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Q1. Why did the baby pick up one present from 
the group of  them and move to the sofa? 

Q2. Why was there torn wrapping paper on the 
ground near the sofa at the end of  the video? 

Unwrap it. 
(Prediction)
Man tears it.
(Prediction) 

Boy threw it there. 
(Ground Truth) 

Unwrap it. 
(Ground Truth)

… … …
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Figure 1. Top: Real predictions of VQA models (BlindQA, SigFQA and SoTA) on NExT-QA [55]. All the models correctly answer Q1 but
wrongly answer Q2, albeit the two questions sharing visual evidence (the boy unwraps the present and throws the wrapping paper). Bottom:
Overlap in model predictions. BlindQA: A pure language model (i.e. RoBERTa [36]) fine-tuned with question-answer text. SigFQA: An
image-text model (i.e. CLIP [44]) using only the center video frame. SoTA: Temp[CLIP] (Sec. 5) model using 32 video frames. The analyses
indicate that the models may not learn from causal visual content but more likely from language short-cut and irrelevant visual context.

Abstract

We study visually grounded VideoQA in response to the
emerging trends of utilizing pretraining techniques for video-
language understanding. Specifically, by forcing vision-
language models (VLMs) to answer questions and simul-
taneously provide visual evidence, we seek to ascertain
the extent to which the predictions of such techniques are
genuinely anchored in relevant video content, versus spuri-
ous correlations from language or irrelevant visual context.
Towards this, we construct NExT-GQA – an extension of
NExT-QA with 10.5𝐾 temporal grounding (or location) la-
bels tied to the original QA pairs. With NExT-GQA, we
scrutinize a series of state-of-the-art VLMs. Through post-
hoc attention analysis, we find that these models are ex-
tremely weak in substantiating the answers despite their
strong QA performance. This exposes the limitation of cur-
rent VLMs in making reliable predictions. As a remedy,
we further explore and propose a grounded-QA method via
Gaussian mask optimization and cross-modal learning. Ex-
periments with different backbones demonstrate that this

grounding mechanism improves both grounding and QA.
With these efforts, we aim to push towards trustworthy VLMs
in VQA systems. Our dataset and code are available at
https://github.com/doc-doc/NExT-GQA.

1. Introduction

Video Question Answering (VideoQA) has recently
emerged as a golden testbed to develop vision-language
models (VLMs), especially foundation VLMs pretrained at
scale on multi-modal web corpora [1,11,24,29,51,61,63,66].
Despite significant advancements in QA performance, a fun-
damental concern arises – whether or to what extent are
the answers of such techniques grounded on the relevant
visual content? Alternatively, are they relying on the lan-
guage short-cut for the use of powerful language models
[20, 34, 42, 52, 62, 64, 69, 70, 73] or spurious vision-language
correlation captured via cross-modal pretraining [45, 60]?

For example, Fig. 1(Top) shows that existing VLMs
are inclined to answer questions with language-biased pre-
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dictions, e.g., “unwrap (Q1: present)” and “tear
(Q2: paper)”. Fig. 1(Bottom) shows that the overall
predictions of SoTA VLMs overlap the predictions of stan-
dalone language models (BlindQA), i.e., models without
visual inputs, by 62.5%. In fact, the BlindQA counterpart
shares 66% of correct predictions and also 79% of the wrong
predictions in SoTA VLMs. The overlap increases by inject-
ing a coarse visual signal from a single frame [3,23] into the
language model; as our later analysis will show, this frame
often lies outside the key moments of the correct answers.

Given these findings, a natural question arises – to what
extent are the predictions of current VLMs grounded on
the video content, and more precisely on the relevant parts?
To answer this, we propose to study visually grounded
VideoQA. Grounded VQA requires VLMs to answer the
questions and simultaneously output the relevant video mo-
ments to support the answers. Earlier works have explored
grounded QA under full supervision [25, 26], but we target
visual explanability in VideoQA and thus define the task
under weak-supervision, which is the first of its kind.

To accomplish the goal, we construct the NExT-GQA
(short for Grounded) dataset by extending the NExT-QA
dataset [55] with 10.5𝐾 temporal labels of start and end
timestamps for the QA pairs in the validation and test sets.
The labels are manually annotated and checked to be key for
comprehending the questions and determining the correct
answers. With NExT-GQA, we examine a series of recent
high-performing VLMs, including task-specific architectures
without pretraining [57] and pretrained models with either
image-text or video-text data [11, 44] and those using frozen
large language models (LLMs) [62, 64]. Our findings reveal
that all these models struggle to predict visually grounded
answers, despite their strong QA performance. For example,
the SoTA model [62] achieves QA accuracy of 69%, but only
16% of the correctly predicted answers are grounded in the
video. In contrast, humans can ground 82% out of the 93%
of the correctly answered questions. Such clear discrepancy
underscores the need for continued research efforts.

