world scenarios always suffers from obstruction.
The primary reason results in that it is difficult to collect
sufficient well-annotated instances for the optimization of
abundant network parameters [7, 15, 43].

This demand naturally stimulates the exploration of un-
supervised domain adaptation (UDA). It aims to reuse
knowledge learned from the off-the-shelf source domain
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with supervisions to address similar task on one novel tar-
get domain [39]. The main challenge lies in that cross-
domain shift easily induces performance degradation of
source model [50]. Fortunately, UDA methods can simply
observe source and target images to learn domain-invariant
attributions by eliminating distribution divergence [37, 41].
However, real applications fail to satisfy such assumption
when considering data privacy and storage. For example, as
the improvement of intelligent computing power, multiple
basic large models will be embedded into several specific
industries such as medical system. Although large mod-
els achieve high-generalization ability, it still needs conduct
essential model adaptation due to distribution shift across
training set and samples of subdivided areas. It is worth
noting that such knowledge transfer hardly accesses original
training instances. Hence, UDA strategies become invalid
under these conditions and this application scenario is fur-
ther formulated as source-free domain adaptation (SFDA).

Formally, SFDA merely provides permission to access
the well-trained source model and unlabeled target images
for knowledge transfer [48]. To overcome this setting, the
core is discovering meaningful and transferable informa-
tion from source model and matching them with target vi-
sual signals to perform decision. Along with this direction,
SHOT [21] freezes source classifier to preserve its recog-
nition ability and fine-tunes feature extractor to adjust tar-
get representations closer to source distribution. In order
to increase the flexibility of model, Co-learning [47] intro-
duces one ImageNet pre-trained network with classifier to
be updated and utilizes the collaboration of it and source
model to reach domain adaptation. Similarly, A2Net [38]
constructs an auxiliary learnable target classifier and ex-
plores the adversarial relation between dual-classifier and
generator to achieve cross-domain alignment. Moreover,
the other branch expects to boost model performance via
self-learning fashion on target domain. Specifically, NRC
[44] adopts clustering constraint over target features to al-
locate samples from the identical category into one tight
subspace. And, AaD [45] considers the consistency be-
tween paired features and their predictions and theoretically
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Figure 1. The relationship between prediction confidence (y-axis)
and attention shift, where x-axis denotes the category index. When
producing lower prediction confidence on samples, the model
likely focuses on classification-irrelevant contents.

deduces the upper bound to realize this anticipation. Al-
though existing approaches have obtained obvious progress
on dealing with SFDA, they fail to provide deep insight on
what discriminative and transferable semantics the source
model can provide. Hence, it is difficult for them to compre-
hensively exploit well-learned source knowledge on adapt-
ing the property of target domain.

To surmount this drawback, this paper explores a novel
“Discriminative Pattern Calibration (DPC)” mechanism to
delicately interpret the influence of source knowledge on
target visual signals and provides a feasible technical route
to better solve SFDA. Concretely, we first explore the rela-
tion between attention shift and prediction confidence. As
Figure 1 shows, when the attention map derived from the
model is out of the region of interests, this image is very
likely to be predicted incorrectly. In order to avoid such a
situation, the intuitive strategy is adjusting distribution of
attention matrix to involve more informative patterns for ef-
fective adaptation. This consideration evolves into our dis-
criminative semantic enhancement (DSE) module in DPC
mechanism. Specifically, given the attention map from
Grad-CAM [29] per target image, our DSE deploys an auto-
encoder architecture to calibrate the attention distribution
with the prediction confidence. The adjusted attention em-
phasizes the contribution of important regions in raw im-
ages and DSE integrates these discriminative patterns into
high-level representations via semantic filling manner. In
addition, DPC considers further to enhance the robustness
of the classifier by expanding the diversity of target sam-
ples. This anticipation is formulated as the second mod-
ule “Attention Induced Mixture” (AIM). Importantly, when
augmenting the additional instances, AIM avoids the con-
flict of multiple objects in the same picture. In a nutshell,
our main contributions are summarized as three folds:

• First, this paper rethinks SFDA from interpretable per-
spective to gain a deeper understanding of the source
knowledge and rely on such target-relevant information
to benefit model adaptation.

