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Abstract

Point-level weakly-supervised temporal action localiza-
tion (P-TAL) aims to localize action instances in untrimmed
videos through the use of single-point annotations in each
instance. Existing methods predict the class activation se-
quences without any boundary information, and the unreli-
able sequences result in a significant misalignment between
the quality of proposals and their corresponding confidence.
In this paper, we surprisingly observe the most salient frame
tend to appear in the central region of the each instance
and is easily annotated by humans. Guided by the tem-
poral saliency information, we present a novel proposal-
level plug-in framework to relearn the aligned confidence
of proposals generated by the base locators. The pro-
posed approach consists of Center Score Learning (CSL)
and Alignment-based Boundary Adaptation (ABA). In CSL,
we design a novel center label generated by the point anno-
tations for predicting aligned center scores. During infer-
ence, we first fuse the center scores with the predicted action
probabilities to obtain the aligned confidence. ABA utilizes
the both aligned confidence and IoU information to enhance
localization completeness. Extensive experiments demon-
strate the generalization and effectiveness of the proposed
framework, showcasing state-of-the-art or competitive per-
formances across three benchmarks. Our code is available
at https://github.com/zyxia1009/CVPR2024-TSPNet.

1. Introduction

The recent spotlight on the utilization of single-point
timestamp annotations in each action instance for pre-
cise temporal action localization (P-TAL) [33] within
untrimmed videos has captured the attention of the re-
search community. This approach holds considerable sig-
nificance in real-world applications, including video re-
trieval [17, 44], security monitoring [36], and video ground-
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Figure 1. Existing methods calculate the misaligned confidence
based on CAS information. Driven by human tendency during
annotating, we propose to predict the aligned center score based
on the offset between the proposal center and the annotation point.

ing [25, 31, 50]. In comparison to fully-supervised tem-
poral action localization (TAL) [23, 28–30, 41, 47] and
weakly-supervised temporal action localization (W-TAL)
[12, 14, 15, 22, 39, 40, 42, 55, 56, 58, 59], which rely solely
on video-level annotations, P-TAL strikes a delicate bal-
ance between labor costs and localization precision. Con-
sequently, the utilization of the additional point annotations
is crucial for achieving accurate localization.

Many existing P-TAL [11, 21, 26, 33, 52] methods fol-
low a common framework known as multi-instance learn-
ing (MIL). This involves mapping the feature sequence ex-
tracted from the untrimmed video at the snippet level (span-
ning several frames) to a class activation sequence (CAS)
for each action category. The CAS indicates the probability
of the action occurrence. Subsequently, action proposals are
derived from the CAS using a manually set multi-threshold
strategy. These insightful techniques contribute to the gen-
eration of abundant high-quality proposals, facilitating ef-
fective localization for each action instance.

However, as depicted in Figure 1, the alignment be-
tween confidence and the most complete proposals is often
deficient (e.g., an average of 65.2% of the final proposals in
LAC[21] have better alternatives). We argue that this mis-
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Figure 2. The frequency statistics show the distribution of anno-
tation points appearing in different locations across three bench-
marks. It is observed that the annotators consistently label the
points in the central regions of the action instances.

alignment arises from the fact that the confidence score of
each proposal is directly generated or computed by the un-
reliable CAS, such as the outer-inner-contrast score [43].
Moreover, the sensitive scores are less conducive to obtain-
ing accurate boundaries. In essence, there are two critical
challenges in enhancing localization performance: (1) How
to align the quality of the proposal with the appropriate con-
fidence correctly. (2) How to adjust the boundaries to im-
prove the proposal completeness with aligned confidence.

To address these challenges, we observe that the most
salient frame tends to appear in the central region of the
each instance and is easily annotated by humans (Figure 2),
we call the prior as “temporal saliency information”. Such
information reveals the approximate locations of instance
centers and provides an evidence of alignment. we intro-
duce a plug-and-play Temporal Saliency-Driven Proposal
Learning framework (TSP-Net) for P-TAL. In general, we
establish a direct proposal-level supervisory relationship be-
tween proposals and point annotations to realign confidence
and enhance boundary precision.

Specifically, we first propose the Center Score Learn-
ing (CSL) to reduce the impact of confidence misalignment.
CSL first generates the novel center labels based on the an-
notated points. The center labels guide the model to predict
the aligned center scores. After that, the original points in-
evitably contain noise from personal preferences and devi-
ate from the true instance center. To alleviate the annotation
noise, we propose an updating strategy during the learning
process. We mine pseudo-positive proposals and update the
points continuously. After that the center labels are regen-
erated and utilized to facilitate the learning of more aligned
center scores.