As a pioneering solution, we propose a temporal ground-
ing approach which can be easily applied to existing VLMs
for visually grounded VideoQA. Specifically, our approach
learns differentiable Gaussian masks along the temporal
dimension of the videos, by optimizing light-weight trans-
former layers under both VQA and question-video (QV)
supervisions, without the need for temporal labels. Exper-
iments with different QA backbones demonstrate that our
approach effectively improves video grounding and question
answering as well. The improvement is especially significant
on a subset of questions that necessitate video understanding
and temporal grounding.

To summarize our contributions: 1) we conduct the first
study of weakly grounded VideoQA, and release the NExT-
GQA benchmark, to facilitate research on more trustworthy

VLMs; 2) we comprehensively analyze a wide range of
advanced VLMs and reveal their limitation in performing
visually grounded QA; 3) we propose a simple yet effective
grounding mechanism which not only enhances existing
VLMs in visual grounding but also contributes to new SoTA
QA performance, e.g., 73.1% on NExT-QA test set.

2. Related Work
Benchmarks Grounded VQA with full supervision has
been studied in both image [4, 77] and video [25, 26] do-
mains. Recently, weakly-supervised grounding has received
increasing attention in ImageQA [18, 19] and video ground-
ing [12, 39]. Nonetheless, to our best knowledge, there is
no work for weakly-grounded VideoQA. Also, existing su-
pervised benchmarks are either biased towards localizing
subtitles in TV shows (e.g. TVQA [25]) or limited to few
objects (e.g. VidSTG [72]). Thus, they are not ideal bench-
marks for visual evidence grounding.

Techniques Strong VideoQA methods are predominantly
banked on transformer [49] and pre-training [44]. The pop-
ular transformer architectures follow either shared [24, 50],
dual [57, 58, 60, 61] or stacked [11, 29, 62] implementa-
tions, and pre-training is done with image-text [24], video-
text [29, 61, 65, 66] or both [11] forms of data. Notably, all
these VLMs use powerful language models (e.g., BERT [8],
T5 [45], GPT [2], LLaMA [48] or their successors) for text
encoding and focus on improving QA while ignoring visual
evidence grounding. Some recent works [5, 30–33, 43, 64]
have begun to ground key frames or objects for VideoQA.
Yet, they still aim to improve QA accuracy, and thus the
grounded contents may not be the actual evidences since they
do not evaluate grounding. For weakly-supervised video
grounding, typical approaches extract temporal proposals
and rank the proposals according to their similarities with the
language query [13, 35, 39, 71]. Despite their effectiveness,
these two-stage approaches are notorious for inefficient and
sub-optimal for multi-granular temporal modelling. More re-
cent research [74, 75] points to the superiority of end-to-end
Gaussian mask learning. In light of this, we design a simple
yet effective Gaussian mask learning module for ground-
ing in VideoQA. Unlike previous works [74, 75] that design
small transformer models and hand-craft negative visual pro-
posals for contrastive learning, we integrate Gaussian mask
learning into large VLMs and optimize its parameters via
question-answering and video-question grounding.

Language Priors Our work is also related to efforts in
preventing language priors and other spurious correlations.
Goyal et al. [14] construct VQAv2 to prevent language pri-
ors in VQA by pairing the questions with additional images
that carry similar contents but with different answers. Niu
et al. [40] and Guo et al. [15] alleviate language priors by
regularizing the prediction scores. Zheng et al. [67] develop
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Table 1. Statistics of NExT-GQA.

Split #Vid. #Que. #Seg. Seg. Dur.(s) Vid. Dur.(s) Ratio (S./V.)

Train 3,860 34,132 - - 44.9 -
Val 567 3,358 3,931 7.3 42.2 0.2
Test 990 5,553 6,600 6.7 39.5 0.2

X2-VLM via multi-grained vision-language pretraining for
better spatial grounding. These works discourage short-cut
learning in the image side by either collecting new data,
designing tailored-made learning methods, or focusing on
spatial grounding. Our primary contribution lies in defin-
ing the weakly-grounded VideoQA task to encourage more
interpretable and trustworthy techniques.

3. NExT-GQA Dataset
3.1. Dataset Construction and Analysis

Data Source. We choose NExT-QA [55] as our
data source to augment with temporal labels. Most
of the other VideoQA datasets [17, 59] are not suit-
able because they feature short videos (3 ∼ 15s) already
trimmed around the relevant content. NExT-QA has
three different types of questions: Causal (“why/how”),
Temporal (“before/when/after”) and Descriptive
(“what/who/where”). We exclude the descriptive ques-
tions because they mostly pertain to global video content
(e.g., “what event?”) or their answers can be found al-
most throughout the whole video (e.g., “where is?”). In
addition, we only label the validation and test sets since we
aim for a weakly-supervised setup. As a result, 11,378 QA
pairs drawn from 1,570 videos [47] are to be annotated.

