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Abstract

Generalized Referring Expression Segmentation (GRES)
extends the scope of classic RES to refer to multiple ob-
jects in one expression or identify the empty targets absent
in the image. GRES poses challenges in modeling the com-
plex spatial relationships of the instances in the image and
identifying non-existing referents. Multimodal Large Lan-
guage Models (MLLMs) have recently shown tremendous
progress in these complicated vision-language tasks. Con-
necting Large Language Models (LLMs) and vision models,
MLLMs are proficient in understanding contexts with visual
inputs. Among them, LISA, as a representative, adopts a
special [SEG] token to prompt a segmentation mask de-
coder, e.g., SAM, to enable MLLMs in the RES task. How-
ever, existing solutions to GRES remain unsatisfactory since
current segmentation MLLMs cannot correctly handle the
cases where users might reference multiple subjects in a
singular prompt or provide descriptions incongruent with
any image target. In this paper, we propose Generalized
Segmentation Vision Assistant (GSVA) to address this gap.
Specifically, GSVA reuses the [SEG] token to prompt the
segmentation model towards supporting multiple mask ref-
erences simultaneously and innovatively learns to gener-
ate a [REJ] token to reject the null targets explicitly. Ex-
periments validate GSVA’s efficacy in resolving the GRES
issue, marking a notable enhancement and setting a new
record on the GRES benchmark gRefCOCO dataset. GSVA
also proves effective across various classic referring seg-
mentation and comprehension tasks. Code is available at
https://github.com/LeapLabTHU/GSVA.

1. Introduction
Referring Expression Segmentation (RES) [5, 25] is an
emerging vision-language (VL) task predicting the masks of
the interested objects referred to in the language expression.
RES has great potential in many areas, especially embodied
AI [17, 28, 54, 58, 66], including VL navigation, human-
robot interaction, etc. Nevertheless, the simplification in
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Figure 1. Comparison of the segmentation masks by LISA [32]
and GSVA, facing the challenges in Generalized Referring Ex-
pression Segmentation (GRES) [38]. (a) LISA fails to segment
the correct targets when multiple targets are requested due to the
single [SEG] token restriction. GSVA successfully generates all
target masks via learning multiple [SEG] tokens. (b) When the
referent does not exist in the image, i.e., the empty target is re-
quested, LISA reluctantly produces the wrong mask because of the
compulsive [SEG] token output. In contrast, GSVA can reject the
empty targets by predicting [REJ] tokens in the output sequence.

RES formulation that one referring expression must match
an individual object in the image [30] has left a gap be-
tween current RES algorithms and real-world applications,
neglecting multiple-target and empty-target cases.

To bridge this gap, Generalized Referring Expression
Segmentation (GRES) [38] has recently been proposed to
support multiple-target and empty-target cases. Practically,
users refer to multiple subjects within a single instruction
or provide descriptions that do not correspond to any tar-
gets in the image. As an example shown in Figure 1 (a),
the left man and the second man from the right are targeted
simultaneously, while a banana is referred to in a scene of
apples in Figure 1 (b). RES takes no account of these cases,
which GRES handles. In addition to the multimodal cor-
respondences between images and text prompts in classic
RES, GRES poses new challenges in handling more com-
plicated multiple-target and empty-target cases. Therefore,
the models must handle complex spatial relationships of the
instances in the image [38] to segment the targets at various
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locations and reject the empty targets in the wrong places.
The recent blooming Multimodal Large Language Mod-

els (MLLMs) [1, 34, 39, 83, 87] meet the requirements of
GRES since they show excellency in complex reasoning [8]
and instruction following [49] with visual inputs by align-
ing the LLMs [2, 6, 48, 60–62] and Visual Foundation Mod-
els (VFMs) [15, 55, 63, 79] which are typically various Vi-
sion Transformers [14, 18, 23, 50, 51, 76, 78] to perceive
image or video inputs. To support segmentation output,
many works [74, 75, 86] link an MLLM (e.g., LLaVA [39])
and a segmentation model (e.g., SAM [31]) by prompting
the decoder with special token embeddings (e.g., [SEG] in
LISA [32]) to generate masks of the referents in the user’s
instructions. Although these models manage to handle RES,
GRES is still beyond their reach. As shown in Figure 1,
LISA fails to work well in GRES where the multiple-target
and empty-target challenges remain uncharted.

