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Abstract

Current sparsely-supervised object detection methods
largely depend on high threshold settings to derive high-
quality pseudo labels from detector predictions. How-
ever, hard instances within point clouds frequently dis-
play incomplete structures, causing decreased confidence
scores in their assigned pseudo-labels. Previous meth-
ods inevitably result in inadequate positive supervision for
these instances. To address this problem, we propose a
novel Hard INsTance Enhanced Detector (HINTED), for
sparsely-supervised 3D object detection. Firstly, we design
a self-boosting teacher (SBT) model to generate more po-
tential pseudo-labels, enhancing the effectiveness of infor-
mation transfer. Then, we introduce a mixed-density stu-
dent (MDS) model to concentrate on hard instances during
the training phase, thereby improving detection accuracy.
Our extensive experiments on the KITTI dataset validate
our method’s superior performance. Compared with lead-
ing sparsely-supervised methods, HINTED significantly im-
proves the detection performance on hard instances, no-
tably outperforming fully-supervised methods in detecting
challenging categories like cyclists. HINTED also sig-
nificantly outperforms the state-of-the-art semi-supervised
method on challenging categories. The code is available at
https://github.com/xmuqimingxia/HINTED.

1. Introduction
In autonomous driving scenarios, the significant success in
3D object detection tasks relies heavily on accurate anno-
tation information [1, 6, 10, 15, 28, 29]. However, ac-
quiring high-quality annotation data leads to a substantial
cost, especially when dealing with large-scale outdoor sce-
narios. As an effective strategy for reducing annotation
costs, sparsely-supervised learning has gained widespread
attention. The sparsely-supervision setting involves select-
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Figure 1. Comparison of sparsely-supervised 3D object detec-
tion methods. The current sparsely-supervised 3D object detection
methods [12, 30] heavily rely on high-quality pseudo-labels gen-
erated by high thresholds for self-training, which inevitably re-
sults in a lack of positive supervision signals for hard instances.
We propose HINTED, which introduces a teacher-student frame-
work for sparse supervision settings. More specifically, the self-
boosting teacher (SBT) generates more potential pseudo-labels,
and the mixed-density student (MDS) incorporates different fea-
ture representations to perceive predictions of simulated hard in-
stances. HINTED encourages consistent detection performance
across different density representations within the same scene.

ing only a subset from the entire training dataset for partial
annotation, where “partial annotation” means labeling only
one instance per frame.

As shown in Figure 1, the current mainstream sparsely-
supervised 3D object detection methods [12, 30] primar-
ily adopt self-training strategy, using pre-training detector
mining unlabeled instance. Especially, SS3D [12] gener-
ates high-quality pseudo-labels from predictions with high
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score thresholds. This operation can make the later self-
training more reliable. CoIn++ [30] employs the Test-Time
Augmentation (TTA) strategy to get more accurate pseudo-
labels. These methods achieve good performance for easy
objects in sparsely-supervised settings. However, hard ob-
jects often have lower scores, leading to the missing of
many positive predictions.

It is worth noting that the detection of hard objects has
also gained attention in recent fully supervised 3D object
detection methods. FocalFormer3D [3] continually masks
out easy samples during the network training process, in-
creasing the training focus on hard samples to enhance its
ability to detect hard instances. SST [5] and FSD [6] main-
tain the original resolution to ensure that information about
hard objects is not lost. These fully supervised methods
enable the network to focus on training hard objects based
on the ground-truth locations. However, sparse supervision
lacks full annotation; these methods cannot be directly ap-
plied to sparse supervision strategies.

In the situation where many scenes are unlabeled, an in-
tuitive solution is the teacher-student network commonly
used in semi-supervised methods. DetMatch [19] produces
more accurate pseudo-labels by aligning 2D and 3D de-
tections from two modalities. HSS3D [13] uses hierarchi-
cal supervision to retain some of the low-score promising
pseudo-labels in the teacher model’s output. These teacher-
student frameworks have succeeded in efficiently mining
pseudo-labels from unlabeled scenes [14, 23, 24]. How-
ever, the abundance of unlabeled instances within sparsely
labeled scenes, as indicated by [12], hampers efficient
information transfer, impeding the direct application of
the teacher-student framework in sparsely-supervised 3D
object detection. Despite this, teacher-student networks
still provide a new perspective for solving the problem of
sparsely labeled 3D object detection.