Label Collection. We invite undergraduate students for
annotation (using Elan [10]) and train them with our demo
annotations together with some trial examples following spe-
cific criteria (see Appendix A.1) before the actual annotation
exercise. To guarantee quality and reduce subjectiveness,
each QA pair is annotated by at least two people. The fi-
nal temporal label is determined by an additional check and
refinement of the two accepted annotations. The entire ex-
ercise lasted around 2 months with a team of 30 annotators.
Eventually, we collect 10,531 valid temporal segments cor-
responding to 8,911 QA pairs and 1,557 videos. Detailed
statistics are presented in Tab. 1.

Label Analysis. Fig. 2a(left) shows that most of the
segments last for less than 15s, and with an average duration
of 7s (Tab. 1) which is short compared to the video length
(∼40s). In fact, the ratio reflected in Fig. 2a(right) shows
that most of the segments occupy less than half (0.5) length
of the videos, and the average ratio is merely 0.2 (Tab. 1.
This ratio is slightly low, compared to that of 0.3 for both
ActivityNet-Caption [21] and Charades-STA [12]. Moreover,
Fig. 2b(1) shows that the segments are evenly distributed
in the left, middle and right parts of the video. Fig. 2b(2)
shows that near 90% of the QAs ground on a single temporal
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Figure 2. Distribution of temporal segments.

segment. Conversely, Fig. 2b(3) shows that each segment
often corresponds to 1 or 2 QAs (Here two segments are
considered the same if their IoU > 0.5). To better understand
the dataset, we show two examples in Appendix Fig. 6.

3.2. Comparison with Existing Benchmarks

We highlight the uniqueness of NExT-GQA by comparing
it with other relevant benchmarks in Tab. 2.

NExT-GQA vs. NExT-QA. NExT-QA [55] targets the
prediction of text answers. NExT-GQA differs in two ma-
jor aspects: 1) it provides visual evidence to support the
answers, and 2) it extends the VQA setup by allowing vi-
sual answers. This satisfies more real-world applications
and additionally helps to better diagnose model performance.
For example, is a prediction wrong because the model failed
to localize the relevant video contents, or because it could
not convert the localized video contents into a text answer?
NExT-GQA is also more challenging, because: 1) the mod-
els need to achieve multiple goals (i.e., grounding and QA)
and maintain their consistency, and 2) the set of questions
are relatively harder to answer by focusing on local video
moments in untrimmed long videos. This also differs from
major VideoQA benchmarks that focus on trimmed (short)
video understanding [17, 53, 59].

NExT-GQA vs. Video Grounding (VG) Benchmarks.
Video grounding [12, 21] aims to find a video moment de-
scribed by a declarative sentence. NExT-GQA shares core
challenges, i.e., cross-modal correspondence learning and
multi-granular temporal modelling, while featuring some
unique aspects. First, the questions feature visual content for
grounding which is not explicitly stated in the text, such as
“a baby falls and cries.” vs. “why did the
baby cry?”. To answer the questions, the models not
only need to find the described video moments (e.g., “baby
cries”) but also should be capable of refining the moment
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Table 2. Benchmark comparison. GD: Grounding. MM: Multi-
modal. Acc: Accuracy. IoU/P: Intersection over Union/Prediction.

Datasets GD QA Weak Sup. Goal Eval

ActNet-Cap [21]
√

×
√

VG IoU
Cha-STA [12]

√
×

√
VG IoU

TVQA [25]
√ √

× MMVQA Acc, IoU
VidSTG [72]

√ √
× VG IoU

NExT-QA [55] ×
√

× VQA Acc

NExT-GQA
√ √ √

Trust VQA Acc, IoP, IoU

to enclose the answer (e.g., “baby falls”). This may
ask for temporal and causal relationship reasoning. Sec-
ond, the video backgrounds are relatively monotonous with
little scene change. Accordingly, the temporal segments
of QA pairs are often more fine-grained than those in VG
benchmarks. Notably, NExT-GQA prioritizes finding visual
evidence to support the answers. This means that any individ-
ual frame or moment that sufficiently tells the answer should
be considered as a valid grounding instead of retrieving all
of the video contents that match the query. This is reflected
in our selection of intersection over prediction (IoP) as an
evaluation criterion. That is, a correct grounding depends on
whether the predicted segment falls into the labelled segment
but is not necessarily an exact match.