To address the above challenges, we propose General-
ized Segmentation Vision Assistant (GSVA). We attribute
the vulnerability of other segmentation MLLMs in GRES
to the single constant [SEG] token that restricts its flexibil-
ity. Therefore, we present two pivotal designs in GSVA: (1)
learning to predict multiple [SEG] tokens to segment mul-
tiple targets; (2) rejecting empty targets in referring expres-
sions by predicting [REJ] tokens. Specifically, when mul-
tiple targets are requested in the referring expression, we
place multiple weight-sharing [SEG] tokens corresponding
to the entities in the expression, encouraging the MLLM to
learn to output multiple [SEG] tokens. To distinguish each
[SEG] token and avoid ambiguity, we add the expression of
each entity in front of the corresponding [SEG] token, hint-
ing each [SEG] token to focus on the specific target, which
can be regarded as implicit In-Context Learning, and dy-
namic neural network [19]. Meanwhile, if the referents are
absent in the image, the corresponding [SEG] tokens after
the prompts are altered to [REJ] tokens to identify empty
targets. The predicted [REJ] tokens are directly assigned
with empty masks without decoded, which liberates the seg-
mentation model from seeking non-existing targets in the
image. This Benefiting from these novel designs, GSVA
takes a big step forward in addressing GRES challenges, as
shown in the second row of Figure 1.

Our contributions are summarized as follows: (1) We
propose GSVA to solve the GRES problem with MLLM by
handling the spatial relationships among targets, and study
the GRES problem systematically in the context of LLM for
the first time. (2) We propose the non-trivial shared-weight
multiple [SEG] tokens guided by each referent prompt
to address the multiple-target problem. (3) We firstly pro-
pose a clean solution, the [REJ] token, to reject the empty
targets, which can be seamlessly applied to various models.
(4) GSVA is intuitive and effective, achieving state-of-the-
art performance on the GRES benchmarks.

2. Related Works

RES and GRES. Referring Expression Segmentation
(RES) [4, 5, 25, 44] assumes that one expression matches
one existing target, and many works explore fusing image
and language [3, 16, 35, 37, 81] to segment objects under
instructions. Currently, most RES methods adopt the cross-
attention module or cross-modal alignment to bridge the
modality gap [7, 57, 73, 82, 89]. Another line of research
enables the text prompts for segmentation model with a uni-
fied decoder [31, 41, 93, 94], offering more flexible out-
puts. To break the jail for the arbitrary number of targets,
DMMI [26] focuses on the one-to-many setting where text
expression refers to varying numbers of targets.ReLA [38]
proposes the Generalized Referring Expression Segmen-
tation (GRES) task, supporting both the multi-target and
empty-target scenarios, which is our main research scope.
MLLM. Multimodal Large Language Models (MLLMs)
align the vision and language modalities by various tech-
niques, including cross-attention module [1], prompt tun-
ing tokens [87], Q-Former [9, 34], linear projection lay-
ers [39], and unified model architectures [52, 79]. Endowed
with unprecedented capabilities in reasoning with world-
knowledge and following instructions of users, MLLM
shows extraordinary performances in various vision lan-
guage tasks [43, 65]. Equipped with the segmentation de-
coders or detection heads, MLLMs can also excel in the
vision-centric tasks, such as object detection and segmenta-
tion [36, 56, 64, 80, 86]. Among them, LISA [32] makes the
most of the reasoning ability with a [SEG] token to address
the Reasoning Segmentation problem. However, LISA fails
to tackle the challenge in GRES due to the inflexible [SEG]
token, which is addressed by our proposed GSVA.
Dynamic Networks. Dynamic neural networks [19] can
adapt their architectures [20–22, 24, 27, 67–70] or param-
eters [11, 12, 53] to different inputs or switch the compu-
tation architecture in adjustment to different different time
steps [46, 47, 71, 77], in order to achieve better accuracy
and efficiency. In GSVA, the weight-sharing [SEG] tokens
adapt to multiple targets under the hint of the prepended
target prompts and dynamically reject empty targets with
an individual prediction of rejection tokens.

3. Generalized Segmentation Vision Assistant

In this section, we initiate with the introduction of the
model design of Generalized Segmentation Vision Assis-
tant (GSVA), which is followed by the analysis of some
certain limitations of LISA in Generalized Referring Seg-
mentation (GRES). Subsequently, we delve into the intro-
duction of two pivotal elements of GSVA, segmenting mul-
tiple targets and learning the rejection token. These com-
ponents are fundamental in the conceptualization and con-
struction of GSVA.
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Figure 2. Overview of GSVA. At the bottom of the figure, the MLLM encodes the input image and concatenates the tokenized text tokens
to follow instructions. GSVA generates multiple [SEG] tokens to handle multiple referred targets and rejects the objects absent in the image
through [REJ] tokens. At the top of the figure, the SFM also encodes the image for segmentation and selects all [SEG] tokens in the output
sequence to prompt the mask decoder to segment the target objects referred to in the instructions.

