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Figure 1. Given a monocular video sequence, our proposed FlashAvatar can reconstruct a high-fidelity digital avatar in minutes which can
be animated and rendered over 300FPS at the resolution of 512× 512 with an Nvidia RTX 3090.

Abstract

We propose FlashAvatar, a novel and lightweight 3D
animatable avatar representation that could reconstruct
a digital avatar from a short monocular video sequence
in minutes and render high-fidelity photo-realistic images
at 300FPS on a consumer-grade GPU. To achieve this,
we maintain a uniform 3D Gaussian field embedded in
the surface of a parametric face model and learn extra
spatial offset to model non-surface regions and subtle fa-
cial details. While full use of geometric priors can cap-
ture high-frequency facial details and preserve exagger-
ated expressions, proper initialization can help reduce the
number of Gaussians, thus enabling super-fast rendering
speed. Extensive experimental results demonstrate that
FlashAvatar outperforms existing works regarding visual
quality and personalized details and is almost an order
of magnitude faster in rendering speed. Project page:
https://ustc3dv.github.io/FlashAvatar/

1. Introduction
Achieving low-cost, high-fidelity digital humans with
real-time multi-modal interaction, natural expressions and
movements, etc., is a key underlying technology for many
AR and VR applications, such as immersive remote confer-
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encing. With this target in mind, this work aims to present
a high-fidelity animatable head avatar that enables efficient
reconstruction and lightning-fast rendering, such that the re-
maining computing resources can support other interactive
tasks of multi-modal digital humans.

Previous works have made notable progress, while there
still exist some shortcomings. 3D morphable models
(3DMMs) [25, 36] based methods [13, 21, 22] are compat-
ible with the standard graphics pipeline and can extrapolate
to unseen deformations. However, the limitations of relying
on coarse geometry and fixed topology prevent them from
modeling complex hairstyles or accessories like eyeglasses.
Works [1, 3, 10, 15, 17, 19, 59] building on neural implicit
representations [30, 31, 34] could well capture fine features
with great rendering quality and 3D consistency but com-
monly suffer from slow training and inference computation
speed. Motivated by works [6, 9, 27, 32, 41] for accelerating
Neural Radiance Field (NeRF) [31] rendering, [11, 49, 62]
apply voxel representations like voxel grids and multi-level
hash tables to speed up head avatar reconstruction. Never-
theless, the volume rendering mechanism of excessive sam-
pling and alpha composition still limits the inference speed.

Recently, 3D Gaussian Splatting (3D-GS) [20] revolu-
tionized radiance field rendering by introducing non-neural
3D Gaussians as geometric primitives and developing a
fast rendering algorithm that supports anisotropic splatting.
Follow-up works [48, 51] of 3D-GS have already extended
it to dynamic scenes by maintaining a canonical Gaussian
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Figure 2. Initialization in UV space corresponds to a more uniform
Gaussian position distribution, which could model full head details
better. We only sample points in the head region, including neck,
so the number of sample vertices is smaller than FLAME vertice
number 5023.

field and constructing another deformation field conditional
on timestamp. However, our experiments have demon-
strated that this “canonical + deformation” strategy cannot
robustly model dynamic head avatar with complex expres-
sions even if we replace the condition with more meaningful
expression code.

Based on these observations, we propose a novel avatar
representation named FlashAvatar. We initialize a mesh-
embedded Gaussian field to model the avatar’s main appear-
ance and facial expressions and learn extra offset to model
non-surface features and small facial dynamics. Specifi-
cally, we initially attach 3D Gaussians to the mesh surface,
which will move along with the mesh. In this way, we do
not need to learn large deformations caused by expression
changes. However, coarse mesh geometry does not involve
non-surface regions like hair or fine facial details like wrin-
kles. Thus, we use an additional offset network to predict
the spatial offsets of 3D Gaussians.

While attaching Gaussians to 3D mesh vertices is a quite
straightforward strategy, it is hard to recover complete sur-
face information since the position distribution of vertices is
highly uneven. Direct sampling on mesh faces has the same
problem of unevenness. Instead, we conduct a flexible UV
sampling and turn to maintain a canonical Gaussian field in
the UV space. This sampling strategy supports easy density
control of Gaussians and generates a much more uniform
position distribution (see Fig. 2), which leads to better re-
construction results.