NExT-GQA vs. Supervised benchmarks. Fully-
supervised benchmarks [25, 26] provide temporal annota-
tions for training data; the labels can resolve reference am-
biguities in the questions or improve QA performance with
well-localized visual inputs. NExT-GQA differs from them
by seeking to identify visual evidence that explains the an-
swers with QA supervision alone. It is worth mentioning
that directly applying the fully-supervised benchmarks for
weakly grounding does not suit our goal, because these
benchmarks are either biased to text localization [25] or
the answers are a limited set of, e.g. 80 objects [72]. Addi-
tionally, we focus on weakly-supervised temporal ground-
ing and leave spatio-temporal grounding for future explo-
ration. Our consideration is that fine-grained spatio-temporal
grounding [72] is currently more challenging than question-
answering, especially in the weak supervision setting [54],
and would derail the main goal of VQA.

4. Weakly-Supervised Grounding in VideoQA

VideoQA. We first give an overview of the typical ap-
proaches to VideoQA, focusing on transformer-based meth-
ods due to their superior performance. Given a video 𝑣 and
a question 𝑞 , the goal of VideoQA is to predict a correct
answer 𝑎* from a set of candidate answers 𝐴. Depending
on the task setting, 𝐴 can be given by multiple choices ac-
companying each question [55, 56] (multi-choice), or by a
global answer set [59] to all questions (open-ended). Note
that SoTA transformer-methods [11, 57, 61, 62] formulate
and solve both multi-choice QA and open-ended QA in a

unified formulation:

𝑎* = argmax𝑎∈𝐴 Ψ(𝑎|𝑣, 𝑞, 𝐴), (1)

in which the mapping Ψ is typically realized as either shared
[24, 50], stacked [11, 29, 62] or dual [44, 57, 61] transformer.
In this work, we primarily study the behaviour of the stacked-
(Fig. 3a) and dual-transformer (Fig. 3b) architectures for
their relatively better performance.

Weakly Grounded VideoQA. Aside from answering
questions, weakly-grounded VideoQA requires the models
to explicitly estimate a QA-relevant video segment to serve
as visual evidence. We introduce below three model-agnostic
solutions to achieve this goal:

Post-hoc (PH). Intuitively, relevant temporal segments
can be found through a post-hoc analysis of the temporal
attention, i.e., identifying the segment or frame with the
maximal attention value and then thresholding around it to
obtain a time interval. To that end, we use attention-pooling
to summarize the outputs from the temporal transformers for
dual architectures. For stacked architectures, we directly re-
turn the averaged multi-head attention values corresponding
to the prediction token.

Naive Gaussian (NG). The post-hoc approach is de-
signed to analyze the models, but not influence their predic-
tions. More favourably, we propose to explicitly incorporate
a video grounding mechanism into VideoQA. We illustrate
the framework in Fig. 4a, and reformulate Eqn. 1 as

𝑎*, 𝑡* = argmax𝑎∈𝐴 Ψ(𝑎|𝑣𝑡, 𝑞, 𝐴)Φ(𝑡|𝑣, 𝑞), (2)

in which the grounding module Φ firstly estimates the key
moment specified by 𝑡 and thereafter the QA module Ψ takes
the more localized video content 𝑣𝑡 for answer prediction.
To enable end-to-end learning, 𝑡 is represented by differen-
tiable Gaussian weights over the entire video sequence, i.e.,
𝑡 ∼ 𝑁(𝜇, 𝜎2), where 𝜇, 𝜎 ∈ [0, 1] are two learnable Gaus-
sian parameters corresponding to the mean and standard
deviation. During inference, the grounding can be achieved
by the confidence interval 𝑡 = (𝜇− 𝛾𝜎, 𝜇+ 𝛾𝜎) * 𝑑, where
𝛾 is a hyper-parameter to control the width of the confidence
interval and 𝑑 denotes the duration of the video.

Fig. 3c shows a dual transformer instantiation of this
naive solution. The difference with respect to the original
VideoQA counterpart (Fig. 3b) lies in a Gaussian mask pre-
diction head, along with a Gaussian weighted token learning
and aggregation stage (details in Appendix A.2). We find
that this approach effectively learns and outputs grounding
information. Nevertheless, the improvements over a post-
hoc solution are limited due to the weak QA supervision.

NG+. In light of the naive Gaussian results, we fur-
ther design an auxiliary objective with cross-modal self-
supervision to regularize the VQA objective towards more
visually grounded QA. Specifically, for each question 𝑞+,
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(b) Dual-style VideoQA (c) Dual-style weakly grounded VideoQA(a) Stacked-style VideoQA
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Figure 3. Illustration of stacked (a) and dual (b) style Transformer architecture for VideoQA. (c) Our example of dual-style weakly-grounded
VideoQA. Note that the grounding part is identical for stacked-style implementation.

Q: Why did the baby pick up one present from 
the group of them and move to the sofa?