3.1. Model Architecture

The architecture of GSVA is illustrated in Figure 2, resem-
bling LISA [32], which enables high-fidelity segmentation
outputs by integrating two types of foundation models: (1)
Multimodal Large Language Model (MLLM) as an aligned
vision-language cognitive module; (2) Segmentation Foun-
dation Model (SFM) to segment the target out of the input
image based on user’s instruction. To connect these two
modules, LISA proposes a paradigm named embedding as
mask where an extra [SEG] token is appended to the vocab-
ularies of the MLLM and serves as the prompt of the SFM
to segment the target following the intention of the user.
Multimodal Large Language Model. The MLLM con-
sists of a decoder-based language model FLLM to auto-
regressively generate text responses following the user’s in-
puts, a vision encoder FV1 to extract features from the input
image, and a linear projector ϕ to align the representations
between image and text modalities. Specifically, the pre-
trained LLaVA [39] variants with CLIP-ViT-L/14 [55] and
Vicuna-7B/13B [6] are employed. Given an input image
ximg, the vision encoder FV1 first encodes it into image fea-
tures, and then the projector ϕ maps the features into the
visual token embeddings in the LLM input space:

himg = ϕ(FV1(ximg)), (1)

where the input image ximg is typically resized to h×
w×3, and the image tokens himg ∈ Rnimg×d is aligned with
the language modality. For CLIP-ViT-L/14, the input image
with h = w = 224 is encoded with ViT of patch size in
14, therefore the length of tokens nimg = hw/142 = 256,
and the LLM dimensions d are 4096 and 5120 for Vicuna-

7B/13B, respectively. Along with the input image, the text
instructions describing the targets to segment are tokenized
into text tokens by the LLM tokenizer T :

htxt = T (xtxt). (2)

The image tokens and text tokens are concatenated to-
gether and then fed into the LLM after prepending a se-
quence of fixed prompt tokens hprompt (omitted in the fig-
ure). The output token embeddings ỹtxt are generated auto-
regressively:

ỹtxt = FLLM ([hprompt||himg||htxt]) , (3)

where || is concatenation operation. The text responses
are obtained from ỹtxt by applying a linear classifier to pre-
dict the next words in the vocabulary.

In LISA, a special token [SEG] is appended in the vo-
cabulary to activate the segmentation ability of MLLM. The
model learns to predict [SEG] token in the output sequence
to indicate there is a target to segment. LISA then selects
the output embedding of the [SEG] token ỹtxt[SEG], and
projects it into the prompt space of the SFM by an MLP
projector ψ:

hseg = ψ (ỹtxt[SEG]) . (4)

The segmentation model is hence ready to decode the
target mask from the query token hseg.
Segmentation Foundation Model. The SFM is a query-
based segmentation model, where a frozen vision encoder
FV2 takes in images of higher resolution than the vision en-
coder in MLLM to keep more details, followed by a train-
able mask decoder Fmask to decode masks from the queries.
The pretrained SAM [31] with ViT-H backbone is instanti-
ated as the SFM to produce high-quality masks. The given
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input image ximg is resized to a larger resolution H×W×3,
with H =W = 1024 and encoded with FV2 to extract fea-
tures fseg for segmentation:

fseg = FV2(ximg). (5)

Condition on the features fseg ∈ RH
16×

W
16×C with C=256

for SAM, the mask decoder Fmask decodes the segmentation
masks from the segmentation queries hseg ∈ RNseg×C :

ỹmask = Fmask(hseg|fseg), (6)

where each query in hseg corresponds to one segmenta-
tion mask in ỹmask.

LISA assumes that only one target exists to segment in
the input image and its corresponding instructions. How-
ever, in GSVA, we extend it to a new scenario with multiple
targets and empty targets, including multiple [SEG] tokens
to invoke segmentation and [REJ] tokens to reject unrea-
sonable instructed targets absent in the image. As shown
in Figure 2, GSVA supports multiple [SEG]/[REJ] tokens
in the output sequence and selects all the [SEG] tokens and
discards every [REJ] token after attaining ỹtxt in Eq. (3).
Therefore, there is more than one query in hseg, thus en-
abling the SFM to segment multiple targets. These designs
make GSVA competent in the GRES task, where the aware-
ness of multiple and empty targets is of vital importance.

3.2. GRES: Task and Challenges

Task. Generalized Referring Expression Segmentation
(GRES) [38] removes the constraint on the number of re-
ferred targets in the expression in the conventional Refer-
ring Expression Segmentation (RES) [30, 44, 84]. Differ-
ent from that one expression only refers to one instance or
region in RES, GRES allows arbitrary numbers of referred
targets, including multiple instances or no target circum-
stances. In GRES, the user can refer to many instances si-
multaneously or include the objects that do not exist in the
image. For instance, there are three referring expressions in
Figure 2, including a plate of broccoli and a spoon in the
bowl of sauce, vase bottom left corner, and soup in bowl
right and bowl bottom left corner. In the GRES case, the
model ought to segment the masks of the objects referred
to in the 1st and 3rd expression, meanwhile producing an
empty mask for the 2nd expressions since there are no vases
present at the bottom left corner.
Challenges. The challenges in GRES are common in prac-
tice, especially in embodied AI [17, 54, 58, 66]. The one
challenge is multiple targets. Take robot navigation and
planning [4, 45, 66] as an example, a robot may be asked to
perceive multiple targets in the surrounding environment,
e.g., to bring the two bowls of soup in Figure 2. The vision
system of the robot needs to locate and segment the con-
tainers holding the referred food one at a time. The other
challenge is empty target. Suppose the robot is ordered to
cut an apple with a knife in the scene of Figure 2, whereas