However, the proposal boundaries still rely on the CAS,
and proposals with different durations may exhibit sim-
ilar center scores. To tackle this, we learn actionness
and action scores and integrate them with center scores
to form aligned confidence. Subsequently, we introduce
Alignment-based Boundary Adaptation (ABA) to incor-

porate temporal-related boundary and IoU information,
thereby enhancing the completeness of confident proposals
during inference.

Our contributions can be summarized as follows:
(1) We meticulously analyze the limitations of current

P-TAL methods, specifically focusing on the misalignment
of proposals and confidence. We observe that humans tend
to annotate at the instance center region, and this prior is
beneficial to improve the misalignment problem.

(2) For P-TAL, we introduce a plug-in framework aimed
at aligning the proposal quality with confidence. We
propose center score learning to dynamically predict the
alignment from the saliency information. Additionally,
alignment-based boundary adaptation is introduced to im-
prove the completeness of confident proposals.

(3) We assess the framework on three benchmarks and
compare it to existing P-TAL methods, we achieve im-
provements of at least 3.6%, 4.1%, and 6.3% in average
mAP. Furthermore, we integrate TSP-Net into various P-
TAL methods to demonstrate its generalization capabilities,
and the results indicate an average improvement of 5.8%.

2. Related Work
Temporal action localization (TAL) requires accurate

time coordinate annotations to locate action instances in
untrimmed videos. [4, 23, 27–30, 35, 41, 47, 51]. Similar
to the task of image object detection [13, 38], existing TAL
methods can be categorized into one-stage and two-stage
approaches based on the localization pipeline. The two-
stage TAL methods [4, 27–30, 47] first densely generate
potential instance proposals. After that, the independently
trained proposal-based detectors will classify and refine the
proposals. On the other hand, one-stage [41, 51] methods
adopt an end-to-end pipeline to localize and recognize the
actions. Although the impressive localization achieved by
TAL technologies is captivating, the labor-intensive nature
of the annotation process remains unaffordable due to the
rapidly increasing number of videos.

Weakly-supervised temporal action localization (W-
TAL) aims to localize action instances using only video-
level annotations [12, 14, 15, 22, 32, 39, 40, 42, 43, 55,
56, 58, 59], offering an effective and cost-efficient approach
that has garnered extensive discussion within the research
community. Leveraging advancements in multi-instance
learning theory, the CAS learned by MIL can explicitly lo-
calize instances with snippet-level information and subse-
quent manual post-processing. Approaches such as AUMN
[32] construct the memory bank for action units to produce
the discriminative CAS. To introduce more global informa-
tion, some W-TAL methods [14, 39, 59] make the temporal
reason at the proposal level. Such as P-MIL [39] extends
MIL in the proposal level to keep the score consistent be-
tween training and testing. Furthermore, existing proposal
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Figure 3. The proposed TSP-Net initially extracts proposal features based on the proposals generated by the CAS-based locator. These
features are then mapped to actionness scores and action scores. A saliency branch consists of center label generation and saliency point
updating is designed for learning aligned center scores. The mentioned scores are combined as aligned confidence and the proposed
alignment-based boundary adaptation enhances the proposal completeness.

refining strategies [59] adjust boundaries and confidence
with different CAS information, lacking a comprehensive
analysis of completeness with proposals.

Point-level weakly-supervised temporal action local-
ization. Utilizing only point annotations to realize action
localization [6, 34, 49] is attractive because of the trade-
off between the labor cost (at least 6 × more economical
[21]) and performance. The majority of P-TAL methods
[11, 19, 21, 24, 26, 33, 52] only utilize the point annota-
tions for mining reliable pseudo points of the instance. For
example, LAC [21] marks pseudo background points and
searches the optimal sequence for completeness learning
with the point annotations together. CRRC-Net [11] builds
and updates the class-wise prototypes for more reliable clas-
sification. At the proposal-level, DCM [19] generates pro-
posals with the points to estimate the locations individually.
Yin et al. [53] introduce text information for evaluating ac-
tion proposals. In contrast to prior works, we propose a
proposal learning framework driven by temporal saliency
information to ensure the alignment between the quality of
proposals and the confidence scores.