Based on the above methods, we propose to enhance the
information transfer efficiency of teacher-student networks
for sparsely labeled scenes and pay more attention to hard
instances during the training process. Specifically, our ap-
proach mainly comprises two components: (1) a novel self-
boosting teacher (SBT); and (2) a mixed-density student
(MDS). Unlike traditional teacher-student networks, our
proposed SBT network can continuously update pseudo-
labels for sparsely labeled frames, thereby avoiding the
provision of incorrect supervision from sparsely labeled
frames. Furthermore, we observed that hard instances are
primarily distributed in distant, sparse point cloud scenes.
To increase the attention to hard instances during train-
ing, MDS encourages attention to the consistent prediction
of mixed-density features to enhance the detection perfor-
mance of hard instances.

In summary, our contributions are three-fold:
• We design a novel self-boosting teacher (SBT), which

addresses the issue of traditional teacher networks strug-
gling to transfer information from sparsely labeled scenes
effectively.

• We introduced a mixed-density student, which encour-
ages consistent prediction of mixed-density features,
thereby increasing the performance of hard instances.

• Our method has achieved a state-of-the-art performance
under a sparsely-supervision setting, particularly in sig-
nificantly improving detection results for hard instances,
with a 32% improvement for pedestrians and a 25% im-
provement for cyclists.

2. Related Work
2.1. Sparsely-supervised 3D object detection

Recently, sparsely-supervised 3D object detection has at-
tracted increasing attention due to the low cost of bound-
ing box annotations. Unlike fully-supervised 3D object de-
tection, sparsely-supervised 3D object detection only re-
quires a sparse number of precise annotations. Therefore,
sparse supervision requires the generation of pseudo la-
bels to assist the detector in further training. For exam-
ple, SS3D [12] utilized missing-annotated instance min-
ing and background mining to obtain pseudo-labels. Simi-
larly, CoIn [30] conducts contrastive instance feature min-
ing to generate feature-level pseudo-labels. Furthermore,
CoIn++ [30], which is obtained by combining CoIn with a
self-training framework, achieves performance comparable
to fully-supervised methods.

However, exciting methods are based on high-threshold
filtering algorithms, leading to the lack of positive supervi-
sion information, which is not conducive to detecting hard
instances. In this work, we aim to improve the perfor-
mance of the detector on hard objects, making the sparsely-
supervised 3D object detection algorithm more mature.

2.2. Weakly/semi-supervised 3D object detection

In addition, the weakly/semi-supervised setting also ex-
plores the research of object detection algorithms under low
annotation cost. Unlike sparse supervision, the weakly-
supervised methods [17, 26, 35] use weak annotation in-
stead of 3D box annotation to reduce annotation costs.
However, this strategy still requires a large number of
instance-level annotations. In the semi-supervised set-
ting, all instances in the labeled frames are annotated,
and training often adopts student-teacher networks to mine
pseudo-labels from unlabeled frames. Pioneering works
like SESS [36] and 3DIoUMatch [24] first introduced semi-
supervised learning to 3D object detection. SESS proposes
a triple consistency regularization approach to refine 3D
proposals, while 3DIoUMatch designs a filtering strategy
for high-quality pseudo-labels and eliminates duplicates via
an IoU estimation branch. Subsequent efforts aim to further
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improve pseudo-label quality without simply thresholding.
[34] directly optimizes the pseudo-label fidelity over itera-
tions of re-training. DetMatch [19] enforces multi-modal
consistency across views to correct pseudo-labels. Most
recently, HSSDA [13] takes a hierarchical supervision ap-
proach to mine missing objects and introduces a shuffle
data augmentation. However, due to the different experi-
mental settings, the weakly labeled frames in sparse super-
vision limit the effectiveness of information transmission
between the teacher-student network. Therefore, it is chal-
lenging to directly introduce the teacher-student network to
the sparsely-supervised 3D object detection.