With the help of uniform UV sampling and criti-
cal mesh-attached initialization, we achieve photo-realistic
head avatar representation with as few 3D Gaussians as
possible. Compared with existing 3DMM-based methods,
mesh topology will not restrict our representation as tracked
meshes only provide initial position distribution and serve
as motion-driven tools. Compared to works building on
neural implicit representation, we fully introduce geomet-

ric priors, exploit the potential of Gaussian-based radiance
field, and thus enable super-fast training and inference. In
summary, our contributions include the following aspects:
• We combine Gaussian splats with 3D parametric face

model by attaching the Gaussians to the mesh surface and
learning extra offsets to model detailed facial dynamics
and non-facial features, which leverages dynamic and ge-
ometric priors to a great extent and increases the training
efficiency.

• Our uniform and flexible UV sampling enables optimal
mesh-based initialization, which compresses Gaussian
number to 10K level and helps achieve a stable render-
ing speed at 300FPS at the resolution of 512× 512.

• Experiments demonstrate the high fidelity of our ap-
proach even on challenging cases, recovering almost all
fine facial details, thin structures, and subtle expressions.

2. Related Work
2.1. Digital Head Model

Digital head model could be classified into explicit and
implicit representations. Explicit representations based on
mesh have a long history of development. 3DMM [4] first
embeds 3D head shape into several low-dimensional PCA
spaces. After that, many works [5, 14, 25, 38, 45, 46, 50, 56]
are proposed and used for improvement of representation
ability. Recently, [22, 43, 44] adopt 2D neural rendering
for photo-realistic portrait synthesis but either ignore non-
facial regions or suffer from temporal and spatial incon-
sistencies due to their loose bound to the 3D geometry.
[8, 13, 21] opt to learn vertex offset on the head geome-
try to reconstruct the detailed head model. However, ge-
ometry and texture artifacts may occur in hair, eyes, and
mouth regions because of the limited representation abil-
ity of the mesh model and the approximated differentiable
rendering. PointAvatar [60] proposes a deformable point-
based representation, which breaks through the limitation
of mesh-based models but needs excessive points and long-
time training. Implicit head models use neural functions to
represent digital head avatars. There have been extensive
works on personalized head modeling [1, 10, 58, 59]. They
tend to maintain high fidelity but must be more efficient in
training or inference. [28] uses volumetric primitives to im-
prove inference efficiency, and [11, 49, 62] use local feature
grid to reduce the learning burden of neural network and ac-
celerate the training process. To our knowledge, our work
is the first to introduce a mesh-guided Gaussian field for
modeling head avatars.

2.2. Scene representations with 3D-GS

3D Gaussian Splatting [20] is currently the SOTA method
of scene reconstruction and novel view synthesis regard-
ing rendering speed and visual quality, which inspires a se-
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ries of works. [7, 42, 52] adapt 3D-GS into 3D generative
tasks by optimizing Gaussian field using score distillation
sampling (SDS) [37]. DreamGaussian [42] also designs
an efficient mesh extraction algorithm for the Gaussian
field. Dynamic3DGS [29] first extends 3D-GS to model
dynamic scenes, reconstructing the “point cloud” frame by
frame. Different from [29], Deformable3DGS [51] and 4D-
GS [48] focus on monocular dynamic scene reconstruction.
They both maintain a canonical 3D Gaussian space and op-
timize an additional deformation field conditional on times-
tamp. Our work uses 3D-GS to represent dynamic head
avatars with complex facial alterations. Rather than adopt-
ing the “canonical + deformation” strategy, we attach 3D
Gaussians to the head mesh and learn dynamic offsets to
model photo-realistic avatars.

2.3. Radiance field acceleration

Neural radiance field (NeRF) [31] and follow-up works [2,
33, 47, 55] significantly develop scene representation but
suffer from low rendering efficiency. To accelerate radi-
ance field training and rendering, most works make full
use of voxel-based structures like octree [9, 27] and voxel
grid [12, 16, 41] by baking information into them which
usually needs large cache. INGP [32] adopts a more com-
pressed compact data structure (i.e. multi-resolution hash
table) and achieves a speedup of several orders of magni-
tude on training speed but struggles to achieve the visual
quality obtained by SOTA NeRF methods [2]. Recently,
3D-GS [20] replaces neural primitives with non-neural 3D
Gaussians and designs a fast tile-based rasterizer for Gaus-
sian splats, which guarantees both quality and speed. We
apply it to dynamic head representation. Via rational po-
sition initialization and density control for Gaussians, we
significantly compress the number of used Gasussians and
achieve instant training and a stable rendering frame rate at
300FPS.