• Second, a novel discriminative pattern calibration mech-
anism is presented to adaptively discover and highlight
discriminative semantics and to augment feasible target
images via attention reverse manner.

• Third, extensive experimental results and empirical stud-
ies demonstrate that our proposed DPC effectively ad-
vances the existing SFDA methods, especially our DPC
improves SHOT and AaD by 1.4% and 1.3% on average
classification accuracy of Office-Home.

2. Related Works

Source-Free Domain Adaptation. In SFDA, the well-
learned source model is adjusted to adapt unlabeled target
domain with the absence of source data. Several methods
[21, 38] freeze certain components of source model such
as classifier to instruct model adaptation on target dataset.
Moreover, [44, 45] explore structural information of tar-
get samples and adopt clustering manner to capture class-
discriminative representations. And, [22] introduces addi-
tional tasks such as rotation prediction to enrich semantics.
Similarly, [19] exploits generative adversarial network to
produce target-style image and achieve more accurate pre-
diction. In addition, [3, 17] consider boosting pseudo la-
bel quality by selecting target instances with low entropy or
loss, and utilize these selected visual signals to fine-tune
source model. Different from them, our proposed DPC
starts from interpretable learning to discover discriminative
and transferable knowledge from source model and target
images, and achieve better model adaptation via the adjust-
ment and usage of attention map.
Interpretable Machine Learning. Several interpretabil-
ity techniques have been introduced to enhance the trans-
parency and trustworthiness of machine learning models.
The post-hoc interpretability [2, 8, 29, 33, 49] establishes
fidelity interpretation methods using causal inference, visu-
alization, and other strategies to elucidate the operational
mechanism and decision criteria of trained models. The
classic class activation mapping (CAM) [49] enables the
models to locate important and discriminative regions. To
generalize CAM to any deep CNN, Grad-CAM [29] utilizes
the gradient backpropagation of any target concept to pro-
duce a coarse localization map, which highlights the im-
portant regions in the image for concept prediction. Thus,
Grad-CAM enhances the interpretability of image classifi-
cation models [12], object detection [42], image segmenta-
tion [40]. This paper mainly explores Grad-CAM to under-
stand source knowledge during model adaptation and uti-
lizes attention matrix to better assist model learning.
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Figure 2. Overview of the proposed method. Our discriminative pattern calibration (DPC) includes three main procedures. (a) Given
target image Xi, model produces original attention matrix via Grad-CAM and Ai will be calibrated into Ãi by the introduced encoder and
decoder. (b) The model takes the highlighted image Ãi ⊗Xi and raw picture Xi as inputs to obtain their features Fi and F̃i and perform
cross-feature semantic filling for learning more discriminative representations. (c) To avoid the conflict of multiple objects in the same
image, DPC adopts attention reverse manner to blend Xi with Xj and increase sample diversity to promote the robustness of the classifier.

3. Proposed Method
3.1. Preliminary & Motivation

In source-free domain adaptation (SFDA), knowledge
transfer procedure explicitly accesses well-trained source
model {F(·), C(·)} and unlabeled target domain Dt =
{Xt

i|Xt
i ∈ RCx×Hx×Wx}nt

i=1 with nt visual signals Xt
i,

where {F(·), C(·)} denotes feature extractor and classifier,
respectively, and Cx, Hx, Wx are channel number, height
and width of the input image. It is noteworthy that the super-
vised learning over ns source samples with cross-entropy
loss, i.e., minF(·),C(·)

∑ns

i=1 ℓce(C(F(Xs
i )), ysi ), produces a

data-free source model, where Xs
i , ysi are source image and

its corresponding annotation. Moreover, source and target
inputs are collected from different distributions, but share
the identical category space including c specific classes, i.e.,
P(Xs) ̸= P(Xt), P(ys|Xs) = P(yt|Xt). This cross-
domain shift likely results in that source model suffers from
significant performance degradation when directly evalu-
ated on target domain [47]. The solution to SFDA needs
discover domain-invariant knowledge from available source
model and adapt them into target distribution. Along with
this direction, SHOT [21] explores the frozen source classi-
fier to preserve discriminative information and adjusts target
features to fit the source classifier boundary by optimizing
feature generator. Moreover, AaD [45] focuses on the con-
sistency between paired features and their predictions and
deduces one upper bound to achieve this constraint.