3. Methodology

In this section, we first illustrate the formulation of the
P-TAL (Sec. 3.1) and introduce the framework of the TSP-
Net in Sec. 3.2. After that, we propose center score learn-
ing (Sec. 3.3) which consists of center label generation and
saliency point updating to predict the aligned center scores
between proposals and instances. After getting the aligned
confidence, we propose alignment-based boundary adaption

(Sec. 3.4) to correct the boundaries of high-quality propos-
als. At last, we state the training and inference process in
Sec. 3.5.

3.1. Problem Formulation

For the untrimmed video vi in training set V =
{v1, ...vn}, we only annotate single timestamp for each ac-
tion instance and get the point set Yi = {(tj , yj)}Ni

j=1, where
Ni is the number of instances, and tj , yj denote the anno-
tated timestamp and the category of the action, respectively.
The target of the P-TAL [33] is to utilize only the Y as the
supervise information to localize the instance (ŝi, êi, ŷi, ci)
in the untrimmed video, where ŝi, êi and ci represent the
start point, end point, and confidence score, respectively.

3.2. Overall Framework

The overall framework of the TSP-Net is shown in Fig-
ure 3. The snippet-level feature sequences extracted by the
backbone are utilized to generate the coarse proposals. For
each proposal, we extract proposal-level features to learn
three different semantic scores. At last, we fuse the scores
into the confidence score and refine the boundary to get the
final localization.

Snippet-level feature extraction. We first partition each
video into T snippets, each comprising 16 frames. After
that, the pre-trained feature extractor [1, 3, 10] is applied
to extract the snippet-level feature sequence. Following the
methodology of earlier P-TAL approaches [11, 21, 26], we
use I3D [3] pre-trained on Kinetics-400 [20] to extract fea-
tures in both RGB and flow modalities. The features ex-
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tracted from these modalities are concatenated to form the
input feature sequence X ∈ RT×D, where D denotes the
dimension of each snippet feature.

Proposal-level feature extraction. As referred, the
existing P-TAL approaches [11, 21] effectively generate
abundant proposals due to the locally responsive CAS and
the multi-threshold generation strategy. In this work, we
use X to reproduce the P-TAL method (we employ LAC
[21] as the baseline) to generate the proposal set P =
{(si, ei, yi,Xi)}Mi=1 without the misaligned confidence and
post-processing operations, where Xi denotes the feature
subsequence corresponding to the i-th proposal, yi ∈ RC+1

is the one-hot category label based on the point set, C de-
notes the number of action categories, and the C+1-th cate-
gory represents the background. Concretely, if none of the
points in Y fall within the interval [si, ei], we label it as the
background, and vice versa with the corresponding action
category. To increase the discriminability of Xi, we apply
the surrounding contrastive feature extraction (SCFE) [39]
to acquire the proposal-level features Xp ∈ RM×Dp .

Xp,i = SCFE(Xi). (1)

Proposal learning. Effective proposal learning (PL)
should synthesize different semantic information into confi-
dence. Following [11, 21, 39], we design three independent
branches and input Xp for learning the actionness scores,
action scores, and center scores, respectively. Each branch
consists of a 1D convolution layer with a kernel size of 3
and a ReLU layer. For the head of each branch, we use
the 1D convolution layer with a kernel size of 1 to get
sa ∈ RM×1, sc ∈ RM×(C+1), and scen ∈ RM×1. After
that, we apply the sigmoid function to sa and scen. Espe-
cially, sa denotes whether the proposal includes an action
instance. sc indicates which action is occurring. The pro-
posed center scores scen in Sec. 3.3 are learned based on
human salient perception and aligned with the quality of
the proposal. The scores are fused into aligned confidence
ci ∈ RM×1 for the i-th class. At last, based on ci and IoU
information, we selectively refine the proposal boundary s
and e to realize more precise localization by the proposed
alignment-based boundary adaptation (Sec. 3.4).

3.3. Center Score Learning

In this section, we introduce a novel center score learn-
ing approach to evaluate proposal quality and predict
quality-aligned scores for proposals. The proposed learning
paradigm comprises center label generation and saliency
point updating. Center label generation establishes explicit
supervision to align confidence, while saliency point updat-
ing continuously and dynamically mines more valid infor-
mation for obtaining more accurate center labels.