3. Background
3D Gaussian Splatting. Different from previous methods
[24, 53], which use 2D points with normals to represent
a scene, 3D-GS [20] chooses 3D Gaussians as geometric
primitives of scenes. Every Gaussian is defined by a 3D
covariance matrix Σ centered at point µ:

g(x) = e−
1
2 (x−µ)

TΣ−1(x−µ) (1)

To enable differentiable optimization, the positive semi-
definite matrix Σ can be decomposed into a rotation matrix
R and a scaling matrix S corresponding to learnable quater-
nion r and scaling vector s:

Σ = RSSTRT (2)

Given a viewing transformation W and the Jacobian J of
the affine approximation of the projective transformation,

3D Gaussians are projected to 2D space for rendering fol-
lowing [63]:

Σ′ = JWΣWTJT (3)

Besides spatial parameters µ, r and s, we attach every 3D
Gaussian another two attributes: opacity o and spherical
harmonic (SH) coefficients h representing color c. The final
color for a given pixel is calculated by sorting and blending
the overlapped Gaussians:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (4)

where αi represents the density computed by the 2D Gaus-
sian with covariance Σ′ multiplied by opacity o.
Analysis. The non-neural nature of 3D-GS reminds us that
combining it with concrete mesh will be a new solution
to avatar representation. PointAvatar [60] follows similar
guidance by using point cloud as the basic representation.
In comparison, 3D Gaussian allows anisotropic splatting
and fast back-propagation, which is undoubtedly more ex-
pressive and easy to optimize.

As in NeRF [31], sampled points near the surface of ob-
jects always play a critical role in volume rendering. We
assume that modeling avatars with 3D Gaussians follows
the same rule, and the ideal Gaussian distribution would be
concentrated on the head surface. Thus, it motivates us to
attach Gaussians to FLAME mesh surface initially.

The densification scheme of 3D-GS helps model general
scenes but leads to explosion and uncertainty of Gaussian’s
number, which takes more memory consumption and slows
down rendering speed. Since the complexity of head avatars
is within a specific range, it is reasonable for us to main-
tain a fixed number of Gaussians for all subjects instead of
adopting the rough splitting strategy of 3D-GS.

4. Methods
Given a monocular video consisting of images I = {Ii}
along with camera intrinsic parameters K, camera poses
P = {Pi} and tracked FLAME [25] meshes M = {Mi}
with corresponding expression codes Ψ = {ψi}, we aim to
recover high-fidelity head avatars efficiently with great ren-
dering speed. By fully utilizing the geometric prior knowl-
edge learned in the face-tracking process and the strong rep-
resentation ability of 3D-GS, we achieve instant training,
photo-realistic visual quality, and rendering speed at 300
FPS. An overview of the proposed model is shown in Fig. 3.

4.1. Surface-embedded Gaussian Initialization

Previous head representations based on implicit functions
usually build connections with 3DMM by simply utilizing
expression code [10] or transformation of the closest point
on mesh between canonical and deformed space [1, 62]. In
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Figure 3. Overview. We initially maintain the 3D Gaussian field in 2D UV space and embed them into dynamic FLAME mesh surfaces
through mesh rasterization. For every surface-embedded 3D Gaussian, the offset network takes tracked expression code and the corre-
sponding position of the Gaussian center on canonical mesh as input, outputs the spatial offset, including position, rotation, and scaling
deformation. The deformed Gaussians are then splatted to render the image with a given pose.

Figure 4. To well model interior mouth, we close the mouth cavity
of FLAME mesh with additional faces and broaden up correspond-
ing area on UV map.

this way, they fail to fully use the geometric priors of mesh.
Our solution is to initially attach 3D Gaussians to the mesh
surface, which will move along with the mesh, and we con-
duct this through UV sampling.

UV Sampling. We conduct UV sampling to locate Gaus-
sian’s position on the mesh surface. By rasterizing the
FLAME mesh in world space to UV space, we can get a
one-to-one correspondence between UV pixels and mesh
surface positions. We sample on the UV map and thus main-
tain a canonical uniform 3D Gaussian field in 2D UV space.
Since the same mesh topology shares fixed UV parameter-
ization, we only need to conduct rasterization [39] once.
When expression changes, the corresponding 3D position
of Gaussians can be obtained by weighting vertex coordi-
nates using fixed barycentric coordinates.