… …

13.8s 29.8s
Vt

Gaussian Mask
Video 

Grounding VideoQAV:

A: Unwrap it.

(a) Framework of weakly-grounded VideoQA.

What did the boy do after

he walked towards the 

woman with a present?

push away
pull close

Why did the boy return to

the Christmas tree after 

unwrapping one present?

… … …

pull close

(b) Cross-modal self-learning of GQA.

Figure 4. Illustration of the framework (a) and our NG+ solution (b) for weakly-grounded VideoQA.

we treat the corresponding grounding hypothesis 𝑣𝑡 as an an-
chor point and pull it close to 𝑞+ while pushing it away from
other questions 𝑄− in the feature space. The negative set
𝑄− includes: 1) other questions defined in the same video as
hard negatives, since a large portion (near half) of questions
each invokes unique video moment for answer (Fig. 2b(3));
2) questions sampled from other videos to ensure the suf-
ficiency and diversity of negative samples. Moreover, we
enrich 10% of the positive questions by rephrasing each
question (using GPT-4 [41]) with a maximum of 5 addi-
tional questions to form 𝑄+. It is worth noting that there is
only one positive question at each training iteration and the
enriched positive questions are randomly picked to substi-
tute the original one for data augmentation. Such form of
contrast is thus implemented as classification by also fixing
the number of negative questions to be identical to that of
distractor answers. Thereby, our final solution is:

𝑎*, 𝑡* = argmax𝑎∈𝐴 Ψ(𝑎|𝑣𝑡, 𝑞+, 𝐴)Φ(𝑡|𝑣, 𝑞+)⏟  ⏞  
GroundedQA

+

𝛼 argmax𝑞∈𝑄Ψ(𝑞+|𝑣𝑡, 𝑄)Φ(𝑡|𝑣, 𝑞+)⏟  ⏞  
Grounding

,
(3)

where 𝑄 = 𝑄+ ∪ 𝑄− which comprises both the positive
and negative questions of 𝑣𝑡 and 𝛼 is a trade-off parame-
ter. Note that the Grounding-term coarsely identifies the
question-relevant video moment 𝑡, while the GroundedQA-
term not only makes the prediction but also helps to refine
the moment 𝑡 with answer supervision. The overall objective

thus enforces the grounded video contents to be relevant to
both the answers and the questions.

5. Experiments
5.1. Overview

Our experiments answer three research questions: Q1: To
what extent are the current VLMs’ predictions grounded on
relevant video content? Q2: Does better QA performance
imply better grounding and vice versa? Q3: How effective is
our Gaussian masking mechanism? We study a wide variety
of VLMs, covering different architectures (dual and stacked
transformers), vision encoders (task-specific and pretrained
with image- or video-text data), and text encoders (BERT,
RoBERTa, DeBERTa, Flan-T5):

1. VGT [57] is a task-specific, dual-style graph trans-
former model. It encodes spatio-temporal object in-
formation [46] for VideoQA. We also investigate VGT
with RoBERTa [36] as suggested by [58].

2. Temp[Swin] is a dual architecture. The Swin Trans-
former (SWT) [37] is pre-trained on ImageNet [7].
Temp[CLIP] and Temp[BLIP] follow the same dual
architecture, but use ViT [9] pretrained by CLIP [44]
and BLIP [28] respectively as vision encoders.

3. VIOLETv2 [11] adopts a stacked transformer. It uses
video Swin Transformer [38] (VSWT) and BERT for
vision and text encoding, respectively. The model is
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pretrained with both image- and video-text data, and
achieves SoTA on various VL tasks.

4. FrozenBiLM [62] applies a stacked transformer. It
uses CLIP as vision encoder and highlights the strength
of adapting frozen large language models (LLMs) (e.g.,
DeBERTa-V2-XL (1B) [16]) for VideoQA.

5. IGV [31] and SeViLA [64] are additionally reproduced
for comparison. Both works emphasize grounding
keyframes for VideoQA. IGV is built on a visual graph,
whereas SeViLA is founded on BLIP-2 [27]. It exploits
ViT-G [68] and frozen LLM (e.g., Flan-T5-XL (3B) [6])
for video localization and QA. In our implementation,
we choose the smallest time spans that can enclose the
localized keyframes as grounded moments.

Experimental Settings. For all the models, we uniformly
sample 32 frames from each video and freeze the vision
encoders. In post-hoc analysis, the temporal attention thresh-
olds are set dynamically according to mean attention values
to maximize the grounded QA accuracy. The number of neg-
ative questions in Eqn. 3 is kept the same as the number of
distractor answers in MCQA to facilitate joint optimization.
The trade-off parameter 𝛼 is set to 1 and 0.1 for dual and
stacked transformers, respectively. During inference, the hy-
perparameter 𝛾 for the Gaussian confidence interval is chose
from {1, 0.8} depending on different models. Our final
results are reported based on a combination of predictions
from Gaussian and temporal attention. All hyper-parameters
are tuned on the validation set, and unless otherwise indi-
cated, the results are reported on the test set. Other details
are described in Appendix A.2.