Different from them, this paper proposes a novel method
“Discriminative Pattern Calibration (DPC)” to surmount
the bottleneck of SFDA from interpretable perspective and
perform model adaptation in continuous learning manner.
As Figure 2 shows, DPC first deploys post-hoc back-
propagation-based tools such as Grad-CAM [30] and Score-
CAM [34] to interpret which regions of the given image

make more contributions to the decision, and then adjusts
their heatmap distribution according to the prediction confi-
dence. The calibrated attention map not only further empha-
sizes necessary contents to improve discriminability of rep-
resentations but also expands sample diversity to enhance
the robustness of the classifier.

3.2. Discriminative Semantics Enhancement

Given a target image Xt
i, source model easily predicts its

annotation via ŷti = argmaxj pij = C(F(Xt
i)), where pij

is the j-th element of pi ∈ Rc. Under this condition, Grad-
CAM measures the difference between ŷti and pi to infer
attention matrix Ai with the combination of feature maps
from F(·). When attaching Ai over its input image Xt

i in
Figure 1, it is straightforward to observe that the activated
regions in several images are out of our interested objects,
causing the source classifier to struggle in accurately iden-
tifying their categories. In other words, the performance
degradation of source model on target domain actually re-
sults from the attention region shift due to distribution di-
vergence across source and target images. Moreover, while
compared with probability distribution pi of samples with
correct predictions, that of the remaining instances have
lower probability. It suggests that prediction confidence
of target instance with wrong prediction is lower. Based on
observations, we naturally post a question “Can we adap-
tively adjust attention map with the guidance of predictive
confidence and facilitate discriminative feature learning?”

To answer this question, it is necessary to explore the
relation between predictive confidence and attention map in
order to clearly understand adjustment direction. In fact, the
aforementioned phenomenons explicitly demonstrate that
the attention maps with region shift likely correspond to
these samples with lower confidence. Hence, whether this
attention map needs to be adjusted depends on the pre-
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dicted confidence score. Moreover, moving attention re-
gion into our interested object means searching these pix-
els in high-dimensional image space. This ideal operation
will become difficult and time-consuming due to scarcity of
realistic pixel-level annotation. To this end, we can gain a
deep insight into the property of Gaussian distribution and
seek for an optimal strategy to adjustment.

Figure 3 illustrates three Gaussian distributions with the
same mean and various standard deviation settings. As
standard deviation increases, the distribution will transform
from a steep form to a flat shape. In other words, the peak
corresponding to mean value is reduced and others are el-
evating. Thus, when assuming that distribution of the de-
duced attention map follows Gaussian distribution, the im-
provement of its standard deviation declines attention of
highlighted region and intensifies focus of other areas. In
this way, the interested object is easily involved into im-
portant regions in attention map Ai. This simple mecha-
nism suggests one reasonable adjustment direction. Hence,
discriminative semantic enhancement (DSE) module is pre-
sented to implement it. Concretely, DSE consists of an en-
coder ε(·) mapping Ai into hidden space and a decoder ϕ(·)
recovering latent representation to Ãi , i.e., hi = ε(Ai) and
Ãi = ϕ(hi). The above discussions reveal that Ãi not only
preserves most of the basic information from Ai but also
moderately expands significant regions to involve discrim-
inative patterns. The expectation further evolves into the
following objective function for the training of DSE:

min
ε,ϕ

∥Ai − Ãi∥2F − α(1− pi) log
(
var(Ãi)

)
, (1)

where ∥ · ∥F is the Frobenius norm, var(·) calculates the
variance of the input, pi = maxpij pij = C(F(Xt

i)) is the
maximum probability of prediction, and α is by default set
as 1e-2 to balance the recovery and expansion. The second
term denotes that samples with lower predictive confidence
tend to be more constrained on the variance of its attention
matrix. Note that Eq. (1) only optimizes network parame-
ters of encoder and decoder.