We can conveniently control Gaussian density by adjust-
ing UV map resolution, sampling interval, and even the cov-
ering area of different parts on the UV map based on se-
mantic correspondence. For example, we broaden up the
interior mouth area on UV considering the complexity of
the internal structure of mouth. It is worth noting that we

add additional faces to close the mouth cavity since original
FLAME mesh does not model interior mouth (see Fig. 4).

According to Sec. 3, Gaussian field can be parameterized
as G = {µ, r, s, o,h}. Through UV sampling, we have
defined the initial position of mesh-attached Gaussians µM .
And in our settings, opacity o, SH coefficients h, rotation
r and scaling s are learnable parameters. While the former
two attributes, which decide the main appearance of avatars,
converge to be fixed, the last two spatial parameters together
with µM are added with extra deformation to model non-
surface features as well as dynamic details of the face.

4.2. Gaussian Offset

We denote the centers of mesh-attached Gaussians as µM
and corresponding positions on canonical mesh µT . Even
though main position deformation caused by expression
changes has been modeled by µM compared to µT , non-
surface regions and subtle facial details are not considered,
and we model them through further adding dynamic spatial
offset to Gaussians. The offset network is an MLP Fθ that
takes µT and ψ as input, and outputs spatial residuals of
Gaussians:

∆µψ,∆rψ,∆sψ = Fθ(γ(µT ), ψ) (5)

where γ denotes the positional encoding as introduced by
Mildenhall et al. [31]. Then, the final spatial parameters of
Gaussians can be computed as:

µψ, rψ, sψ = (µM ⊕∆µψ, r⊕∆rψ, s⊕∆sψ) (6)

As we initially attach 3D Gaussians to mesh faces, the re-
gion a group of Gaussians could influence may expand or
shrink with the altering size of mesh faces, especially in the
early training process. By adjusting scaling dynamically to-
gether with position and rotation, we can better model fixed-
size parts like teeth.
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Figure 5. Qualitative comparisons with state-of-the-art head avatar reconstruction methods. Our model well reconstructs facial details, thin
structures, and subtle expressions while achieving a remarkable rendering speed over 300FPS.

4.3. Training Scheme

Corresponding to expression ψ, our 3D Gaussians field
will be G = {µψ, rψ, sψ, o,h}. And following Equation
Eq. (4), we will get the rendering image Î .

To measure the photometric error, we use Huber loss [18]
with δ = 0.1:

LH(x, x̂) =

{
1
2 (x− x̂)2 if |x− x̂| < δ

δ((x− x̂)− 1
2δ) otherwise (7)

Specifically, we conduct bigger weight for mouth region
with mask M, so the photometric loss LC is defined as:

LC = LH(I, Î) + λmouthLH(I · M, Î · M) (8)

In addition to photometric loss LC , we adopt perceptual
loss Llpips proposed in [57] and choose VGG [40] as the
backbone of LPIPS. The perceptual loss significantly im-
proves the details of rendered results, and the structure reg-

ularization it brings helps stabilize the training process as
well. The total loss is defined as:

L = LC + λlpipsLlpips (9)

4.4. Implementation Details

We implement our network with PyTorch [35], conduct
mesh rasterization using PyTorch3D [39] and keep the dif-
ferential Gaussian rasterization presented by 3D-GS [20].
For FLAME tracking, we use the analysis-by-synthesis-
based face tracker from MICA [61] further modified in IN-
STA [62]. And the expression code ψ is the concatenation
of tracked expression coefficients, eyes pose, jaw pose, and
eyelids coefficients.
Gaussian initialization and deformation. We set the UV
map resolution to 128, sample every UV pixel with corre-
spondence to the head region, including the neck, and the
total Gaussian number is 13453. We set the depth of offset
MLP D = 5 and the dimension of hidden layer W = 256.
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Figure 6. Our model builds on a non-neural Gaussian field and
shows excellent 3D consistency.

Source Ours INSTA PointAvatar NHA

Figure 7. Qualitative results of ours and three other methods on
facial reenactment task. Our method preserves personalized facial
details in hair, eyes, and interior mouth regions and synthesizes
more natural results.

