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Abstract

We introduce Florence-2, a novel vision foundation
model with a unified, prompt-based representation for var-
ious computer vision and vision-language tasks. While ex-
isting large vision models excel in transfer learning, they
struggle to perform diverse tasks with simple instructions,
a capability that implies handling the complexity of vari-
ous spatial hierarchy and semantic granularity. Florence-2
was designed to take text-prompt as task instructions and
generate desirable results in text forms, whether it be cap-
tioning, object detection, grounding or segmentation. This
multi-task learning setup demands large-scale, high-quality
annotated data. To this end, we co-developed FLD-5B that
consists of 5.4 billion comprehensive visual annotations on
126 million images, using an iterative strategy of automated
image annotation and model refinement. We adopted a
sequence-to-sequence structure to train Florence-2 to per-
form versatile and comprehensive vision tasks. Extensive
evaluations on numerous tasks demonstrated Florence-2 to
be a strong vision foundation model contender with un-
precedented zero-shot and fine-tuning capabilities.

1. Introduction

In the realm of Artificial General Intelligence (AGI) sys-
tems, there has been a notable shift towards utilizing pre-
trained, versatile representations, acknowledged for task-
agnostic benefits accross diverse applications. This trend
is evident in natural language processing (NLP), where ad-
vanced models [6, 7, 19, 38, 52, 53] show adaptability with
comprehensive knowledge spanning various domains and
tasks with simple instructions. The success of NLP moti-
vates a parallel approach in computer vision.

Universal representation for diverse vision tasks presents
unique challenges, notably the need for comprehensive per-
ceptual abilities. Unlike NLP, which deals mainly with text,
computer vision requires handling intricate visual data like
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bicycle on a road with a red car in the
background. The road is lined with
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the bottom.
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Figure 1. We aim to build a vision foundation model to en-
able extensive perception capabilities including spatial hierarchy
and semantic granularity. To achieve this, a single unified model
Florence-2 is pre-trained on our FLD-5B dataset encompassing
a total of 5.4B comprehensive annotations across 126M images,
which are collected by our Florence data engine.

object location, masked contours, and attributes. Attain-
ing universal representation in computer vision demands
adept management of a spectrum of complex tasks, orga-
nized two-dimensionally as illustrated in Figure 1:

• Spatial Hierarchy: The model must discern spatial
details across varying scales, understanding image-
level concepts and fine-grained pixel specifics. Ac-
commodating the intricate spatial hierarchy within vi-
sion demands the model’s proficiency in handling di-
verse levels of granularity.

• Semantic Granularity: Universal representation in
computer vision should span a spectrum of seman-
tic granularity. The model transitions from high-level
captions to nuanced descriptions, enabling versatile
understanding for diverse applications.

This pursuit is characterized by distinctiveness and sub-
stantial challenges. A key hurdle is the scarcity of com-
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prehensive visual annotations, hindering the development
of a foundational model capable of capturing the intricate
nuances of spatial hierarchy and semantic granularity. Ex-
isting datasets, such as ImageNet [18], COCO [41], and
Flickr30k Entities [49], tailored for specialized applica-
tions, are extensively labeled by humans. To overcome this
constraint, it is imperative to generate extensive annotations
for each image on a larger scale.

Another challenge is the absence of a unified pre-
training framework with a singular network architecture
that seamlessly integrates spatial hierarchy and semantic
granularity in computer vision. Traditional models excel
in tasks like object detection [24, 75], semantic segmen-
tation [16, 64], and image captioning [40, 61] with task-
specific design. However, it is essential to develop a unified
model capable of adapting across various vision tasks in a
task-agnostic manner, even accommodating new tasks with
minimal or no task-specific fine-tuning.

In this paper, we introduce Florence-2, a universal back-
bone achieved through multitask learning with extensive vi-
sual annotations. This results in a unified, prompt-based
representation for diverse vision tasks, effectively address-
ing the challenges of limited comprehensive data and the
absence of a unified architecture.