𝑝(𝑥)

𝑥

Figure 3. Three different
Gaussian distribution with
the same mean and various
standard deviations.

So far, the adjusted
attention matrix has been
in hand and provided
more accurate emphasis
on salient regions of raw
visual signals. The next
consideration attempts to
gain support from Ãi to
assist model in captur-
ing more discriminative
semantics. It naturally
induces the second im-
portant operation “semantic filling” in DSE module.
Specifically, attaching Ãi into image produces a novel
input visual signal, i.e., X̃t

i = Ãi ⊗ Xt
i where ⊗ denotes

the element-wise multiplication of attention map to each
channel of the inputs. Compared with Xt

i, X̃
t
i weights each

pixel with the corresponding importance which is brought
into high-level features via network forward propagation
as F̃i = F(X̃t

i) where F̃i ∈ RCf×Hf×Wf and Cf , Hf ,
Wf represent the channel number, height and width of this
feature map. Similarly, raw image flowing into feature
extractor also produces Fi with the same dimension. Under
this condition, the identical location across F̃i and Fi

should represent consistent semantic. And if the value of
this point in F̃i is larger than that in Fi, it implies that F̃i

offers more meaningful information on this location due to
the guidance of adjusted attention matrix. Such a useful
content is supposed to be embedded into Fi via:

F̂i = ReLU(F̃i − Fi) + Fi, (2)
where ReLU(·) only reserves positive values by replac-
ing negative ones with zero. The calibrated representa-
tion F̂i obtains additional knowledge related to object from
F̃i. And these activated contents likely belong to domain-
invariant features and are simply recognized by source clas-
sifier due to their powerful transferability.
Remark: Our proposed Discriminative Semantics En-
hancement (DSE) module is designed to extract transfer-
able knowledge from input images using an adjusted atten-
tion matrix. Crucially, the DSE module highlights this in-
formation in the hidden feature space, enabling the source
classifier to accurately identify target instances. The collab-
oration of these two procedures results in a feasible model
adaptation even in the absence of source data.

3.3. Attention Induced Mixture

For the SFDA scenario, one task is to discover shared
and transferable patterns across source and target images
and multiplexs classification boundary learned from source
domain. Our DSE module has reached this demand by
boosting contribution of important pixels. From another
viewpoint, mining more useful knowledge from the cur-
rent available instances also has positive influence on per-
formance improvement since the model pays more attention
to target distribution. On this direction, NRC [44] considers
structural information of target features and makes the dis-
tribution of subspace more compact via clustering fashion.
Similarly, A2Net [38] introduces contrastive learning mech-
anism to constrain distribution of hidden representations.
Although they effectively endow the features with stronger
discriminative ability, using target images to promote ro-
bustness of classifier is ignored. The intuitive solution to
learn robust classifier is increasing the diversity of observed
images. For existing UDA works [25, 36, 50], they typically
adopt immovable or random ratio to mix source and target
images to create more samples in the intermediate domain.
However, it is difficult to conduct this data augmentation
due to the absence of source instances in SFDA. Certainly,
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the combination of two arbitrary target images also achieves
data augmentation. Moreover, the composite image gener-
ally involves two or more objects which can obviously con-
fuse classifier and trigger incorrect classification boundary
deformation. This simple mixup manner not only fails to
promote robustness but also hurts its recognition ability.

To overcome such a dilemma, we consider utilizing at-
tention matrix to remove discriminative region from one tar-
get image and integrate it with the other instance. Formally,
given arbitrary two target images Xi and Xj , utilizing the
source model produces their attention matrix Ai and Aj .
Sequentially, the frozen DSE module reassigns importance
for each pixel via:

Ãi = ϕ(ε(Ai)), Ãj = ϕ(ε(Aj)). (3)

When regarding Xi and Xj as the primary and auxil-
iary samples respectively, the expected situation is gradu-
ally mitigating the effect of object region and retaining the
remaining pixels in Xj . In fact, (1 − Ãj) has realized it by
moving values in high activation region closer to zero and
upgrading values of others closer to one. The image with
reduced discriminability is formulated as (1 − Ãj) ⊗ Xj ,
where 1 is a matrix of all ones. As a result, the linear com-
bination between primary image and the weighted auxiliary
sample generates one novel instance as:

X̂i = λXi + (1̂− λ)(1 − Ãj)⊗Xj , (4)

where 1̂ is a vector with all ones, λ ∈ RCx is collected from
the parameterized distribution, i.e., λ ∼ Beta(β, γ), and it
adopts various combination coefficients {λk}Cx

k=1 for dif-
ferent channels by considering their respective attributions.
Since DSE module explores semantic filling mechanism to
activate more potential features, we take X̂i and Ãi ⊗ X̂i

as the paired input and obtain features to rewrite Eq. (2) as:

F̂i = ReLU
(
F(Ãi ⊗ X̂i)−F(X̂i)

)
+ F(X̂i). (5)

And then classifier transforms F̂i into the label space as
C(F̂i). Moreover, when deriving Ai/j , we simultaneously
also obtain their pseudo labels as ŷti/j . In order to improve
the model robustness, we introduce the following:

Lc = argmin
F(·),C(·)

nt∑
i=1

λℓce
(
C(F̂i), ŷti

)
+ (1− λ)ℓce

(
C(F̂i), ŷtj

)
,

(6)
where λ = 1

Cx

∑Cx

i=1 λk and ℓce(·) is the cross-entropy loss.
It is worth noting that the auxiliary sample Xj is randomly
selected from dataset for each given image Xi.

3.4. Embedded Instruction

For SFDA issue, our “Discriminative Pattern Calibration”
method mainly focuses on the design of input image to cap-
ture discriminative representation and improve the robust-
ness of the classifier by utilizing attention matrix. First,

DSE module in our DPC method adjusts attention maps to
emphasize discriminative region in raw image and exploits
its features to calibrate original representation via Eq. (2).
Second, according to Ai/j , DPC conducts linear combina-
tion of paired images via Eq. (4) and maintains the dis-
criminating attributes of one object as much as possible to
optimize the overall model.

In fact, since DPC only conducts operations on input
layer and high-level feature, it is convenient to plug our
DPC into the existing SFDA works to advance their per-
formance. Take the popular SHOT [21] as one example.
First, it utilizes minF(·),C(·)

∑ns

i ℓce(F(C(Xs
i )), ysi ) to ac-

quire source model. And then, DPC can take target images
as input to pre-train encoder and decoder with the overall
frozen source model. Second, given single image Xi, we
obtain its attention matrix Ãi from the previous model and
rely on DSE module to get F̂i which classifier uses to cal-
culate all objective functions mentioned in SHOT. Note that
the clustering procedure also depends on F̂i. During this
stage, three sub-networks {ε, ϕ, F(·)} will be optimized.
Third, with the paired images, F̂i in Eq. (5) will be ex-
plored to compute Eq. (6) updating parameters in F(·) and
C(·). In the next iteration, the updated model will be utilized
to repeatedly implement the above processes.

4. Experiments

4.1. Experimental Setup

Datasets. To evaluate the performance of our DPC, we
conduct considerable experiments on three popular domain
adaptation benchmarks. Office-31 [28] includes three do-
mains: Amazon (A), Webcam (W) and DSLR (D) and they
share the identical 31 categories such as laptop and back-
pack. Office-Home [32] collects images from 65 common
household items and these samples belong to four differ-
ent domains: Art (Ar), Clipart (Cl), Product (Pr) and Real-
World (Rw). Compared with Office-31, the difficulty of
cross-domain knowledge transfer on Office-Home results
from the increasing number of categories. VisDA-C [26]
is a large-scale dataset and consists of one source domain
with synthetic rendering images of 3D models and one tar-
get domain with Microsoft COCO real pictures. Source and
target domains have the same 12 classes. This dataset is
generally considered as one standard to assess transferabil-
ity of model on dealing with synthetic-to-real shift.
Implementation Details. In SFDA setting, the first step
is to obtain a well-trained model with the supervision of
source samples and it typically includes one feature extrac-
tor F(·) and one classifier C(·). As for source model, we
follow the protocol of [21, 45], and adopt ResNet-50 on
Office-31/Office-Home and ResNet-101 on VisDA-C as the
basic backbone Fs to extract high-level representation from
image input. The network parameters are initialized with
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Table 1. Classification accuracy of 12 domain adaptation tasks on Office-Home benchmark. The best performance of SFDA is highlighted
in bold, while the best one achieved by UDA works is highlighted with underline. AS means the access of source and target images.