Center label generation. There is a natural tendency for
humans to concentrate on the most salient timestamp within

an action instance rather than the ambiguous boundaries.
This distinction is also a key factor contributing to the sig-
nificant difference in labor costs between TAL and P-TAL.
The inherent inclination indicates that point annotations are
consistently situated in the central region of the action in-
stance. Motivated by this observation, we introduce the
concept of center label to tackle the aforementioned issue.
Concretely, we first introduce saliency point (can be seen
as a pseudo-center) for each instance to represent the most
salient timestamp, and the point can serve as a guide to the
center of the instance. In practice, we initialize the saliency
point set Psal with the point annotations Y . Subsequently,
considering that the center of the most complete proposal,
along with its corresponding ground truth instance, should
be proximate to or aligned with the saliency point, we man-
ually generate the hard center label for the i-th proposal as:

ycen,i =

{
1− 2

∣∣∣ t−si
ei−si

− 0.5
∣∣∣ ,∃t ∈ Psal, t ∈ [si, ei]

0 ,∀t ∈ Psal, t /∈ [si, ei]
. (2)

The normalized center shift of bilateral symmetry between
the proposal center and the saliency point indicates the cen-
ter consistency. We use the center label as the learning ob-
jective and optimize the model to predict a aligned center
score. Therefore, in the absence of boundary information,
this score potentially reflects the value of the proposal and
reduces the sensitivity of confidence to the CAS. After label
generation, we incorporate the saliency loss Lsal to learn
the center score as follows:

Lsal =
1

M

M∑
i=1

(ycen,i − scen,i)
2. (3)

Although the hard center labels ycen can explicitly su-
pervise an aligned score, negative proposals lacking any
saliency point may still encompass a portion of the instance.
Forcing the model to predict zero scores can easily lead to
performance deterioration. Thus, we propose the soft center
label as:

yscen,i =

{
1− 2

∣∣∣ t−si
ei−si

− 0.5
∣∣∣ ,∃t ∈ Psal, t ∈ [si, ei]

λ ,∀t ∈ Psal, t /∈ [si, ei]
, (4)

where the λ is the soft-value set manually and related to
distribution of proposals. The introduction of soft-term su-
pervision serves to reduce model uncertainty arising from
incomplete supervisory information.

Saliency point updating. Although the aligned center
score can be regarded as critical evidence to quantify the
proposal quality, the following limitations remain: (1) The
initial saliency point from the annotator inevitably includes
a great deal of personal preference. (2) The most salient
point may be off the center region of the instance. We re-
gard the limitations as the saliency noise. To alleviate the

18443



Algorithm 1: Update saliency point set Psal

Input: annotated points Y = {ti}Ni=1, proposal
coordinates C = {(sj , ej)}Mj=1, center
scores scen, update threshold θup

Output: updated saliency point set Psal

1 for i = 1 to N do
2 Sup ← {(sm, em), scen,m}

Nup

m=1 where
(scen,m > θup&tsal,i ∈ [sm, em])

3 ∆tsal,i ←
∑

Sup
(ti − sm+em

2 )
scen,m∑Nup

m=1 scen,m

Psal,i ← ti +∆tsal,i
4 end
5 return Psal

noise, we propose the saliency point updating strategy to
mine the reliable center information of proposals and update
the initial saliency points adaptively and continually. For
brevity, we describe the strategy as Algorithm 1. For each
saliency point, we first mine the proposal set Sup that con-
tains the point and has scen greater than the update thresh-
old θup. Secondly, the centers in the mined proposal coor-
dinates are referred to as pseudo points, containing valuable
center information. Following this, we update the points
by the weighted sum of the difference between the saliency
point and the pseudo points. Finally, we repeat the operation
to update the entire saliency point set. To maintain effec-
tiveness and stability, we update the saliency points every
pup iterations based on the initial annotated points Y . After
the updating, we regenerate the center labels to learn better
scen.

3.4. Alignment-based Boundary Adaption

After continuous updating and learning the center score
for each proposal, we apply the softmax function to sc,
yielding pc. Subsequently, we fuse the scores generated by
TSP-Net to obtain the aligned confidence ci ∈ RM×1 of the
proposals for i-th category as:

ci = sa ∗ pc,i ∗ scen. (5)

We apply c to replace the original confidence scores gener-
ated by the base locator. While the relearned confidence
scores exhibit high quality during inference, the subse-
quent post-processing operation can result in information
loss [59]. Additionally, the complete reliance of the pro-
posal scope on the original CAS may lead to inaccurate lo-
calization. Notably, proposals with distinct scopes but close
centers may learn similar scen, resulting in comparable con-
fidence scores.