Multitask learning necessitates large-scale, high-quality
annotated data. Our data engine, instead of relying on
labor-intensive manual annotation, autonomously generates
a comprehensive visual dataset called FLD-5B, encompass-
ing a total of 5.4B annotations for 126M images. This en-
gine consists of two efficient processing modules. The first
module uses specialized models to collaboratively and au-
tonomously annotate images, moving away from the tra-
ditional single and manual annotation approach. Multiple
models work together to reach a consensus, reminiscent
of the wisdom of crowds concept [30, 63, 67], ensuring a
more reliable and unbiased image understanding. The sec-
ond module iteratively refines and filters these automated
annotations using well-trained foundational models.

By utilizing this extensive dataset, our model employs a
sequence-to-sequence (seq2seq) architecture [17,19,53,59],
which integrates an image encoder and a multi-modality
encoder-decoder. This design accommodates a spectrum of
vision tasks without the need for task-specific architectural
modifications, aligning with the ethos of the NLP commu-
nity for versatile model development with a consistent un-
derlying structure. All annotations in the dataset FLD-5B,
are uniformly standardized into textual outputs, facilitating
a unified multi-task learning approach with consistent opti-
mization with the same loss function as the objective. The
outcome is a versatile vision foundation model, Florence-2,
capable of performing a variety of tasks, such as object de-
tection, captioning, and grounding, all within a single model
governed by a uniform set of parameters. Task activation is

achieved through textual prompts, reflecting the approach
used by Large Language Models (LLMs) [52].

Our approach attains a universal representation, demon-
strating broad applicability across various visual tasks. Key
results include:

• As a versatile vision foundation model, Florence-2
achieves new state-of-the-art zero-shot performance in
tasks such as captioning on COCO [41], visual ground-
ing on Flick30k [49], and referring expression compre-
hension on RefCOCO/+/g [28, 45, 71].

• After fine-tuning with public human-annotated data,
Florence-2, despite its compact size, competes with
larger specialist models. Notably, the fine-tuned
Florence-2 establishes new state-of-the-art results on
the benchmarks on RefCOCO/+/g.

2. Rethinking Vision Model Pre-training
In pursuit of a vision foundation model, we revisit three

predominant pre-training paradigms: supervised (e.g., Im-
ageNet classification [18]), self-supervised (e.g., SimCLR
[9], MoCo [23], BEiT [5], MAE [22]), and weakly super-
vised (e.g., CLIP [51], Florence [73], SAM [29]). Each
paradigm captures unique aspects of visual data but is in-
herently limited by the constraints of single-task learn-
ing frameworks. Supervised pre-training excels in object
recognition but lacks adaptability [34]; self-supervised al-
gorithms reveal intricate features but may overemphasize
certain attributes [8]; weakly supervised methods leverage
unstructured textual annotations but yield only image-level
understanding [51]. To build a unified vision model suit-
able for various applications, we must explore innovative
pre-training strategies that overcome single-task limitations
and integrate both textual and visual semantics.

Image understanding necessitates capturing multiple lev-
els of granularity, from global semantics to local details, and
comprehending spatial relationships between objects and
entities in their semantic context. To address these core as-
pects of image understanding, our approach incorporates a
diverse set of annotations, effectively capturing visual un-
derstanding nuances and bridging the gap between vision
and language understanding.