2.3. Hard instance probing in 3D object detection

With the in-depth research of 3D object detection meth-
ods [2, 22, 25, 27, 31, 33, 37], more work is focusing on
detecting hard instances. One direct approach is to ad-
just the network architecture to pay more attention to hard
objects. SST [5] adopts sparse region attention to avoid
down-sampling small objects, while FSD [6] further identi-
fies sparse instances for long-range detection. Another line
of work uses multi-stage networks to progressively refine
bounding boxes and optimize hard instance mining. [3]
proposes a module specialized for hard instance probing on
top of a multi-stage framework. The methods above are
all based on fully supervised strategies. With supervision
from ground truth annotation information, algorithms can
easily locate the positions of hard instances during training.
Nevertheless, these strategies are not friendly to sparsely-
supervised 3D object detection.

Overall, the study of hard instances is an active area in
3D object detection, and there has been significant progress
in fully supervised 3D object detection. It is also impor-
tant to explore the detection of hard instances in a sparsely-
supervised setting.

3. Method

3.1. Preliminary

Problem definition. We start by introducing the defi-
nition of sparsely-supervised 3D object detection. Spe-
cially, the detector is trained with a sparsely labeled scene
set Dl =

{
(P s

i , Y
s
i ) |N

l

i=1

}
and an unlabeled scene set

Du =
{
Pu
i |Nu

i=1

}
, where N l and Nu are the numbers of

sparsely labeled scenes and unlabeled scenes. For each
sparsely labeled scene P s

i , the annotation Y s
i is just the

annotation of a random instance in the scene, which in-
cludes eight-dimensional information, namely the three-
dimensional spatial position, three-dimensional size, orien-
tation, and category of the object.
Teacher-student framework. Inspired by mainstream
semi-supervised methods [11, 13, 24], we also adopt

a teacher-student framework for conducting sparsely-
supervised 3D object detection. This framework involves
two detectors with identical configurations, and we follow
previous work by selecting PV-RCNN [20] and VoxelR-
CNN [4]. The information transfer between the teacher
network and the student network is accomplished through
exponential moving average (EMA).

3.2. Overview

The pipeline of our HINTED framework is depicted in Fig-
ure 2, derived from the fundamental teacher-student mutual
learning framework. During the pre-training stage, we em-
ploy the training strategy of CoIn [30] to obtain the initial
weights for both the teacher and student models.

In the pseudo-label generation stage, to address the issue
of sparse labels interfering with the training of the student
network, we introduce a self-boosted teacher network. Fol-
lowing [13], we employ a dual-threshold strategy to retain
more promising pseudo-labels. During the training stage of
the student network, we propose a mixed-density student
network to focus on feature learning for hard instances.

3.3. Self-boosting Teacher

Recently, the teacher-student framework has demonstrated
significant potential in exploring unannotated scenes. How-
ever, unlike strongly annotated scenes where all instances
are labeled, each sparsely annotated scene has only one in-
stance labeled. The unlabeled instances within annotated
scenes can lead to indistinguishable features, hindering ef-
fective information transfer [30]. To solve this problem,
we develop a self-boosting teacher network (SBT). In con-
trasted to traditional teacher-student framework, SBT per-
forms pseudo-label updates for labeled scenes, fully ex-
ploiting the instance information to eliminate indistinguish-
able features.