To address those problems, based on the aligned con-
fidence, we propose alignment-based boundary adaption
to refine the most confident proposal by its close propos-
als, adaptively. Inspired by the thought of NMS and [59],

for each category, we first decrease ci to find the pro-
posal p̂ = {s, e} with the maximum confidence. Secondly,
we calculate the IoUs between p̂ and the proposal set P ,
and the proposals with IoU larger than the refine threshold
θre are regarded as the close-set P̂r = {si, ei}Mr

i=1 for p̂.
Thirdly, we compute the updating weight w ∈ R(Mr+1)×1

for boundary adaption. An intuitive approach is to calcu-
late directly based on confidence, but this approach does
not take into account the proposal correlation. Specifically,
aligned confidence determines the importance of boundary
information for p̂, while the IoU reflects the information rel-
evance. Thus, we utilize both aligned confidence and IoU
information to calculate w as follows:

wi = ci ∗ IoUi/(

Mr∑
j=0

cj ∗ IoUj), (6)

where IoU denotes the normalized IoU in {p̂, P̂r}. After
that, we adapt the boundaries of p̂ as:

b̂ = w0b+

Mr∑
i=1

wibi, b ∈ {s, e}. (7)

At last, we remove p̂ and P̂r from the proposal set and re-
peat the above refine operation until the set is empty. No-
tice that all proposals in close-sets are retained instead of
discarded. Thus, the adaptation can further eliminate the
degradation of proposal completeness by the original CAS.
For the aligned proposals with various durations, a voting-
like adaption approach can mitigate the impact of proposal
generation at the extreme threshold on the final localization.

3.5. Training and Inference

Training. As mentioned in Sec. 3.2, TSP-Net needs to
synthesize different semantic information. The objective
function of TSP-Net is described as:

L = Lp + αLsal, (8)

where α represents the multi-task balance factor. Lp utilizes
a cross-entropy loss to learn the class-agnostic probabil-
ity and class-wise probability simultaneously in a proposal-
level and is denoted as:

Lp =
1

M

M∑
i=1

CE(yi, softmax(s̄c,i)), (9)

where s̄c = sa ∗ sc. Lsal denotes the saliency loss in Eq. 3.
Inference. For generated proposals P in Sec. 3.2, we

input it into TSP-Net and get the final aligned confidence
as Eq. 5. After that, alignment-based boundary adaption
(ABA) is utilized to refine the proposals as:

P̂ = ABA(P ). (10)

At last, the Soft-NMS [2] is applied to P̂ to get the final
localization.
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Table 1. Comparison results with the state-of-the-art methods on THUMOS’14. The proposed method outperforms previous W-TAL and
P-TAL methods by a large margin in terms of mAP and has a competitive performance with the fully supervised methods.

Supervision Method
mAP@IoU (%) AVG AVG AVG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 (0.1:0.5) (0.3:0.7) (0.1:0.7)

Fully
(TAL)

G-TAD [48](CVPR’20) - - 54.5 47.6 40.2 30.8 23.4 - 39.3 -
TCANet [37](CVPR’21) - - 60.6 53.2 44.6 36.8 26.7 - 44.4 -
RTD-Net [45](ICCV’21) - - 68.3 62.3 51.9 38.8 23.7 - 49.0 -
GCM [54](TPAMI’21) 72.5 70.9 66.5 60.8 51.9 - - 64.5 - -
VSGN [57](ICCV’21) - - 66.7 60.4 52.4 41.0 30.4 - 50.2 -

Video-level
(W-TAL)

DELU [5](ECCV’22) 71.5 66.2 56.5 47.7 40.5 27.4 15.3 56.5 37.4 46.4
RSKP [16](CVPR’22) 71.3 65.3 55.8 47.5 38.2 25.4 12.5 55.6 35.9 45.1
ASM-Loc [14](CVPR’22) 71.2 65.5 57.1 46.8 36.6 25.2 13.4 55.4 35.8 45.1
PivoTAL [40](CVPR’23) 74.1 69.6 61.7 52.1 42.8 30.6 16.7 60.1 40.8 49.6
Zhou et al. [59](CVPR’23) 74.0 69.4 60.7 51.8 42.7 26.2 13.1 59.7 38.9 48.3
P-MIL [39](CVPR’23) 71.8 67.5 58.9 49.0 40.0 27.1 15.1 57.4 38.0 47.0

Point-level
(P-TAL)

SF-Net [33](ECCV’20) 68.3 62.3 52.8 42.2 30.5 20.6 12.0 51.2 31.6 41.2
LAC [21](ICCV’21) 75.7 71.4 64.6 56.5 45.3 34.5 21.8 62.7 44.5 52.8
DCM [19](ICCV’21) 70.2 63.5 55.6 44.7 32.3 22.0 12.3 53.3 33.4 42.9
BackTAL [52](TPAMI’21) - - 54.4 45.5 36.3 26.2 14.8 - 35.4 -
CRRC-Net [11](TIP’22) 77.8 73.5 67.1 57.9 46.6 33.7 19.8 64.6 45.1 53.8
PCL [26](ESWA’23) 74.6 70.2 63.3 55.9 44.4 - - 61.7 - -

Ours 82.3 77.6 70.1 60.0 49.4 37.6 24.5 67.9 48.3 57.4

Table 2. Comparison results with the state-of-the-art methods on
GTEA and BEOID in terms of mAP at different IoUs. ∗ represents
the reproduced results.