Method AS Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
Resnet[10] ! 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.3
CDAN [23] ! 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

GVB-GD [4] ! 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
RSDA [6] ! 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
TSA [20] ! 57.6 75.8 80.7 64.3 76.3 75.1 66.7 55.7 81.2 75.7 61.9 83.8 71.2

SRDC [31] ! 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
FixBi [25] ! 58.1 77.4 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
SFDA [17] % 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79 65.7
NRC [44] % 58.0 79.3 81.8 70.1 78.7 78.7 63.5 57.0 82.8 71.6 58.2 84.3 72.0

A2Net [38] % 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
SHOT [21] % 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
AaD [45] % 58.7 79.8 81.4 67.5 79.4 78.7 64.7 56.8 82.5 70.3 58.0 83.3 71.8

SHOT+DPC % 59.2 79.8 82.6 68.9 79.7 79.5 68.6 56.5 82.9 73.9 61.2 85.4 73.2(↑1.4)
AaD+DPC % 59.5 80.6 82.9 69.4 79.3 80.1 67.3 57.2 83.7 73.1 58.9 84.9 73.1(↑1.3)

ImageNet-1k weights and the last fully-connected (FC)
layer is replaced with a new bottleneck layer. Moreover, the
classifier involves two FC layers with weight normalization.
When conducting model adaptation, our method specially
introduces two additional sub-networks: encoder ε(·) and
decoder ϕ(·). The former includes two convolutional layers
with ReLU as activation function, while the latter involves
two deconvolutional ones. For the overall training proce-
dure, we adopt SGD as the optimizer with a momentum of
0.9 and a weight decay of 1e-3. During the model adap-
tion, we pre-train the new added encoder and decoder with
learning rate 1e-2. And then, the learning rate for optimiz-
ing {F(·), ε, ϕ} is set as 1e-3 and 1e-4 on Office-31/Office-
Home and VisDA-C, respectively. When using Eq. (6) to
slightly finetune classifier, we deploy 1e-5 as the learning
rate.
Baselines. To illustrate the effectiveness of our DPC on
solving SFDA, we select the classical UDA methods and
recent SFDA algorithms as competitors. These UDA strate-
gies concurrently observe source and target samples to
achieve cross-domain alignment. They include CDAN [23],
MCC [13], CAN [16], GSDA [11], SRDC [31], GVB-GD
[4], RSDA [6], TSA [20], FixBi [25], SFAN [41], STAR
[24], and SE [5]. Differently, SFDA solutions only per-
form model adaptation by using source model and target
instances, which are SDDA [18], SFDA [17], NRC [44],
A2Net [38], SHOT [21], AaD [45]. In our experiments, our
proposed training mechanism is plugged into SHOT [21]
and AaD [45] by adding operations on image input and
high-level feature activation.

4.2. Comparison Results

Table 1, Table 2 and Table 3 summarize the performance of
recent UDA methods and SFDA solutions on dealing with

Table 2. Classification accuracy of six domain adaptation tasks
on Office-31. The best performance for SFDA is emphasized in
bold, while the best one achieved by UDA works is highlighted
with underline. AS means the access of source and target images.