no apple is in the view of the camera, the vision system has
to identify that the referred object is not in the scene. If
it relies on some conventional RES methods which assume
the expression must match something in the image, the out-
put of the vision system could be undefined and potentially
dangerous in some real-world cases.
Differences from ReasonSeg. Reasoning Segmentation
(ReasonSeg) proposed by LISA [32] emphasizes the com-
plex text instructions in RES. In ReasonSeg, the instructions
are more implicit and sophisticated, forcing models to rea-
son using world knowledge. Besides, the logic chain is usu-
ally longer and more challenging in ReasonSeg, which re-
quires the model to deduce the final target object referred to
in the image. In contrast, GRES increases complexity in an-
other dimension by involving complicated spatial relation-
ships. Hence, the model has to learn to handle this spatial
information and understand the relationships between the
instances. To meet these requirements, LISA tunes MLLMs
with complex instructions paired with masks, while GSVA
arouses the spatial modeling capabilities of MLLMs by
learning multiple targets and rejecting empty targets.

3.3. Multiple [SEG] Tokens for Multiple Targets

Single [SEG] token. LISA [32] follows the classic RES
methods to generate a segmentation mask under given in-
structions by adding the [SEG] token into the answer. The
prompt is formatted as:

User: What is {obj} in this image? Please output segmenta-
tion mask. Assistant: Sure, it is [SEG].

In the above prompt, {obj} represents an instance referred
to or some semantic area to segment, and the embeddings
of the [SEG] token output from the LLM are projected to
prompt the SFM. When multiple instances are requested si-
multaneously, this prompt would confuse the model since
only one [SEG] token is forced to match several targets. As
shown in Figure 1 (a), LISA coercively predicts the masks
of the left man and the guy second from the right, leading
to a tattered mask and masking the wrong location.
Multiple [SEG] tokens. To mitigate this issue in GRES,
we relax this constraint for GSVA to support multiple target
outputs via learning multiple [SEG] tokens. To avoid the
ambiguity between the [SEG] tokens and the corresponding
objects, we prepend the referring expression before each
[SEG] token, i.e., each segmentation prompt in the output
text is {obj n}:[SEG], as shown in Figure 3 (a). Streaming
all the pairs of object and [SEG] token into one sentence, the
question-answer prompt is formatted as (e.g., two targets):

User: What are {obj1}, {obj2} in this image? Please output
the segmentation masks.
Assistant: Sure, {obj1}:[SEG], {obj2}:[SEG].

This prompt requests the MLLM to identify and distin-
guish different objects in the image based on the instruc-
tions and infuse the corresponding location information
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User:
What are front zebra, right zebra
in this image? Please output
segmentation masks.

Assistant: 
Sure, front zebra:[SEG], right
zebra:[SEG].

Assistant: 
Sure, the apple in the bowl:
[REJ], partial orange bottom
left:[SEG].

User: 
What are the apple in the bowl,
partial orange bottom left in this
image? Please output
segmentation masks. 

(a) Multiple Targets (b) Empty Target

Figure 3. Example of the prompts and predicted masks of GSVA-
Vicuna-7B drawn from gRefCOCO validation set. (a) depicts the
multiple-target case, in which two zebras referred to are handled
with two separate [SEG] tokens. (b) shows the empty-target case,
where no apple is in the bowl. Thus, the null referent is rejected
with a [REJ] token, and no segmentation mask will be generated.

of each target into the associated [SEG] token. We re-
gard this ability as an implicit multimodal version of In-
Context Learning (ICL), which is demonstrated by many
prior works [2, 13, 33, 59, 90]. GSVA takes the target de-
scription preceding each [SEG] token as a hint to link this
token to the object requested in the image through auto-
regressive decoding.