As shown in Figure 2, the proposed SBT takes sparsely
labeled point cloud P s

i and unlabeled point cloud Pu
i

as inputs. As same as traditional 3D object detection
pipeline [21, 32], SBT first extracts 3D features from P s

i

and Pu
i by backbone network, and then maps 3D features

to 2D BEV features{Bs
i } and {Bu

i }. After BEV features
pass through the detector, the detector generates pseudo-
labels Ȳ s

i and Ȳ u
i , respectively. For Ȳ u

i , it is directly desig-
nated as the supervision signal for the subsequent iteration
of training in the student network. For Ȳ s

i , we utilize sparse
annotation Y s

i for filtering, retaining ground truth annota-
tions while discarding inaccurate redundant pseudo-labels.
Therefore, the pseudo-labels output by the teacher network
are given by

Ȳ =
{
Ȳ u
i ∪ φ(Ȳ s

i , Y
s
i | τ)

}
(1)

where φ(· | τ) is inspired by the NMS algorithm [18], we
calculate the IOU between the pseudo-label set Ȳ s

i and the
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Figure 2. The overview of proposed HINTED, which consists of a self-boosting teacher (SBT) and a mixed-density student (MDS). In
SBT, the teacher network provides the student network with rich pseudo-labels containing valuable information. In MDS, the model first
extracts two multi-scale BEV features {Bi} and

{
B−

i

}
for a regular view and local down-sample view with a detector backbone module

G(θg), respectively. And then, a mixed-density feature B× is generated by a feature fusion module S(λ). Finally, the detection head
module H(θh) encourages consistent predictions of different density presentations. The weights θ̄ in the teacher are updated by EMA of
the weights θ in the student. During testing, the model with the original architecture and regular input view is utilized.

sparse ground truth Y s
i , and filter out pseudo-labels with an

IOU greater than τ = 0.01. Through this straightforward
operation, we can efficiently handle sparsely labeled point
clouds.

3.4. Mixed-Density Student

With the assistance of the SBT network, we obtain pseudo-
labels for all scenes, which can support the supervised train-
ing of the student network. Additionally, enhancing the
focus on hard instances during training has been proven
beneficial for the detection of hard instances [3]. How-
ever, the pseudo-labels Ȳ inevitably lack positive supervi-
sion for some hard instances. Therefore, resorting to fully-
supervised methods by directly utilizing ground truth to en-
hance focus on hard instances can’t yield optimal results.
We observe that hard instances are primarily distributed in
point cloud spaces farther away from the LiDAR acquisi-
tion vehicle. The main difference in point cloud spaces, in
terms of distance, is the substantial variance in point cloud
density. Building upon this observation, we down-sample
the nearby point clouds to generate more point cloud spaces

containing hard instances. Subsequently, we leverage the
mixed-density feature to enhance the detection head’s capa-
bility in handling the features of hard instances.

Given a point cloud scene, most student networks typ-
ically extract multi-scale BEV features {Bi |i=1,2,3} =
{B1, B2, B3} with backbone network. In {Bi}, the spa-
tial sizes of the features decrease layer by layer. Then, the
predictions are generated through the detection head from
the last layer BEV feature B3.

In our work, we first extract two multi-scale BEV fea-
tures {Bi |i=1,2,3} = {B1, B2, B3} and

{
B−

i |i=1,2,3

}
={

B−
1 , B−

2 , B−
3

}
from regular view point cloud P and the

nearby down-sampled view input point cloud P− , respec-
tively. Then, we build a mixed-density feature B× by adap-
tive fusing two multi-scale features.

The feature in Bi shares the same spatial size as B−
i , and

they are also aligned in feature space. Inspired by [14], for
feature-aligned feature maps, adaptive linear weighting is a
simple yet effective strategy for multi-scale feature fusion.
Based on this, we generate the mixed-density feature B×:

B× = S({Bi}i ,
{
B−

i

}
i
, λ) (2)

15324



where S is the fusion function for multi-scale features, and
λ is the adaptive weight. Specifically:

B× =

3∑
i=1

[
λiAvg (Bi) + λ̄iAvg

(
B−

i

)]
(3)

where Avg(·) denotes the average pooling operation. The
purpose of this operation is to ensure that the sizes of all
feature maps are consistent with the bottom-level feature
map, e.g. B3, facilitating subsequent linear weighted sum-
mation. Moreover, inspired by SE block [9], we obtain suit-
able adaptive weights λi and λ̄i. They are adaptive weights
corresponding to the feature layers, and calculated by:

λ = δ (f (Avg (B))) (4)

where δ(·) denotes the sigmoid activation function, and f(·)
is a fully connected layer. More detailed fusion specifics are
provided in the supplementary materials.