Method AS A→D A→W D→A D→W W→A W→D Avg
ResNet [10] ! 68.9 68.4 62.5 96.7 60.7 99.3 76.1
CDAN [23] ! 92.9 94.1 71.0 98.6 69.3 100.0 87.7
MCC [13] ! 95.6 95.4 72.6 98.6 73.9 100.0 89.4
CAN [16] ! 95.0 94.5 78.0 99.1 77.0 99.8 90.6

GSDA [11] ! 94.8 95.7 73.5 99.1 74.9 100.0 89.7
SRDC [31] ! 95.8 95.7 76.7 99.2 77.1 100.0 90.8
SDDA [18] % 85.3 82.5 66.4 99.0 67.7 99.8 83.5
SFDA [17] % 92.2 91.1 71.0 98.2 71.2 99.5 87.2
NRC [44] % 92.0 91.6 74.5 97.9 74.8 100.0 88.5

A2Net [38] % 94.5 94.0 76.7 99.2 76.1 100.0 90.1
SHOT [21] % 94.0 90.1 74.7 98.4 74.3 99.9 88.6
AaD [45] % 94.4 93.3 75.9 98.4 76.3 99.8 89.7

SHOT+DPC % 95.9 92.6 75.4 98.6 76.2 100.0 89.8 (↑1.2)
AaD+DPC % 95.8 94.5 76.5 98.9 76.8 100.0 90.5 (↑0.8)

domain adaptation issue. It is straightforward to observe
several significant phenomenons and conduct the intuitive
analysis. First, with respect to the average classification ac-
curacy, the integration of our DPC to SHOT/AaD surpasses
most SFDA methods by a large margin and achieves compa-
rable results with UDA works. Specifically, when conduct-
ing knowledge transfer on VisDA-C dataset, the combina-
tion of our DPC and AaD exceeds FixBi by 1.6%, which
suggests that our proposed method effectively facilitates
model to adapt target distribution even with the absence of
source images. Second, our DPC brings the additional ben-
efits to the existing SFDA algorithms to boost their model
transferability. For example, on task Ar→Cl, DPC mech-
anism assists SHOT boosting recognition accuracy about
2.1%. The success mainly results from the exploration and
feasible usage of the derived attention matrix. It directly
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Table 3. Classification accuracy of domain adaptation task on VisDA-C benchmark. The best performance for SFDA is emphasized in
bold, while the best one achieved by UDA works is highlighted with underline. AS means the access of source and target images.

Methods AS plane bike bus car horse knife mcycle person plant sktbrd train truck Avg
Resnet [10] ! 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CDAN [23] ! 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 28.0 73.9
SFAN [41] ! 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
MCC [13] ! 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR [24] ! 95.0 84.0 84.6 73 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7

SE [5] ! 95.9 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3
CAN [16] ! 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi [25] ! 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2
SFDA [41] % 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
A2Net [38] % 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
NRC [44] % 96.8 92.0 83.8 57.2 96.6 95.3 84.2 79.6 94.3 93.9 90.0 59.8 85.3

SHOT [21] % 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
AaD [45] % 96.9 90.2 85.7 82.8 97.4 96.0 89.7 83.2 96.8 94.4 90.8 49.0 87.7

SHOT+DPC % 95.6 88.2 82.8 59.4 92.5 95.7 85.6 81.7 91.6 90.9 87.6 60.1 84.3(↑1.4)
AaD+DPC % 96.5 89.3 86.5 83.2 97.4 97.3 91.8 83.7 96.4 94.8 92.1 56.2 88.8(↑1.1)

helps model to discover domain-invariant semantics by em-
phasizing discriminative and transferable regions in raw im-
ages. Third, with our DPC, SHOT and AaD obtain 1.9%
and 1.4% gain on task A→D of Office-31 benchmark. In
fact, the number of samples in D is much less than that
in A. Hence, it is difficult to capture more discriminative
contents from target images. Under this challenging situa-
tion, our DPC also provides complementary information for
them. The main reason lies in that our method depends on
attention matrix to increase diversity of visual signals.

4.3. Empirical Analysis

Effect of Calibration. When solving SFDA task, our DPC
focuses on the adjustment of input layer to advance the ex-
isting source-free methods by calibrating attention matrix
and conducting semantic filling. To provide an in-depth
analysis of how our approach achieves this outcome, we at-
tempt to draw attention map derived by target models over
the raw images. Concretely, with Ar as source domain, tar-
get images of Pr are fed into the learned models by SHOT
and SHOT+DPC. In Figure 4, the first two rows list several
samples which SHOT incorrectly identify yet SHOT+DPC
correctly recognize. For example, given “clock” picture in
the first column, SHOT fails to accurately capture the dis-
criminative regions of object to make decision, while our
DPC assists SHOT locating the specific time “12:03” to pro-
duce correct prediction. The success of this case illustrates
that our DPC effectively adjusts the distribution of attention
and intensifies domain-invariant contents in input images to
enable model to learn more useful patterns. Moreover, with
Ar as source domain, we take images of Rw as input for
models of AaD and AaD+DPC. From the last two rows of
Figure 4, the deployment of our DPC on AaD significantly