2.1. Comprehensive Multitask Learning

To develop a versatile vision foundation model, we for-
mulate a range of multitask learning objectives, each tai-
lored to address specific aspects of visual comprehension.
These objectives align with our predefined criteria: spatial
hierarchy and semantic granularity, inspired by recent re-
search on multitask learning [3,12,14,15,44,62]. Our mul-
titask learning approach incorporates three distinct learning
objectives, each addressing a different level of granularity
and semantic understanding:
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The image shows a person riding a red bicycle on a road
with a red car in the background. The person is wearing a
white t-shirt, black pants, and a black hat. She has a
backpack on her back and is pedaling with their feet on the
pedals. The road is lined with trees on both sides and there
is another person riding another bicycle in front of her. The
date "9/22/2023" is visible in the bottom right corner of the
image.
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Figure 2. Florence-2 consists of an image encoder and standard multi-modality encoder-decoder. We train Florence-2 on our FLD-5B
data in a unified multitask learning paradigm, resulting in a generalist vision foundation model, which can perform various vision tasks.

• Image-level understanding tasks capture high-level
semantics and foster a comprehensive understanding
of images through linguistic descriptions [13, 18, 31,
69]. They enable the model to comprehend the overall
context of an image and grasp semantic relationships
and contextual nuances in the language domain. Ex-
emplar tasks include image classification, captioning,
and visual question answering.

• Region/pixel-level recognition tasks facilitate de-
tailed object and entity localization within images,
capturing relationships between objects and their spa-
tial context. Tasks include object detection, segmenta-
tion, and referring expression comprehension.

• Fine-grained visual-semantic alignment tasks re-
quire fine-grained understanding of both text and im-
age. It involves locating the image regions that corre-
spond to the text phrases, such as objects, attributes, or
relations. These tasks challenge the ability to capture
the local details of visual entities and their semantic
contexts, as well as the interactions between textual
and visual elements.

By combining these three learning objectives in a mul-
titask learning framework, our foundation model learns
to handle different levels of detail and semantic under-
standing. This strategic alignment enables our model to
deal with various spatial details, distinguish levels of de-
tail in understanding, and go beyond surface-level recogni-
tion—ultimately learning a universal representation for vi-
sion understanding.

3. Model
We present the foundation model Florence-2, designed

for universal representation learning, capable of handling

various vision tasks with a single set of weights and a uni-
fied architecture. As depicted in Figure 2, Florence-2 em-
ploys a sequence-to-sequence learning paradigm [60], inte-
grating all tasks, described in Section 2, under a common
language modeling objective. The model takes images cou-
pled with task-prompt as task instructions, and generates
the desirable results in text forms. It uses a vision encoder
to convert images into visual token embeddings, which are
then concatenated with text embeddings and processed by
a transformer-based multi-modal encoder-decoder to gener-
ate the response. In the following sections, we will provide
a detailed explanation of each model component.

Task formulation. We adopt a sequence-to-sequence
framework [10, 15, 44, 60] to address various vision tasks
in a unified manner. As shown in ??, we formulate each
task as a translation problem: Given an input image and a
task-specific prompt, we generate the corresponding output
response. Depending on the task, the prompt and response
can be either text or region:

• Text: When the prompt or answer is plain text with-
out special formatting, we maintain it in our final
sequence-to-sequence format.

• Region: For region-specific tasks, we add location to-
kens to the tokenizer’s vocabulary list, representing
quantized coordinates. We create 1, 000 bins, similar
to [10, 11, 44, 62], and represent regions using formats
tailored to task requirements:

– Box representation (x0, y0, x1, y1): Utilized in
tasks such as object detection and dense region
captioning, with location tokens corresponding
to the box coordinates. The location tokens are
the coordinates of the top-left and bottom-right
corners of the box.
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– Quad box representation (x0, y0, ..., x3, y3):
For text detection and recognition tasks, using lo-
cation tokens for each coordinate of the quadri-
lateral enclosing the text. The location tokens are
the coordinates of each corner of the quad box,
starting from the top-left and going clockwise.

– Polygon representation (x0, y0, ..., xn, yn): For
referring segmentation tasks, with location to-
kens representing the vertices of the polygon.
The location tokens are the coordinates of the
vertices of the polygon, in clockwise order.

By extending the tokenizer’s vocabulary to include loca-
tion tokens, we enable the model to process region-specific
information in a unified learning format. This eliminates the
need to design task-specific heads for different tasks and al-
lows for a more data-centric approach.