Note that the spatial sizes of B3, B−
3 , and B× are same,

representing feature expressions of different densities. To
encourage consistent prediction results across features of
different densities, we input the three types of features sepa-
rately into the detection head module, generating three cor-
responding sets of predictions. Consequently, the training
objective for MDS network:

LMDS = γ1Ldet

(
H

(
B×) , Ȳ )

+ γ2Ldet

(
H

(
B−

3

)
, Ȳ

)
+ γ3Ldet

(
H (B3) , Ȳ

)
(5)

where Ldet follows the calculation method of the baseline
approach, maintaining consistency with it. And, H(·) de-
notes the detection head module. γ1, γ2, and γ3 are hyper-
parameters, we study them in Table 7 of ablation study sec-
tion. Unlike traditional student networks, we adopt a uni-
fied approach to manage both unlabeled scenes and sparsely
labeled scenes. Consequently, the loss is no longer com-
puted separately for sparsely labeled and unlabeled scenes;
instead, it’s uniformly calculated, removing the necessity to
adjust weights individually.

Although the introduction of multi-level mixed-density
features does incur some additional computational over-
head. It’s worth noting that, built upon the original network
structure, the memory consumption and added parameters
can be deemed negligible. Specifically, we only employ
simple operations such as global average pooling, linear
layers, sigmoid activation functions to implement the fea-
ture fusion module.

Once the model has undergone sufficient training, only
the modules belonging to the original detector can be re-
tained. Specifically, the steps related to mixed-density fea-
ture extraction and fusion in the student network can be dis-
carded. This approach ensures fairness in comparisons by
adhering to the original detector architecture and input den-
sity during inference. Moreover, the final detection model

has the same number of parameters as the original detector,
and there is no increase in inference latency.

4. Experiments

4.1. Dataset and Evaluation Metrics

The KITTI dataset [7] is the most widely used dataset for
sparsely-supervised 3D object detection. We adhere to the
approach presented in recent studies [30], which partition
the KITTI training dataset (comprising 7481 scenes) into
a train split with 3712 scenes and a val split with 3769
scenes. Subsequently, we randomly choose 10% of scenes
from the train split and keep only one object annotation
within each selected scene. This procedure results in the
creation of the limited split. In contrast to the original
train split, the limited split necessitates only 2% cost of
full annotations [30]. To ensure a fair comparison, we fol-
low the principal official evaluation metric, which involves
calculating the 3D Average Precision (AP) across 40 recall
thresholds (R40).

4.2. Implementation Details

Our HINTED uses a pre-trained model from CoIn [30]. We
train the entire network with a batch size of 8 and a learning
rate of 0.003 for 80 epochs on 4 RTX 3090 GPUs. For lo-
cal sampling, we split the scene into two parts along the
X-axis, [0 < x < 30] and [30 < x < 70], defining
[0 < x < 30] as the nearby dense point cloud. We use
random sampling for the nearby dense point cloud with a
sampling rate of 20%. Following previous 3D object de-
tection methods [13, 16], we also apply data augmentation
during training. Specifically, for weak augmentation in the
teacher network, we randomly flip along the X and Y-axes
with a 50% probability, uniformly sample scale factors for
scaling within the range [0.91, 1.12], and rotate the entire
scene along the Z-axis with random angles selected from
[−π/4, π/4]. For strong augmentation in the student net-
work, we perform shuffle augmentation on the point cloud.
The hyper-parameters and strategy choices designed during
the implementation process will be further discussed in the
ablation study.