Dataset Method
mAP@IoU (%) AVG

0.1 0.3 0.5 0.7 (0.1:0.7)

GTEA

SF-Net [33] 58.0 37.9 19.3 11.9 31.0
LAC [21] 63.9 55.7 33.9 20.8 43.5
DCM [19] 59.7 38.3 21.9 18.1 33.7
PCL [26] 65.2 56.8 34.3 21.2 44.9

LAC∗ [21] 64.1 50.9 37.0 13.8 41.9
Ours 74.6 60.9 39.5 16.6 49.0

BEOID

SF-Net [33] 62.9 40.6 16.7 3.5 30.9
LAC [21] 76.9 61.4 42.7 25.1 51.8
DCM [19] 63.2 46.8 20.9 5.8 34.9
BackTAL [52] 60.1 40.9 21.2 11.0 32.5
PCL [19] 78.7 63.3 44.1 26.9 53.3

LAC∗ [21] 72.2 62.7 45.7 16.0 51.5
Ours 83.8 73.0 51.1 23.8 59.6

4. Experiments

4.1. Experimental Setup

Dataset. In this work, we use three widely used P-TAL
benchmarks. THUMOS’14 [18] is a widely used TAL
dataset. It contains 413 untrimmed videos with 20 sports
action categories. We use 200 validation videos as the train-
ing set and test on 213 testing videos. BEOID [8] includes
58 videos with 34 operation classes in 6 locations. We
follow previous work to use 46 videos for training and 12
videos for testing. GTEA [9] includes 28 untrimmed videos
recorded in the kitchen and contains 7 fine-grained actions.
21 and 7 videos are split for training and testing, respec-
tively.

Evaluation Metrics. For a fair comparison, we follow
the previous P-TAL works [11, 21, 33, 52] and use mean

Table 3. Results of incorporating TSP-Net into other P-TAL meth-
ods on THUMOS’14. ∗ represents the reproduced results.

Method
mAP@IoU (%)

0.1 0.3 0.5 0.7 AVG

SF-Net∗ [33] 68.1 52.3 29.1 10.9 40.4
SF-Net+Ours 75.5 57.9 33.1 12.3 44.8

BackTAL∗ [52] 66.8 54.4 36.3 14.8 43.7
BackTAL+Ours 77.1 63.5 43.4 19.7 51.7

LAC∗ [21] 74.8 63.7 45.9 21.8 52.5
LAC+Ours 82.3 70.1 49.4 24.5 57.4

Average Precision (mAP) as the evaluation metric. Con-
cretely, we evaluate mAP under different IoU thresholds
and compute their average.

As the center score learning is to learn the center align-
ment score. We design and compute the ratio of center
alignment rIoU between the instances and final proposals
under different IoUs as Eq. 11, where cig denotes center of
the i-th instance, c∗p denotes the center of matched proposal
with instance, lg denotes instance length, and N refer to the
number of instances. Imatch(·) is the indicator function that
gets 1 when the instance is matched with the proposal.

rIoU = 1
N

∑N−1
i=0 (1− Imatch(

∣∣c∗p − cig
∣∣ /lig)) (11)

Implementation Details. We first utilize Denseflow
[46] to extract the flow fields. For snippet-level feature ex-
traction, we follow previous work to use I3D [3] pre-trained
on Kinetics-400 in an open toolkit [7] as the extractor. The
dimension of the feature sequence is 2048, and the proposal
level feature dimension is 1024. The soft-value λ is set to
0.4. For saliency point updating, the update threshold θup
and update period pup are set to 0.8 and 200, respectively.
The refine threshold in alignment-based boundary adaption
is set to 0.4. In the training stage, the learning rate and
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Table 4. Ablation results for the proposed components in terms of
average mAP on THUMOS’14.