Optimization. Parameters required to be optimized include
attributes of 3D Gaussians except for position and parame-
ters of the offset network. We train our models using an
Adam optimizer [23] with β = (0.9, 0.999). The learning
rate of Gaussians’ parameters is the same as the official im-
plementation, while the learning rate of the offset network
is η = 1e − 4. We choose λmouth = 40 and we set λlpips to
0 in the first 15000 training steps and 0.05 later. For each
epoch, we randomly sample 2000 frames from the training
dataset for training.

5. Experiments
5.1. Dataset

To prove the robustness and fidelity of our methods, We
mainly use the data released by previous works [11, 13, 44,

Metrics NHA PointAvatar INSTA Ours

MSE(10−3)↓ 1.49 2.47 0.95 0.66
L1(10−2)↓ 0.99 1.52 0.89 0.83
PSNR↑ 28.80 27.03 30.54 32.33
SSIM(10−1)↑ 9.31 9.00 9.40 9.42
LPIPS(10−2)↓ 4.01 5.89 3.76 3.23

Table 1. Quantitative comparisons with state-of-the-art head avatar
reconstruction methods on public data released by previous works.
Our method outperforms others both in pixel-wise error metrics
and perceptual quality.

62], and we appreciate a lot for their sharing. All videos
are cropped, sub-sampled to 25 FPS, and resized to 5122

resolution in advance. The length of the processed video is
between 1 and 3 minutes, and we use the last 500 frames as
the testing dataset. We use RVM [26] for foreground seg-
mentation and an off-the-shelf face parsing framework [54]
for mouth region parsing.

5.2. Comparison with Representative Methods

We compare our method with three representative works,
including (1) neural head avatar (NHA) [13], typical work
of explicit mesh-based methods; (2) PointAvatar [60], mod-
eling the head geometry with particle-based representation
(i.e. point clouds) similar to us; and (3) INSTA [62], rep-
resentative of efficient implicit head representation which
creates a surface-embedded dynamic neural radiance field
based on neural graphics primitives. Note that for PointA-
vatar, the full training requires 80GB A100 GPU, but we
train it on 32GB V100 and use fewer points and earlier
checkpoints exactly following the author’s suggestions. All
other experiments were done on 24GB Nvidia RTX 3090.
NeRFBlendshape [11], AvatarMAV [49], and INSTA all
emphasize training acceleration. We choose INSTA for
comparison as it provides tracking code, models neck re-
gion, and is almost the latest work among them. FlashA-
vatar is not only on par with them in training efficiency but
also far surpasses them in rendering speed.

Fig. 5 depicts the qualitative comparison between our
model and the above methods. As we can see, the repre-
sentation ability of NHA is restricted by the explicit mesh
domain, and it may generate undesired geometric artifacts.
INSTA uses neural graphics primitives embedded around
the FLAME surface and thus cannot well model accessories
like eyeglasses and earphones. Also, it tends to generate
smooth results and ignore thin structures, especially in the
hair region. As for PointAvatar, the stack of points could re-
cover glasses and earphones, but it still fails to model subtle
expressions and clear teeth even with huge memory con-
sumption. In contrast, our method produces photo-realistic
images most consistent with the ground truth. We recover
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Ground Truth Ours C + D (UV Init) C + D (Random Init)

Figure 8. Comparison with “canonical + deformation” strategy. This strategy could get better results with the help of our uniform UV
sampling but still fails to capture subtle expression details as well as ours.

almost all fine facial details, thin structures, and subtle ex-
pressions with 3D Gaussians in 10K level.

Tab. 1 shows the quantitative comparison between our
model and other methods. We compute the average errors
of tested videos. The metrics include Mean Squared Error
(MSE), L1 distance, PSNR, SSIM, and LPIPS [57].

As both mesh dynamics and later Gaussian deformation
condition on tracked expression code disentangled from
identity space, we could conduct facial reenactment task at
super-fast rendering speed with no difficulty. We show the
result of compared methods and ours in Fig. 7. Also, the ba-
sic representation of 3D head avatars in our method is pure
non-neural 3D Gaussians, so we can freely adjust the global
camera pose to generate target results with any desired ren-
dering view (see Fig. 6).