4.3. Comparison with State-of-the-art Methods

Comparison with spasely-supervised methods. We com-
pare the proposed HINTED with state-of-the-art sparsely-
supervised methods. For a fair comparison, all detectors
adopted the VoxelRCNN [4] as the base architecture. Table
1 illustrates a performance comparison of different meth-
ods. Following the common evaluation metric in 3D object
detection [16], the IOU thresholds of three categories are
assessed at 0.7 (car), 0.5 (pedestrian), and 0.5 (cyclist), re-
spectively.
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Setting Cost Method Car Ped Cyc
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Fully-supervised 100% VoxelRCNN[4] 92.3 84.9 82.6 69.6 63.0 58.6 88.7 72.5 68.2

Sparsely-supervised

3% SS3D*[12] 88.8 78.5 76.9 - - - - - -

2%

VoxelRCNN[4] 70.5 54.9 44.8 42.6 38.5 32.1 73.3 47.8 43.2
CoIn[30] 89.1 70.2 55.6 50.8 45.2 39.6 80.2 52.3 48.6

CoIn++[30] 92.0 79.5 71.5 46.7 36.1 31.2 82.0 58.4 54.6
Our HINTED 94.3 82.5 78.7 66.5 59.9 53.7 94.6 76.3 73.0

Table 1. Comparsion with state-of-the-art sparsely-supervised methods on KITTI val split. All methods are based on VoxelRCNN, and we
report the 3D AP results of full cost (100%) and limited cost (3%, 2%). The best sparsely-supervised methods are highlighted in bold and
* indicates result with R11.

1% 2%Setting Method Modality Car Ped. Cyc. Avg. Car Ped. Cyc. Avg.
PV-RCNN [20] LIDAR 73.5 28.7 28.4 43.5 76.6 40.8 45.5 54.3

3DIoUMatch [24] LIDAR 76.0 31.7 36.4 48.0 78.7 48.2 56.2 61.0
DetMatch [19] LIDAR+RGB 77.5 57.3 42.3 59.0 78.2 54.1 64.7 65.6
HSSDA [13] LIDAR 80.9 51.9 45.7 59.5 81.9 58.2 65.8 68.6

Semi-supervised

Our HINTED LIDAR 79.9 52.1 50.5 60.5 80.4 58.9 73.2 70.8

Table 2. Comparison with state-of-the-art semi-supervised methods on KITTI val split. All methods are built upon PV-RCNN and trained
on randomly selected 2% or 1% fully annotated frames from train split.

Data Method Car-3D Detection
Easy Mod. Hard

weakly* + 534 precisely# WS3D [17] 84.0 75.1 73.2
weakly* + 2%Fully WSS3D [35] 84.5 75.8 71.1

2%Fully Our HINTED 90.6 80.4 77.6

Table 3. Comparison with state-of-the-art weakly-supervised
methods on KITTI val split. *: point annotations. #: high-quality
annotated instance.

As shown in Table 1, the proposed HINTED outper-
forms all other sparsely-supervised methods. For the more
challenging categories, pedestrians and cyclists, our method
shows particularly significant improvements. When com-
pared to CoIn, which previously achieved the best perfor-
mance on pedestrians, we achieve an average 32% improve-
ment in detection performance for the pedestrian category.
In comparison to CoIn++, which previously achieved the
best performance on cyclists, we achieve an average 25%
improvement in detection performance.

Furthermore, we observe that compared to the fully su-
pervised VoxelRCNN [4], our proposed HINTED not only
achieves comparable performance in the car and pedestrian
categories but even surpasses it in the cyclist category. This
indicates that our method not only generates high-quality
pseudo-labels but also successfully reinforces the learning
of hard instances during the network’s training process.
Comparison with semi-supervised methods. Our pro-
posed HINTED also adopts a teacher-student network sim-

ilar to semi-supervised methods, so we further explore
the performance of our method in semi-supervised setting.
Similar to previous semi-supervised approaches [13, 24],
we randomly select 1% and 2% of fully annotated frames
from the train split for training and verifying on the val
split. All the results are obtained within the framework of
PV-RCNN [20].