Evaluation. We report accuracy for QA [76], which
stands for the percentage of correctly answered questions.
For visual evidence grounding, we use intersection over
prediction (IoP) to measure whether the predicted temporal
window lies inside the ground truth. Additionally, we include
temporal IoU following video grounding benchmarks. For
both IoP and IoU, we report the mean and the values with
overlap thresholds of 0.3 and 0.5. If a QA pair involves
multiple temporal segments, we report the results based on
the one with maximal overlap with the prediction. Notably,
we define grounded QA accuracy (Acc@GQA) to inspect
the percentages of questions that are correctly answered and
also visually grounded (i.e., IoP ≥ 0.5).

5.2. Result and Analysis

5.2.1 Q1:Are the answers visually grounded?

We focus on Acc@QA, Acc@GQA and IoP@0.5 in the Post-
hoc (PH) block of Tab. 3. Generally, the existing VLMs excel
at QA but are weak in grounding the answers in the videos.
For example, all the methods exceed 50% in QA accuracy,

yet cannot reach more than 12-16% for grounded QA accu-
racy. In fact, the SoTA QA model (FrozenBiLM) achieves
an accuracy of 69% for QA compared to a surprisingly low
16% for GQA. The results of IoP@0.5 suggest that the large
disparity is mainly due to the models’ poor performance in
temporal grounding. It is also due partly to inconsistency be-
tween grounding and QA because not all correct grounding
yields correct answers according to Acc@GQA vs. IoP@0.5.
We additionally exclude the influence of sparse video sam-
pling by investigating the coverage of QA content w.r.t the
number of sampled video frames in Fig. 5(a). The figure
shows that the sampled 32 frames can cover almost all QA
contents. Moreover, to understand the extent of such poor
performance, we estimate the upper-bound performance via
a human study on 10% of the test data. The study shows that
the participants correctly answered 93% of the questions,
with 82% being visually grounded.

Given the above observations, we believe most of these
models’ answers are not grounded on the relevant video
content. Instead, they are more likely derived from lan-
guage shortcuts or spurious correlations with irrelevant vi-
sual context. To investigate the language shortcut, we
conduct a BlindQA experiment, in which we train only the
language counterparts of the VQA models without video
inputs. Tab. 4(a) shows that BlindQA achieves 80% of the
performance of standard VQA (NormalQA), i.e., 50.3% vs.
59.4% for the dual models and 56.7% vs. 69.1% for the
stacked models. To study the spurious correlations, we test
the VLMs by directly sampling inside (PosQA) or outside
(NegQA) the ground-truth video segments. Surprisingly, the
models’ QA performances remain almost unaffected com-
pared to a normal uniform sampling (NormalQA), likely be-
cause the image representations are not fine-grained enough
to differentiate different frames. Tab. 4(a) shows that pro-
viding the ground-truth temporal segments (PosQA) brings
marginal improvement (<1%) for the dual-style models and
even hurts stacked-style transformers, likely due to a dis-
tribution shift in visual inputs. Furthermore, excluding the
temporal segments (NegQA) degenerates the performance
by less than 1% for both dual and stacked-style models. The
above studies reinforce our belief that the current VLM’s
predictions are often not visually-grounded.

5.2.2 Q2: Does better QA imply better grounding?

First, by focusing on Acc@QA, mIoP and mIoU in Tab. 3.
we find that better QA is not necessarily established by bet-
ter grounding, and the results vary across architectures.
For instance, by comparing across different architectures,
FrozenBiLM shows the strongest QA performance, yet with
surprisingly poor grounding, e.g., the IoP values are even
worse than those of VGT which displays the lowest QA re-
sults among other transformer models. This could be due
to FrozenBiLM’s freezing of the LLMs, causing its predic-
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Table 3. Grounded QA performance on NExT-GQA test set. †: original NExT-QA. D/S: Dual/Stacked. CM: Cross-modal pretrain. BT:
BERT. RBT: RoBERTa. DBT: DeBERTa-V2-XL. FT5: Flan-T5-XL. Random: always choose the same answer id and return the whole
video duration as grounding result. *: pretrain on video-language grounding dataset.