Setup AVG mAP@IoU(%)

PL CLG SPU ABA 0.1:0.5 0.3:0.7 0.1:0.7

62.1 44.6 52.5√
65.9 45.6 55.0√ √
66.5 46.5 55.7√ √
67.2 47.3 56.5√ √ √
67.6 47.7 56.9√ √ √ √
67.9 48.3 57.4

Table 5. Impact of hard center labels and soft labels with different
λ on localization performance on THUMOS’14.

Setup
mAP@IoU(%)

0.1 0.3 0.5 0.7 AVG

CLG-hard 81.5 68.7 48.1 23.9 56.2
CLG-soft (λ = 0.2) 82.0 69.0 48.2 23.6 56.6
CLG-soft (λ = 0.3) 81.9 69.5 49.0 24.5 57.1
CLG-soft (λ = 0.4) 82.3 70.1 49.4 24.5 57.4
CLG-soft (λ = 0.5) 82.2 69.5 48.9 23.9 56.8

Table 6. Ablation study of different types of updating strategy on
THUMOS’14.

Setup
mAP@IoU(%)

0.1 0.3 0.5 0.7 AVG

iterative 81.5 69.0 49.0 23.9 56.6
SPU 82.3 70.1 49.4 24.5 57.4

weight decay are set to 5e-5 and 0.001, respectively. The
balance factor α is set to 20, the batch size is 10, and the
total number of training iterations is 2000.

4.2. Comparison with The State-of-the-arts

We first evaluate the effectiveness of the TSP-Net on
THUMOS’14. The results are shown in Table 1 and in-
dicate that the performance of the proposed method largely
outperforms previous P-TAL and W-TAL methods in terms
of mAP at all IoU thresholds. Compared with CRRC-Net,
TSP-Net gets 3.3%, 3.2%, and 3.6% improvements on the
metrics of average mAP (0.1:0.5), average mAP (0.3:0.7)
and average mAP (0.1:0.7), respectively. We also compare
with the fully temporal supervised methods, and TSP-Net
can still achieve competitive performance. After that, we
conduct experiments on GTEA and BEOID, and the pro-
posed method surpasses the state-of-the-art P-TAL meth-
ods by a large margin in terms of average mAP (0.1:0.7) by
4.1% and 6.3%, respectively.

4.3. Generalization

The proposed method is exclusively focused on the oper-
ation of proposals and is agnostic to the structure of the base
locator. Consequently, TSP-Net can be easily integrated
into any P-TAL method. We employ three excellent P-TAL
methods to assess the generalization of TSP-Net on THU-
MOS’14. The results in Table 3 demonstrate a substantial

Table 7. Ratio of center alignment at different IoU(%).

Setup 0.1 0.3 0.5 0.7 AVG
Baseline 65.6 69.1 61.0 41.3 60.9
Ours 65.4 70.7 64.2 49.0 63.6

Table 8. Ablation of the information in proposals need to be used
for refining on THUMOS’14.

Setup
mAP@IoU(%)

0.1 0.3 0.5 0.7 AVG

w/ conf. refine 78.1 67.0 46.4 23.1 54.3
w/o maintain 78.9 67.0 46.6 20.6 54.1
w/o IoU info. 82.2 69.7 49.5 24.3 57.2
ABA 82.3 70.1 49.4 24.5 57.4

Table 9. Ablation of various point annotations.

Gaussian Manual Center Start End
AVG mAP 57.4 56.3 57.1 52.3 47.1

improvement in the performance of all methods when TSP-
Net is introduced to learn the proposals generated by the of-
ficial models. In particular, we observed that our approach
exhibited less improvement on SF-Net [33] due to its omis-
sion of multi-threshold proposal generation, resulting in a
significantly smaller number of proposals. This underscores
the importance of having an ample number of proposals for
the effective center score learning and boundary adaptation.

4.4. Ablation Study

In this section, we conduct extensive ablation studies
on the THUMOS’14 to demonstrate the proposed mecha-
nisms’ effectiveness and deeply analyze their effect. In each
study, we adopt the hyper-parameters set in implementation
details if not explicitly stated.