3.4. Rejecting Empty Targets via [REJ] Tokens

Empty targets. In GRES, many expressions match no tar-
gets in the image, including absence, incorrect attributes, in-
accurate locations, etc. These expressions should be treated
as empty targets for models to predict all-negative masks.
LISA [32] falls short of predicting masks with all-zeros
seamlessly since the [SEG] token always calls for a segmen-
tation mask. As shown in Figure 1 (b), LISA incorrectly
marks a piece of green apple as the empty target banana.
[REJ] token. We let the MLLM of GSVA predict a [REJ]
token for each object that does not exist in the image but
is referred to in the instructions, as shown in Figure 3 (b).
GSVA predicts the targets marked with [REJ] tokens as
empty targets, therefore setting all-zero masks for them.
The involvement of [REJ] tokens directly rejects the empty
target, liberating the mask decoder of the SFM from learn-
ing to segment the inexistent targets. An example prompt
with one existing target and one empty target is as follows:

User: What are {obj1} (absent), {obj2} (absent), {obj3} in
this image? Please output the segmentation masks.
Assistant: Sure, {obj1}:[REJ], {obj2}:[REJ], {obj3}:[SEG].

The [REJ] token prediction can also be seen as a variant

of VQA task, where the specified object and its position
in the image need to be considered. Thanks to the un-
precedented capabilities of MLLM in understanding the im-
ages [9, 34, 39, 92] and reasoning the spatial relationships
of the referring objects [52, 88, 91], we make the most of the
MLLM in GSVA to unleash the burden of the segmentation
model. The proposed empty-target-aware mechanism both
improves the quality of masks and ameliorates the errors of
identifying nonexistent objects.

4. Experiments
In this section, we conduct comprehensive experiments to
validate the efficacy of GSVA. First, we show the results on
gRefCOCO [38] dataset to show the superiority of GSVA
in GRES tasks. Then we verify GSVA that is also compe-
tent with other baselines in classic RES, REC tasks. We
move on to ablate some important design choices of GSVA,
followed by some qualitative visualization of GRES results.

4.1. GRES

Settings. We adopt gRefCOCO [38] dataset to vali-
date GSVA and LISA [32] on GRES, which contains
278,232 expressions, including 80,022 multi-target and
32,202 empty-target ones, referring to the objects in 19,994
images. The images are split into four subsets: training, val-
idation, test-A, and test-B, following the same UNC parti-
tion of RefCOCO [84]. We first add the gRefCOCO training
set into the mixed training dataset in LISA to pretrain GSVA
and LISA for 50,000 steps and then finetune the models on
the gRefCOCO training dataset for another 10 epochs. We
evaluate the pretrained and finetuned models on the remain-
ing validation set, test set A, and test set B, respectively. We
adopt the gIoU, cIoU metrics for the segmentation mask
outputs. Following the implementation in Liu et al. [38],
gIoU averages the IoU for each mask, whereas cIoU com-
putes the cumulative intersection area over the cumulative
union area across the whole dataset. As for the empty tar-
get, we compute the No-target-accuracy (N-acc.), which is
the ratio of the correctly classified empty-target expressions
over all the empty-target expressions in the dataset. For
a correctly classified empty target, the gIoU is set to 1.0,
and the cIoU does not take them into account, while for a
misclassified empty target, the gIoU is set to 0.0 and the
union area is accumulated in the cIoU. Following the crite-
ria in Liu et al. [38], a predicted mask is regarded as empty
for LISA if the positive pixels are less than 50, whereas
GSVA predicts [REJ] tokens to identify empty targets.
Results. We report the GRES segmentation results of
GSVA and LISA [32] in Table 1. Three variants of
GSVA, including GSVA-Vicuna-7B, GSVA-Vicuna-13B,
and GSVA-Llama2-13B show competitive performance
without finetuning on gIoU to the strongest non-LLM base-
line ReLA [38]. However, LISA models fail to handle the
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Generalized Referring Expression Segmentation on gRefCOCO

Method Validation Set Test Set A Test Set B
gIoU cIoU N-acc. gIoU cIoU N-acc. gIoU cIoU N-acc.

MattNet [85] 48.24 47.51 41.15 59.30 58.66 44.04 46.14 45.33 41.32
LTS [29] 52.70 52.30 - 62.64 61.87 - 50.42 49.96 -
VLT [10] 52.00 52.51 47.17 63.20 62.19 48.74 50.88 50.52 47.82
CRIS [72] 56.27 55.34 - 63.42 63.82 - 51.79 51.04 -
LAVT [81] 58.40 57.64 49.32 65.90 65.32 49.25 55.83 55.04 48.46
ReLA [38] 63.60 62.42 56.37 70.03 69.26 59.02 61.02 59.88 58.40

LISA-Vicuna-7B [32] 32.21 38.72 2.71 48.54 52.55 6.37 39.65 44.79 5.00
GSVA-Vicuna-7B 63.32 61.70 56.45 70.11 69.23 63.50 61.34 60.26 58.42
LISA-Vicuna-7B [32] (ft) 61.63 61.76 54.67 66.27 68.50 50.01 58.84 60.63 51.91
GSVA-Vicuna-7B (ft) 66.47 63.29 62.43 71.08 69.93 65.31 62.23 60.47 60.56