Model D/S CM Vision Text Acc@QA Acc@QA† Acc@GQA mIoP IoP@0.3 IoP@0.5 mIoU IoU@0.3 IoU@0.5

Human - - - - 93.3 - 82.1 72.1 91.7 86.2 61.2 86.9 70.3
Random - - - - 20.0 20.0 1.7 21.1 20.6 8.7 21.1 20.6 8.7

IGV - N ResNet BT 50.1 51.3 10.2 21.4 26.9 18.9 14.0 19.8 9.6
SeViLA* S Y ViT-G FT5 68.1 71.5 16.6 29.5 34.7 22.9 21.7 29.2 13.8

PH

VGT D N RCNN BT 50.9 53.8 12.7 24.7 26.0 24.6 3.0 4.2 1.4
VIOLETv2 S Y VSWT BT 52.9 57.2 12.8 23.6 25.1 23.3 3.1 4.3 1.3
VGT D N RCNN RBT 55.7 57.7 14.4 25.3 26.4 25.3 3.0 3.6 1.7
Temp[Swin] D N SWT RBT 55.9 58.7 13.5 23.1 24.7 23.0 4.9 6.6 2.3
Temp[CLIP] D Y ViT-B RBT 57.9 60.7 14.7 24.1 26.2 24.1 6.1 8.3 3.7
Temp[BLIP] D Y ViT-B RBT 58.5 61.5 14.9 25.0 27.8 25.3 6.9 10.0 4.5
Temp[CLIP] D Y ViT-L RBT 59.4 62.5 15.2 25.4 28.2 25.5 6.6 9.3 4.1
FrozenBiLM S Y ViT-L DBT 69.1 71.8 15.8 22.7 25.8 22.1 7.1 10.0 4.4

NG Temp[CLIP] D Y ViT-L RBT 59.4 62.7 15.5 25.8 28.8 25.9 7.7 10.9 4.6
FrozenBiLM S Y ViT-L DBT 70.4 73.1 17.2 24.0 28.5 23.5 9.2 13.0 5.8

NG+
Temp[CLIP] D Y ViT-L RBT 60.2+0.8 63.3+0.8 16.0+0.8 25.7+0.3 31.4+3.2 25.5+0.0 12.1+5.5 17.5+8.2 8.9+4.8
FrozenBiLM S Y ViT-L DBT 70.8+1.7 73.1+1.4 17.5+1.7 24.2+1.5 28.5+2.7 23.7+1.6 9.6+2.5 13.5+3.5 6.1+1.7

Table 4. Performances under different settings. (+): with NG+.
VQA: Question subset that BlindQA cannot answer. GDQA: Subset
that both BlindQA and NegQA cannot answer but PosQA can.

(a)

Model NormalQA BlindQA PosQA NegQA

Post-hoc
Temp[CLIP] 59.4 50.3 59.8 59.1
FrozenBiLM 69.1 56.7 68.5 68.2

NG+
Temp[CLIP] 60.2 50.3 61.0 59.4
FrozenBiLM 70.8 56.7 70.0 69.6

(b)

Models QA Set Acc@QA Acc@GQA mIoP mIoU

Te
m

p[
C

L
IP

] Whole 59.4 15.2 25.5 6.6

VQA 35.7 9.7 25.2 7.0
VQA(+) 39.4+3.7 10.6+0.9 25.5+0.3 12.2+5.2
GDQA 23.0 10.8 27.6 5.9
GDQA(+) 30.2+7.2 14.3+3.5 29.3+1.7 13.1+7.2

Fr
oz

en
B

iL
M Whole 69.1 15.8 22.7 7.1

VQA 47.6 11.2 22.2 6.6
VQA(+) 50.0+2.4 12.8+1.6 23.7+1.5 9.5+2.9
GDQA 42.6 14.8 24.6 7.3
GDQA(+) 44.0+1.4 16.6+1.8 27.0+2.4 13.2+5.9

tions to heavily rely on the common sense knowledge of the
LLMs rather than the provided videos (similar problem is
also found on SeViLA). In contrast, VGT is a task specific
model. It focuses on exploiting the fine-grained video in-
formation, and thus conditions better on the visual content.
By comparing among different instantiations of the same
architectures (e.g., Temp[Swin] to Temp[CLIP]) as well as
different training epochs of the same models in Fig. 5(b),
we find that the grounding performance (mIoP) improves
along with the increase of QA accuracy for dual-style
architectures yet not for stacked-style ones. Second, re-
garding the influence of grounding on QA, our conclusion
is that having grounding is better than not having it. Yet,
this is not controlled and opts for the underlying shortcuts

when the models are allowed to learn freely. The conclusion
is backed by the observations that PosQA always outper-
forms NegQA in Tab. 4(a) regardless of model architectures.
Moreover, our effort to improve grounding also brings better
QA performance (Tab. 3 & 4(b)). However, as mentioned,
correct grounding does not guarantee correct answers.