Vision encoder. We employ DaViT [20] as the vision en-
coder. It processes an input image I ∈ RH×W×3 (with H
and W denoting height and width, respectively) into flat-
tened visual token embeddings V ∈ RNv×Dv , where Nv

and Dv represent the number and dimensionality of vision
tokens, respectively.

Multi-modality encoder decoder. We use a standard
encoder-decoder transformer architecture to process visual
and language token embeddings. We first obtain prompt
text embeddings Tprompt ∈ RNt×D using our extended
language tokenizer and word embedding layer [38]. Then,
we concatenate vision token embeddings with prompt em-
beddings to form the multi-modality encoder module input,
X = [V′,Tprompt], where V′ ∈ RNv×D is obtained by
applying a linear projection and LayerNorm layer [4] to V
for dimensionality alignment.

Optimization objective. Given the input x combined from
the image and the prompt, and the target y, we use the stan-
dard language modeling with cross-entropy loss for all the
tasks.

L = −
|y|∑
i=1

logPθ(yi|y<i, x), (1)

where θ are the network parameters, |y| is the number of
target tokens.

4. Data Engine

To train our Florence-2 model, we require a comprehen-
sive, large-scale, high-quality multitask dataset encompass-
ing various image data aspects. We extensively explain our
data collection and annotation procedures, encompassing
adaptations for various annotation types. The data engine
pipeline, shown in Figure 3, will be discussed in subse-
quent sections.

4.1. Image Collection

We construct our data by gathering a diverse collection
of images from various sources. We begin with the identi-
fication of three key tasks that act as primary sources for
our image corpus: image classification, object detection,
and image captioning. Consequently, we curate and com-
bine five distinct datasets originating from the aforemen-
tioned tasks: ImageNet-22k [18], Object 365 [55], Open
Images [35], Conceptual Captions [56], and LAION [54]
filtered by [40]. This combination results in a dataset of
126 million images in total.

4.2. Data Annotation

Our primary objective is to generate comprehensive an-
notations that can support multitask learning effectively.
Accordingly, our annotation endeavors span a comprehen-
sive range of tasks, encapsulated within three discrete an-
notation categories: text, region-text pairs, and text-phrase-
region triplets. ?? demonstrates examples of our annota-
tions in our data. The data annotation workflow consists of
three essential phases, each of which ensures the accuracy
and quality of the annotations: (1) initial annotation em-
ploying specialist models, (2) data filtering and enhance-
ment to correct errors and remove irrelevant annotations,
and (3) an iterative process for data refinement.

Initial annotation with specialist models. To initiate the
annotation process for each annotation type, we employ
synthetic labels obtained from specialist models, which are
a combination of offline models trained on a diverse range
of publicly available datasets and online services hosted
on cloud platforms. They are specifically tailored to ex-
cel in annotating their respective annotation types. If image
datasets already contain partial annotations, like the Object
365 dataset [55] with human-annotated bounding boxes and
categories, we combine these with our synthetic labels to
improve annotation coverage and diversity. However, we
exclude certain tasks, such as detailed text, from initial la-
beling due to the difficulty of achieving high-performance
specialist models, adding them later during data refinement.
Ultimately, this ensures our 126 million image dataset is
thoroughly labeled across most annotation types.

Data filtering and enhancement. We employ a multi-
faceted filtering process to address the noise and impre-
cesion in the initial annotations from specialist models.
Inspired by DiHT [50], we develop a parsing tool using
SpaCy [25] to filter text annotations, discarding texts with
too many objects and selecting texts with a minimum com-
plexity of actions and objects to maintain rich visual con-
cepts. For region data, particularly bounding boxes, we
eliminate those below a confidence threshold and apply
non-maximum suppression to remove redundancies, en-
hancing the quality of our annotations. In addition, we
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Figure 3. Florence-2 data engine consists of three essential phrases: (1) initial annotation employing specialist models, (2) data filtering
and enhancement to correct errors, and (3) an iterative process for data refinement. Our final dataset (FLD-5B) of over 5B annotations
contains 126M images, 500M text annotations, 1.3B region-text annotations, and 3.6B text-phrase-region annotations.

also adopt large language model (i.e., GPT-4 [47]) and large
multimodal model (i.e., GPT-4V [2]) to enhance text anno-
tations with more details.