LISA-Vicuna-13B [32] 32.73 39.85 3.66 48.76 53.62 4.89 39.49 45.35 4.41
GSVA-Vicuna-13B 62.97 60.18 58.44 67.17 67.59 54.60 58.06 57.28 52.22
LISA-Vicuna-13B [32] (ft) 63.45 62.99 55.25 68.18 69.65 52.16 61.84 62.24 56.15
GSVA-Vicuna-13B (ft) 68.01 64.05 65.36 71.75 70.51 67.25 63.83 61.28 63.11

LISA-Llama2-13B [32] 33.26 39.64 3.27 49.76 53.80 7.28 40.49 45.41 5.73
GSVA-Llama2-13B 63.20 62.38 54.51 69.52 69.86 57.84 62.06 60.77 58.30
LISA-Llama2-13B [32] (ft) 65.24 63.96 57.49 69.99 71.00 55.43 62.11 62.29 56.34
GSVA-Llama2-13B (ft) 70.04 66.38 66.02 73.29 72.79 64.72 65.45 63.20 62.47

Table 1. Generalized referring expression segmentation (GRES) results on gRefCOCO [38] dataset. gIoU and cIoU are IoU metrics
averaged by each example and accumulated over whole dataset, respectively. N-acc. is short for the accuracy of correctly classifying null
targets. Baselines are copied from Liu et al. [38]. (ft) denotes the model is finetuned on the training set of gRefCOCO.

GRES task without finetuning, showing degradation in both
gIoU and cIoU in each model variant. Especially the low
N-acc indicates that LISA is unable to correctly reject the
empty targets. When finetuned on gRefCOCO training set,
GSVA-Vicuna-7B performs better than the finetuned LISA
counterpart, with about 4% improvement in gIoU and over
5% in N-acc on all three evaluation splits. GSVA vari-
ants with larger LLM incorporated further push the limits,
achieving over 70% in gIoU on the validation set, 73% on
test set A, and 65% on test set B. The 13B models also con-
sistently outperform LISA by large margins, demonstrating
the superiority of GSVA in GRES task.

4.2. Referring Expression Segmentation

Settings. To validate the abilities to handle various tasks,
we evaluate GSVA in the classic RES task. Following the
common evaluation protocols, we test variants of GSVA and
LISA equipped with different LLMs on RefCOCO, Ref-
COCO+ [30], and RefCOCOg [44]. We follow the UNC
split to perform experiments on RefCOCO and RefCOCO+,
and UMD split for RefCOCOg. The models are firstly pre-
trained as in GRES, and then finetuned for 10 epochs with
a joint dataset of these three RES training set. The cIoU
metric is adopted to measure the model performances.
Results. Table 2 shows the RES results of GSVA. For the
pretrained models, all the three variants of GSVA achieve
higher cIoU than LISA [32] by clear margins. Our 7B
model outperforms LISA-Vicuna about 2% cIoU on almost
every data split. After finetuning, the preponderance of
GSVA over LISA keeps and even enlarges. Specifically,

the cIoU metrics of GSVA-Llama2-13B on 8 sets surpass
LISA by at least 2.8%. For the test set of RefCOCOg, the
margin even grows to 5.9%, which exhibits GSVA is also
competitive in the classic RES task.

4.3. Referring Expression Comprehension

Settings. Since GSVA is capable for RES tasks, it is nat-
ural to transfer to Referring Expression Comprehension
(REC) tasks, by simply computing the bounding boxes of
the masks. The datasets of REC are the same as RES, in
which we evaluate GSVA. If the IoU of a predicted bound-
ing box and the ground truth is greater than 0.5, this predic-
tion is marked as correct. We use the same models in RES
to evaluate the phrase grounding capability in REC tasks.

Results. As shown in Table 3, we mainly compare our
GSVA to LISA in the three variants. Without finetuning,
GSVA-Vicuna-7B outperforms LISA with a large margin
over 7% in almost all evaluation sets. The similar trends
also hold for the Vicuna-13B and Llama2-13B variants.
GSVA also benefits a lot from finetuning, e.g., the 7B vari-
ant achieves consistently higher Prec@0.5 than uLLaVA-
7B [80] with LoRA finetuning, which is another strong
baseline that adopts the “mask2bbox” pipelines without
direct bounding box supervision. The finetuned GSVA
also shows competitive performances to the fully finetuned
uLLaVA-7B, suggesting the strong potential of our method.
With larger LLMs incorporated, the performances of GSVA
continue with over 3% increments over all datasets.
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Referring Expression Segmentation on RefCOCO, RefCOCO+, and RefCOCOg

Method RefCOCO (UNC) RefCOCO+ (UNC) RefCOCOg (UMD)
Val. Test-A Test-B Val. Test-A Test-B Val. Test