SH
O
T

SH
O
T
+D
PC

A
aD

A
aD
+D
PC

Figure 4. Comparison of attention matrix. The images of the first
two rows come from Pr and describe clock, backpack, bike and
chair. The images of the bottom two rows are sampled from Rw
and describe computer, sofa, desk lamp and glasses.

promotes the robustness of classification model. Specifi-
cally, for “desk lamp” image in the third column, AaD pays
more attention to background information instead of the in-
terested object, leading to the incorrect prediction. How-
ever, our DPC mitigates the negative influence of irrelevant
background and focuses on lamp holder.

Feature Visualization. In fact, the main challenge of model
adaptation under SFDA scenario is how to learn discrim-
inative and transferable representation by reusing source
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(a) Source Model (b) SHOT (c) SHOT + DPC
Figure 5. Visualization of feature distribution. Source (A) and target (W) images are fed into the source model and the learned network by
SHOT and SHOT+DPC to obtain their hidden representations.

60

62

64

66

68

70

72

74

Cl-Ar Pr-Ar Rw-Ar

AaD AaD+DSE

AaD+AIM AaD+Aug

ACC

Figure 6. Ablation study. To analyse effect of each module, we
gradually introduce the proposed components into AaD.

knowledge. To give insight on these properties of features,
we integrate images from A and W into the learned target
models of SHOT and SHOT+DPC to obtain their hidden
representations and visualize them in 2D-plane with t-SNE
tool in Figure 5 (b) and (c). Moreover, feature distribution
derived from source model in Figure 5 (a) is considered
as one basic reference. According to the comparison, tar-
get features per category mostly reside in a more compact
subspace and distribute closer to the corresponding source
features. It demonstrates that our DPC mechanism enables
model to learn more discriminative representation and grad-
ually eliminates distribution shift. In addition, we have one
interesting observation. Concretely, the source classifier in
SHOT is frozen, which guarantees the explicit classification
boundary among source features from various categories.
However, this boundary starts becoming vague due to the
weak optimization of classifier via Eq. (6) by using DPC.
This supplies model with more freedom to adapt target dis-
tribution and reach performance improvement.

Ablation Studies. Our DPC utilizes the combination of
“discriminative semantic enhanment” (DSE) and “atten-

tion induced mixture” (AIM) to advance the existing SFDA
methods. In order to analyse the contribution of each com-
ponent, we design three ablation references. Concretely,
AaD+DPC only integrates DSE module into the basic algo-
rithm. AaD+AIM only uses attention matrix derived from
normal GradCAM to do sample augmentation without at-
tention adjustment and directly utilizes these mixed images
to train AaD model without “semantic filling”. Different
from AaD+AIM, AaD+Aug simply blend one target image
with the other one to conduct data augmentation without
the guidance of attention matrix. As Figure 6 shows, DSE
module can produce more positive effect on performance
improvement when compared with AIM operation. This
mainly results from that the adjustment of attention matrix
detects more discriminative information from visual signals
and embeds them into high-level representation. Moreover,
the comparisons between AaD+AIM and AaD+Aug verify
that AIM avoids the conflict of multiple objects in the aug-
mented images and provides reasonable mixture.

5. Conclusion
In this paper, we propose a novel discriminative pattern
calibration (DSE) mechanism to better solve SFDA issue.
Specifically, it adjusts attention matrix to highlight discrim-
inative patterns and conduct semantic filling on high-level
features. Moreover, DPC increases sample diversity via at-
tention reverse manner to promote the robustness of classi-
fier. Experimental results and analysis on several popular
benchmarks illustrate that DPC effectively advances the ex-
isting works to achieve better knowledge transfer.
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