Table 2 presents a comparison of our results with differ-
ent semi-supervised methods. Compared to existing meth-
ods, our method shows significant improvement in the chal-
lenging cyclist category. However, for the car category,
our method does not demonstrate an advantage. This may
be because focusing on learning from difficult instances
loses some relatively simple structural features. Overall,
our method achieves the best Avg. performance among all
methods, with moderate gains in average precision under
both 1% and 2% labeling rates. This validates that our strat-
egy also helps detect hard instances under semi-supervised
settings.
Comparison with weakly-supervised methods. We
also compare our method with state-of-the-art weakly-
supervised methods. In WS3D[17] and WSS3D[35], they
not only utilize a small number of annotated bound-
ing boxes as supervision signals but also incorporate a
large amount of center-click annotations. Given that our
HINTED method doesn’t incorporate a specifically de-
signed center-click annotation, it directly utilizes outcomes
derived from semi-supervision (with only 2% full supervi-
sion). As shown in Table 3, our method still demonstrates
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Figure 3. Comparison of three categories at different thresholds. The red bars represent the performance of our HINTED, while the blue
bars represent the performance of CoIn [30]. N/A indicates that there are no samples at this difficulty level.

significant performance advantages without the help of ad-
ditional point annotations.

4.4. Ablation Study

In this section, we conduct ablation experiments to validate
the effectiveness of each module in HINTED. All the exper-
iments in this section are based on VoxelRCNN [4].

Density SBT MDS Car-3D Detection
B B− B× Easy Mod. Hard
✓ 89.5 79.2 72.3
✓ ✓ 93.8 81.0 74.6
✓ ✓ ✓ 93.7 81.8 75.8
✓ ✓ ✓ ✓ ✓ 94.3 82.5 78.7

Table 4. Effect of each component designed in HINTED on the
KITTI val split.

Effect of each component. We systematically verify the ef-
ficacy of each component, and the results are illustrated in
Table 4. In the 1st row of Table 4, the initial network aims
at training directly through a teacher-student framework.
However, as only one instance is labeled in the labeled
scenes, the presence of the remaining unlabeled instances
interferes with the learning process of the student network,
ultimately leading to detection performance weaker than
that achieved by self-training (CoIn++ in Table 1).

In the 2nd row, by replacing the traditional teacher-
student network with our proposed SBT, labeled frames
transfer information more effectively, achieving a supe-
rior baseline. The validation of the subsequent two mod-
ules is carried out directly on the basis of SBT. As shown
in 3rd and 4th rows, MDS both can further improve the
performance. The last row of Table 4 is a combina-
tion of SBT, MDS achieving optimal performance. This
demonstrates that our proposed HINTED can generate high-
quality pseudo-labels and effectively transfer information
within the teacher-student network.

Comparison at different distance thresholds. Similar to
our HINTED, CoIn also leverages unannotated scene infor-
mation during training. HINTED, as a new teacher-student
network, further enhances the performance of CoIn [30].
Fig. 3 specifically illustrates the comparison of the two
methods across all categories at various difficulty levels. It
can be seen from the figure that our method improves the
performance across all categories. This demonstrates that
our teacher network can provide accurate pseudo-labels, en-
hancing the detection capability. In long-range and hard ob-
ject detection, our HINTED also demonstrates significant
advantages, especially for the cyclist category, where we
can produce correct predictions even beyond 45 meters.

Sampling method ratio Car-3D Detection
Easy Mod. Hard

FPS
40% 93.89 81.67 76.21
20% 94.09 81.71 76.48
10% 93.97 81.59 76.23

RS
40% 94.26 81.66 76.19
20% 94.33 82.56 78.75
10% 94.25 82.34 78.51

Table 5. Comparison of different sample strategies on KITTI val
split.

Comparison with other point cloud sample strategies.
We compare the impact of different sampling strategies on
performance. We chose the most commonly used farthest
point sampling (FPS) and random sampling (RS) methods,
each with three different sampling rates: 10%, 20%, and
40%. The experimental results are presented in Table 5.
Compared to FPS, RS shows overall better performance.
This demonstrates that FPS, being a relatively stable sam-
pling method, is not conducive to emulating distant point
clouds from nearby ones, and it doesn’t provide the optimal
learning capability for hard instances. In the experiments
involving RS of nearby point clouds, it is observed that the
detector’s performance reached its peak when the sampling
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rate was set to 20%.