MCN [42] 62.4 64.2 59.7 50.6 55.0 44.7 49.2 49.4
VLT [10] 67.5 70.5 65.2 56.3 61.0 50.1 55.0 57.7
CRIS [72] 70.5 73.2 66.1 62.3 68.1 53.7 59.9 60.4
LAVT [81] 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
ReLA [38] 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0
X-Decoder [93] - - - - - - 64.6 -
SEEM [94] - - - - - - 65.7 -
PolyFormer-L [40] 76.0 78.3 73.3 69.3 74.6 61.9 69.2 70.2
LISA-Vicuna-7B∗ [32] 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5
GSVA-Vicuna-7B 76.4 77.4 72.8 64.5 67.7 58.6 71.1 72.0
LISA-Vicuna-7B∗ [32] (ft) 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
GSVA-Vicuna-7B (ft) 77.2 78.9 73.5 65.9 69.6 59.8 72.7 73.3

LISA-Vicuna-13B [32] 71.7 74.7 68.1 59.4 64.2 52.9 65.2 66.1
GSVA-Vicuna-13B 74.6 77.5 70.5 62.5 66.5 55.5 69.6 71.2
LISA-Vicuna-13B [32] (ft) 76.0 78.8 72.9 65.0 70.2 58.1 69.5 70.5
GSVA-Vicuna-13B (ft) 78.2 80.4 74.2 67.4 71.5 60.9 74.2 75.6

LISA-Llama2-13B [32] 73.4 76.2 69.5 62.3 66.6 56.3 68.2 68.5
GSVA-Llama2-13B 77.7 79.9 74.2 68.0 71.5 61.5 73.2 73.9
LISA-Llama2-13B [32] (ft) 76.3 78.7 72.4 66.2 71.0 59.3 70.1 71.1
GSVA-Llama2-13B (ft) 79.2 81.7 77.1 70.3 73.8 63.6 75.7 77.0

Table 2. Referring expression segmentation results on RefCOCO, RefCOCO+ [30] and RefCOCOg [44] dataset. The cIoU metrics of each
split are reported. Baselines are excerpted from Lai et al. [32]. (ft) denotes the models are finetuned on the joint training set of the referring
expression segmentation datasets. * means the results are excerpted from the original paper.

Referring Expression Comprehension on RefCOCO, RefCOCO+, and RefCOCOg

Method RefCOCO RefCOCO+ RefCOCOg
Val. Test-A Test-B Val. Test-A Test-B Val. Test

u-LLaVA-7B [80] (LoRA) 83.47 87.13 80.21 68.74 76.32 60.98 76.19 78.24
u-LLaVA-7B [80] (full-ft) 86.04 89.47 82.26 74.09 81.16 66.61 79.87 81.68
LISA-Vicuna-7B [32] 78.68 81.72 75.74 62.92 68.93 56.49 70.10 72.47
GSVA-Vicuna-7B 85.50 88.01 82.49 70.21 75.62 65.11 79.00 79.21
LISA-Vicuna-7B [32] (ft) 85.39 88.84 82.59 74.23 79.46 68.40 79.34 80.42
GSVA-Vicuna-7B (ft) 86.27 89.22 83.77 72.81 78.78 68.01 81.58 81.83

LISA-Vicuna-13B [32] 80.01 83.26 76.26 63.77 70.24 57.42 71.79 73.34
GSVA-Vicuna-13B 83.12 87.01 80.54 68.14 73.90 62.00 77.08 78.89
LISA-Vicuna-13B [32] (ft) 85.92 89.05 83.16 74.86 81.08 68.87 80.09 81.48
GSVA-Vicuna-13B (ft) 87.71 90.49 84.57 76.52 81.69 70.35 83.90 84.85

LISA-Llama2-13B [32] 82.52 85.56 78.82 67.91 73.77 62.25 75.37 76.83
GSVA-Llama2-13B 86.99 89.54 84.08 73.89 79.10 69.38 80.68 82.07
LISA-Llama2-13B [32] (ft) 85.91 88.84 81.73 74.46 80.56 68.26 80.09 81.27
GSVA-Llama2-13B (ft) 89.16 92.08 87.17 79.74 84.45 73.41 85.47 86.18

Table 3. Referring expression comprehension results on RefCOCO, RefCOCO+ [30] and RefCOCOg [44] dataset. The metric is precision
@ 0.5 IoU threshold. (LoRA) means the LLM in u-LLaVA [80] is finetuned with LoRA adapter, as LISA and GSVA, while (full-ft)
represents the LLM in u-LLaVA is fully trained. Results of u-LLaVA-7B with “mask2bbox” strategy are reported for fair comparison.