5.2.3 Q3: Is Gaussian masking solution effective?

We incorporate our Gaussian grounding mechanism (NG and
NG+) into the top-performing dual- and stacked-style models
and compare with Post-hoc baseline. 1 Tab. 3 shows that both
NG and NG+ lead to better grounding and QA performance.
Also, NG+ generally outperforms NG, especially for dual-
style architectures. Additionally, Tab. 4(b) indicates that our
superiority gets enlarged in answering the subset of questions
that necessitate videos and temporal grounding.

For better understanding, we analyze two cases in
Fig. 5(c). The top example shows that the Gaussian masks
(NG and NG+) are more focused on the relevant video mo-
ment than temporal attention, thus bringing better ground-
ing, especially for IoU. The bottom example highlights the
strength of NG+. In this case, there are multiple visual
instances that correspond to the answer “girl stands
up”. The correct instance is the one after the “girl
takes the green ball”, though the instance after
“take the red ball” is more salient. Both the Post-
hoc and Naive methods are distracted because they are
learned via answer supervision alone. In contrast, NG+ finds
the correct grounding since it also optimizes the cross-modal
correspondence between questions and video segments.
More detailed analyses are presented in Appendix A.3.

1Despite the weaker performance, we highlight the higher efficiency
of dual-style implementation, especially in retrieval-based QA systems as
exemplified by multi-choice QA.
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Why does the baby extend her hand to the animal in the middle of  the video? Feed the cat.

7.4s 46.1s 60.0s

22.8s 32.8s

16.2s 25.8s

9.8s
GT:

Post-hoc:

NG:

NG+:

8.8s 16.8s 66.0s

27.7s 37.6s

9.9s 21.1s

60.2s 62.2s
GT:

Post-hoc:

NG:

NG+:

(a)

(b) (c)

What did the girl do after she took the green ball? Stand up. 

Figure 5. Analysis of visually-grounded VideoQA. (a) Coverage of QA content w.r.t. number of sampled video frames. (b) VQA and VG
results w.r.t. training epochs on NExT-GQA Val set. (c) Visualization of the prediction examples. (Please zoom in for better view.)

5.2.4 Method Comparison

Compared with a random baseline, all methods effectively
perform grounded QA (refer to Acc@GQA and IoP@0.5 in
Tab. 3). More concretely, we find that both IGV and SeViLA
obtain lower GQA accuracy than FrozenGQA though they
also incorporate a sense of grounding in their models.
The weakness manifest in both visual evidence grounding
(IoP@0.5) and QA. However, we find that SeViLA performs
much better than other methods in standalone grounding
(mIoP and mIoU). We speculate this is because SeViLA is
pretrained with localization supervisions [22]. The observa-
tions thus point to possible future improvement by pretrain-
ing with location supervisions. Furthermore, they call for
improved coordination between QA and grounding.

5.2.5 Other Observations

Tab. 3 also compares the Acc@QA performance on NExT-
GQA versus the full (original) NExT-QA test set. There is
a consistent 2-3% higher accuracy on the full set, suggest-
ing that the questions rooted in local video moments are
harder to answer than those rely on overall video content.
Besides, the cross-modal pretrained representations per-
form better than the uni-modal pretrained ones for both
VQA and visual grounding. Also, the image-text pretrained
representations outperform those pretrained with video-text
data. Moreover, existing dual-style architectures tend to
have better grounding performance than stacked ones
(Note that FrozenBiLM’s high-ranking GQA result is due
to its strong QA performance but not grounding). This is
surprising, as there is no cross-modal interaction in dual-
style implementations. We speculate that cross-modal trans-
formers likely suffer from a uni-modal bias, which leads to
the attention being skewed towards the language side for

predicting textual answers. The findings on the one hand
consolidate the benefits of harnessing foundation VLMs or
LLMs for videoQA. On the other hand, they accentuate the
need to balance between vision fact and text knowledge.

6. Conclusion
We summarize the following points and raise them as

open challenges for the rest of the community: First, current
VLMs built on powerful language models excel in answering
visual questions. Yet, their predictions often lack a strong
connection to the pertinent visual information but instead
heavily rely on languages short-cut and irrelevant visual
context. This calls for more efforts towards the interpretabil-
ity and trustability. Second, our experiments show that,
localizing the questions, especially those featuring tempo-
ral actions and events is still a difficult and open challenge.
Our studies indicate that solving this problem would largely
benefit visually-grounded VideoQA. Third, although our
solution improves grounding and QA, there is still a large
gap compared with human performance. This leaves ample
opportunity for follow-up works. Last but not least, we
highlight the significance of NExT-GQA and hope it can
contribute towards advancement in these areas.

Limitations. The NG+ method demands more memory
and time to train (Appendix A.3.3). Besides, our analyses
are focused on multi-choice QA (Appendix A.4).
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