Car-3D DetectinFusion Strategy Easy Mod Hard
Baseline 92.0 79.7 74.2
ROI-based Fusion 87.9 77.4 72.7
Average-based Fusion 91.2 80.3 73.5
Attension-basd Fusion 94.2 82.3 78.5

Table 6. The influence of different feature fusion approaches.

Comparison of feature fusion approaches. In this section,
we investigate the impact of different feature fusion strate-
gies on detection performance. The baseline in Table 6 rep-
resents the detection results obtained without using mixed
features. Building upon this, we design three different fea-
ture fusion methods. In the 2nd row of the table, “ROI-
based Fusion” denotes generating regions of interest (ROI)
based on the network’s predictions and blending the dense-
sparse features within those ROI. However, the misalign-
ment between the two types of feature regions of interest
can result in this fusion module being unhelpful in generat-
ing high-quality pseudo-labels and may even hinder the net-
work’s learning process. The 3rd row reports the result of
“Average-based Fusion”, which directly combines the fea-
tures of the two types of point clouds using a mean opera-
tion. This rough operation doesn’t yield significant benefits.
Compared to the other three methods, the attention-based
fusion method adopted in our method achieves the best re-
sults, demonstrating that the adaptive weight-based feature
fusion can enhance the detector’s performance.

γ1 (γ2=γ3=1) 0 0.1 0.2 0.5 0.7 1.0
Avg. 63.1 72.9 70.9 68.4 68.3 67.5

γ2(γ1=0.1, γ3=1) 0 0.1 0.2 0.5 0.7 1.0
Avg. 62.9 66.7 66.5 68.9 69.3 72.9

γ3(γ1=0.1, γ2=1) 0 0.1 0.2 0.5 0.7 1.0
Avg. 62.5 64.3 67.6 67.9 68.7 71.1 72.9

Table 7. The influence of γ1, γ2 and γ3.

Choice of hyper-parameters. In this section, we refer
to [8] and employ the method of controlling variables to ob-
tain the optimal hyper-parameters. We initialize the weights
γ2 and γ3 to 1, gradually changing the γ1. Following this
approach, we identify the optimal γ2 and γ3. And the ex-
perimental results are shown in the Table 7. The results in
the table are the mean values of the three categories in terms
of ‘mod’ difficulty. The best performance is achieved when
the γ1, γ2 and γ3 are set to 0.1, 1, 1, respectively.

4.5. Quality Analysis

In this section, we compare the predictions of the pre-
trained model CoIn with the predictions of our final student

（a） （b）

Figure 4. Qualitative analysis comparison. The red bounding
boxes represent the results obtained from our HINTED, while the
green bounding boxes are from the pre-trained CoIn model. The
point cloud inside the yellow dashed line represents the hard in-
stances.

model generated by HINTED. As shown in Figure 4 (a) and
(b), it is noticeable that although the pre-trained model ini-
tially couldn’t provide positive supervision signals for dis-
tant hard instances (region of the yellow dashed line), our
MDT approach successfully enhances the detection capa-
bilities for these hard instances, resulting in more accurate
detection outcomes.

5. Conclusion

This paper proposed a novel hard instance mining method,
HINTED, for sparsely-supervised outdoor 3D object detec-
tion. In addition, benefiting from the self-boosting teacher
network and mixed-density student, the effectiveness of
the 3D detector has been significantly improved. Suffi-
cient experiments on the KITTI dataset have demonstrated
the effectiveness of our method under sparsely-supervised
settings, and we have also demonstrated that under semi-
supervised settings, our method can also help improve the
detection performance for hard instances. In future work,
we will attempt to continue verifying the effectiveness of
our method on larger datasets.
Limitation: Due to limited memory, we cannot parallelize
the generation of feature maps in the student network using
shared weights, leading to longer training times. Neverthe-
less, during the inference process, the local down-sampled
view and mixture density view will be discarded, thus not
increasing the model parameters or reducing the inference
speed.
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