4.4. Ablation Study

The involvement of the [REJ] token. [REJ] token plays
a rather important role in GSVA. We study the effect of the
[REJ] token by removing it from the vocabulary in GSVA,
yielding a variant unable to reject a target from the text out-
puts. As shown in the 2nd row of Table 4, after removing
[REJ] token, there is a sharp N-acc drop over 25% rela-
tively, followed by the decline of gIoU at about 10% on
gRefCOCO validation set. This performance degradation

indicates the significance of LLM learning a special token
to reject the referred instances absent in the image.
Learning multiple [SEG] tokens. We continue to ab-
late the multiple [SEG] tokens, which is another core de-
sign of GSVA. After removing [REJ] token, we then re-
duce the number of [SEG] tokens to 1, which is identical
to LISA [32] with the referring expression added before
the only one [SEG] token: Assistant: Sure, {obj}:[SEG].. In
the early experiments, we have found that stacking multiple
expressions before one [SEG] token would result in diver-
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Elephant in back, Left elephant 

(a) Multiple Target Cases 

Kid on left in blue,  Boy on right, 
Blond boy on right, Girl back left pink

Tan vase, Bottom vase, 
Right vase

(b) Empty Target Cases 

Lady on left Teddy with X eye The dog on the suitcase

Reject Empty Target Reject Empty Target Reject Empty Target

Figure 4. Visualizations of GSVA and LISA [32] in the GRES task. The first row shows LISA’s segmentation results, the second row is
the masks and rejections of GSVA, and the third row shows the referring expressions in the instructions. In (a) multiple target cases, each
target is colored with a specific color. In (b) empty target cases, the images turn darker to highlight the incorrect predictions of LISA. The
examples are selected from the gRefCOCO validation set. The masks are generated by the 7B models. Zoom in for the best view.

Model w/
Vicuna-7B

Modifications gRefCOCO Val.
RefExp.
+[SEG]

Multiple
[SEG]

[REJ]
Token gIoU cIoU N-acc.

GSVA ✓ ✓ ✓ 63.32 61.70 56.45
✓ ✓ ✗ 51.57 60.95 30.32
✓ ✗ ✗ 44.86 59.37 11.96

LISA [32] ✗ ✗ ✗ 32.21 38.72 2.71

✗ ✓ ✓ 21.83 27.22 0.00

Table 4. Ablation study on the core designs of GSVA. ✓ means
the employment of the component while ✗ means not. “Ref-
Exp.+[SEG]”, “Multiple [SEG]”, and “[REJ] Token” are short for
adding referring expression before [SEG] in the answer prompt,
using multiple [SEG] tokens, involving [REJ] token, respectively.

gence. Therefore we separate multiple targets to prompt the
model with one expression at a time. The sharp decrements
of gIoU by nearly 7% and N-acc by over 15% in the 3rd row
demonstrate the significance of the multiple-[SEG]-token.
Answers without referring expression. To examine the
efficacy of the hinting prompts, we remove all the refer-
ring expressions before the [SEG] tokens. Based on the re-
moval of multiple [SEG]s and [REJ]s, erasing the added re-
ferring expression falls back to the original LISA model,
as shown in the 4th row. We further choose only to re-
move it from GSVA model, keeping other configurations
unchanged. Specifically, if there are two referents, the
prompts in the answer will turn to Assistant: Sure, [SEG],
[SEG]., whose results are in the last row. The zero N-acc
shows the model fails to identify any empty target without
the help of the expressions, meanwhile the poor gIoU and
cIoU indicates the segmentation ability is damaged. This
phenomenon also suggests that the added referring expres-
sion hint GSVA to associate each [SEG] token to its corre-
sponding target, which is in coherence with our hypothesis.

4.5. Visualization

We visualize some qualitative results of GSVA to verify its
effectiveness. As shown in Figure 4, we present two groups

of examples from the validation set of gRefCOCO [38] to
see how GSVA outperforms LISA in the face of the two
main challenges in GRES: multiple targets and empty tar-
gets. In part (a), GSVA has managed to segment all the
targets referred to, while LISA could only segment one of
the requested instances. For example, in the third column,
LISA only predicts the mask of the rightmost vase. On
the contrary, GSVA separately segments all three targeted
vases. In part (b), LISA mistakenly segments the instances
in the image that disagree with the referring expression, e.g.,
in the sixth column, LISA proposes a mask of a cat in re-
sponse to the request of the dog on the suitcase, whereas
GSVA successfully reject all the empty targets.

5. Conclusion

This paper introduces a novel multimodal large language
model dubbed Generalized Segmentation Vision Assis-
tant (GSVA). By introducing multiple [SEG] tokens and
the new [REJ] token, GSVA effectively achieves multi-
objective segmentation and empty target rejection, which
addresses the challenging segmentation problems in prac-
tical application scenarios, e.g., Generalized Referring Ex-
pression Segmentation (GRES). Extensive experiments on
GRES, classic RES, and REC tasks fully demonstrate the
superior performance of our method, highlighting its sig-
nificance for future research and applications.
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