Effectiveness of the components. Table 4 indicates the
results of different combinations of components. ‘PL’ de-
notes the proposal learning without the saliency branch in
Sec. 3.2, ‘CLG’ and ‘SPU’ represent center label genera-
tion for learning aligned scores and saliency point updat-
ing, respectively, and ‘ABA’ denotes the proposed adaption
strategy in Sec. 3.4. Regarding average mAP (0.1:0.7), the
baseline only achieves 52.5% without any component. Af-
ter introducing proposal learning, the performance gets a
2.5% improvement. It indicates that using point annotations
to retrain the proposals can get more information about the
action and actionness. The aligned center score provides
the evidence to match the most complete proposal with the
ground truth and gets 56.5%. The combination of CLG and
SPU can achieve a 0.4% improvement due to the utilization
of more superior saliency points. In addition, whether cen-
ter score learning is introduced or not, ABA is effective and
achieves 55.7% and 57.4% in two conditions, respectively.
In addition to the final metric, results in Table 7 indicate
that the proposed framework benefits center alignment, es-
pecially when IoU is high.
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GT

LAC
w/o ABA

TSP-Net

CAS

Figure 4. Visualization of the localization of the base LAC, CAS
and the proposed method that applies ABA or not (IoU > 0.3). The
aligned confidence from TSP-Net can suppress the low-quality
proposals and increase the proposal completeness.

Impact of soft label in CLG. As mentioned in Sec.3.3,
the hard center label may cause the degradation of the
model. We conduct experiments on the hard-term center
score learning and the soft-term with various soft values λ
in Table 5. The hard-term label can only achieve 56.2%
in terms of average mAP (0.1:0.7) as the tough supervision
inevitably results in a wrong prediction for proposals con-
taining partial instances. The soft-term supervision with a
proper soft value can alleviate the issue, especially when
λ = 0.4, TSP-Net can achieve the best performance.

How to update saliency points. A conventional method
for updating manually constructed points or features in-
volves iterative updating using previously updated infor-
mation during the updating process [11]. In our ap-
proach, we update the points based on the initial points and
compare different strategies in Table 6. Results indicate
that iteration-based updating introduces cumulative noise,
whereas the initial-based approach effectively captures su-
perior saliency information.

How to adapt boundaries based on saliency informa-
tion. Compared with the boundary refining in [59], ABA
does not refine the learned confidence scores, retains the
proposals in the close-set, and introduces IoU information
for refinement. The results in Table 8 indicate that only
the boundaries need to be refined when the confidence is
aligned. The IoU information enables differentiation in the
adaptation process, and the retained sub-optimal proposals
are also valuable when action instances occur consecutively.

Influence of point annotations. We conduct an abla-
tion about the influence of various point annotations in Ta-
ble 9. The performance of manual annotation is worse as
some points fall in the boundary regions, but our method
still works well. When all the points are at boundaries, our
method fails, which also proves the value of our motiva-
tion. In fact, ideal absolute center is suboptimal in our work,
it breaks the commonality between features from the ac-
tion recognition backbone, CAS-based proposals [56], and
our motivation to always produce confident responses to
salient/distinguishable frames. Gaussian-based points sup-
press the points in the boundary regions while maintaining
a human-like annotation distribution and get the best result.

182.50s

182.34s

182.42s

182.47s

GT
center

SP
itr=0
SP

itr=400
SP

itr=800

Figure 5. Illustration of the proposed saliency point updating
strategy across various training iterations. As robust proposals
are identified and utilized, the initial saliency points progressively
converge toward their respective instance centers.

4.5. Qualitative Analyze

Qualitative comparison. In Figure 4, we qualitatively
compare TSP-Net with the baseline method LAC [21] at the
IoU larger than 0.3. The visualization indicates that the base
proposals with high confidence always overlap less with
the ground-truths as the confidence is seriously affected by
CAS. To make matters worse, many high-quality proposals
with high IoU are suppressed by post-processing operations
because of misaligned scores (the 5th instance in Figure 4).
After introducing center score learning, better-aligned con-
fidence can increase proposal completeness and success-
fully locate hard instances. Moreover, The completeness of
localization can be further improved when boundaries are
adapted using information from neighboring proposals.

Saliency point and instance center. As stated in Sec.
3.3, the closer the saliency point is to the center region, the
more valuable alignment information can be learned. We
visualize the process of the updating strategy in Figure 5.
The proposed SPU can continually adjust the saliency point
to generate more valuable labels.

5. Conclusion
In this study, we scrutinize the misalignment challenges

in P-TAL and introduce a plug-in proposal learning frame-
work for realigning confidence with proposals. We first
introduce the center score learning to get the aligned cen-
ter scores, and the alignment-based boundary adaption is
proposed to enhance the localization completeness dur-
ing inference. Experimental evaluations validate the effec-
tiveness, showcasing competitive or state-of-the-art perfor-
mance. Moreover, the framework is generalized for any P-
TAL method, revealing a novel relationship between point
labels and proposal quality.
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