5.3. Comparison with C + D strategy

While the “canonical + deformation” (C + D) strategy is
a common way to model dynamics, it struggles to model
complex expressions accurately and capture all facial de-
tails, especially when we restrict the number of Gaussians
to a low level (see Fig. 8). Following former works [48, 51],
we randomly initialize the Gaussians in a ball (scaled by
the mean size of the head), solely train the canonical 3D
Gaussians during the initial 3k iterations and then jointly
train Gaussians and the deformation field. However, this
common strategy fails to get an acceptable head avatar with
many artifacts existing, especially around the head edges.
And if we introduce partial geometry priors by initializ-
ing canonical Gaussians on the mesh surface the same as
ours, most artifacts disappear, but subtle expression details
are still not well captured. By comparison, we just need to
model extra offset on the basis of a mesh-dependent Gaus-
sian field. Thus, our method can hold exaggerated expres-
sions and preserve fine details with the help of mesh geom-
etry guidance.

5.4. Training Efficiency

We achieve a remarkable rendering speed over 300FPS.
Meanwhile, we demonstrate that our training process is su-
per efficient as well in Fig. 9. We are able to recover the
coarse appearance of head in several seconds and recon-
struct the photo-realistic avatar with fine hair strands and
textures within a couple of minutes. We conduct both train-
ing and inference on a single Nvidia RTX 3090.

5.5. Ablation Studies

Gaussian Sampling Density. We mainly control the den-
sity of Gaussians by adjusting resolutions of the UV map,
and Tab. 2 shows the influence of Gaussian sampling den-
sity. While sampling more Gaussians will lead to quality
improvement, it will also slow down rendering speed. We
set UV resolution to 128 but also advise adjusting sampling
density according to specific needs.

UV Resolution PSNR↑ LPIPS(10−2)↓ FPS # GS

64 30.35 4.47 394 3348
128 30.80 3.47 304 13453
256 31.07 2.99 112 53678

Table 2. Influence of Gaussian density. We set the UV Resolution
to 128 in the process of comparison.

Surface Embedding Methods. Attaching Gaussians
to mesh vertices cannot converge to satisfactory results
(see Fig. 10). Gaussian initialization in UV space is much
more uniform than vertice initialization and thus we could
get more photo-realistic results with fewer 3D Gaussians.

Distributing Gaussians more carefully or adaptively ac-
cording to the complexity of different regions and semantic
correspondence could get better results, but Tab. 2 has also
shown that further processing like local pruning or densifi-
cation can only get slight improvement on rendering quality
and speed on the base of our settings.
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Figure 9. Besides significantly fast rendering speed at 300FPS, our training process is also efficient. High-frequency details like hair
strands and teeth are fully reconstructed within a few minutes.

Ground Truth Ours UV128 Ours UV64 Vertice Init

Figure 10. More uniform face initialization leads to better results
than vertice initialization.

Ground Truth Dynamic Offset Static Offset

Figure 11. A dynamic offset field is of great importance to model-
ing fine facial expressions.

Dynamic Offset. Although optimizing a static offset field
could well reconstruct static areas like hair regions, it fails
to well model facial alterations due to the coarse geometry
of FLAME mesh and the complexity of facial expression.
As shown in Fig. 11, better visual results with higher fi-
delity can be obtained by learning a dynamic offset field
conditional on expression code.

6. Conclusion and Discussion
In this paper, we have proposed FlashAvatar, which tightly
combines a non-neural Gaussian-based radiance field with
an explicit parametric face model and takes full advantage
of their respective strengths. As a result, it can reconstruct
a digital avatar from a monocular video in minutes and ani-

mate it at 300FPS while achieving photo-realistic rendering
with full personalized details. Its efficiency, robustness, and
representation ability have also been verified by extensive
experimental results.

Limitations and Future Work. Our method still has sev-
eral challenges that need to be addressed in future work.
While learning Gaussian offset could compensate for the
inaccuracy of tracked mesh surface, our method still relies
on a good surface-embedded Gaussian initialization. There-
fore, large errors in tracking, especially global pose errors,
may cause loss of details or image misalignment. Besides,
our representation conditions on tracked expression code
and thus cannot model dynamically changing hairs with
heavy non-rigid deformation.

Existing works struggle to achieve real-time frame rates
for high-fidelity inference, even on high-end hardware.
In contrast, FlashAvatar achieves a much faster rendering
speed at 300FPS on a consumer-grade GPU with SOTA ren-
dering quality. Therefore, there will be more room for other
processes in real-time tasks for multimodal digital humans,
such as speech processing, text understanding, and cross-
modal translation, with the help of FlashAvatar. One of our
future works is to explore its potential in scenarios on mo-
bile and mixed reality devices. We believe that our work is
a solid step forward in research and practical applications
of multimodal digital humans.
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