Iterative data refinement. We enhance our training
dataset’s quality through an iterative refinement process,
using a multitask model trained on initially filtered anno-
tations. The model shows improved accuracy, particularly
where the initial labels are noisy or inaccurate. By integrat-
ing the model’s refined predictions back into our dataset and
retraining, we progressively improve our annotations. For
tasks initially set aside due to data scarcity, we use the mul-
titask model for pre-training, then fine-tune it with the lim-
ited data, achieving better results than training from scratch.
This fine-tuned model then serves as a specialist for anno-
tating our 126 million image dataset, ensuring extensive and
accurate coverage.

4.3. Annotation-Specific Variations

In Section 4.2, we introduce our general annotation
workflow. This section delves into each annotation type and
the corresponding variations of the annotation procedure.

Text annotations categorize images using three types of
granularities: brief, detailed, and more detailed. The brief
text includes only one sentence that demonstrates the most
salient objects and activities, which is similar to COCO cap-
tion [13]. In contrast, the detailed text and more detailed
text contain multiple sentences that describe the image with
richer objects, attributes, and actions.

For the brief text, Florence-2 model is trained as the spe-
cialist on image-text datasets for initial annotations. Itera-
tive refinement minimizes noise in these texts. For the de-
tailed text, prompts including existing image annotations
like the brief text and region-text annotations, are fed to
large language models (LLMs) or large multimodal mod-
els (LMMs) to generate comprehensive descriptions. Due
to the high cost of the large models, only a small set of
detailed text and more detailed text are generated. These

are used to fine-tune the caption specialist, developing a de-
tailed description specialist for further annotations.

Region-text pairs provide descriptive textual annotations
for semantic regions in images, including visual object and
text regions, each enclosed within tight bounding boxes.
These annotations offer varying levels of granularity, from
phrases to sentences, enhancing region comprehension.

Region-text pairs are annotated differently for text re-
gions and visual object regions. Text regions are labeled
using Azure AI Services’ OCR API [1], while visual objects
are initially annotated with a DINO object detector [75]
trained on public datasets. Data filtering, including con-
fidence thresholding and non-maximum suppression, re-
moves noisy boxes. Textual annotations for the visual ob-
ject regions are further enriched by brief text generated
from a specialist caption model with cropped image regions.
Each region then receives three textual annotations: phrase
from object category, brief text, and noun phrase chunks
from the brief text. The Florence-1 [73] model determines
the most similar textual annotation to each image region.

Text-phrase-region triplets consist of a descriptive text of
the image, noun phrases in this text related to image objects,
and region annotations for these objects. The text includes
brief, detailed, and more detailed text generated earlier. For
each text, the Grounding DINO model [43] identifies noun
phrases and creates bounding boxes for them. Addition-
ally, the SAM model [29] generates segmentation masks for
each box, offering more precise object localization. During
data filtering, a confidence score threshold is applied to both
noun phrases and bounding boxes to ensure relevance. A
blacklist is also used to exclude irrelevant noun phrases like
pronouns and abstract concepts.

5. FLD-5B Dataset

Following the data engine, we build a large-scale train-
ing set (FLD-5B) of 126M images, more than 500M text
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Annotation Type Text Type #Image #Avg #Regions
Anno. Tokens

Text Brief 235M 7.95 -
Detailed 126M 31.65 -
More detailed 126M 70.53 -

Region-Text Phrase 126M - 681M
Brief 126M - 681M

Text-Phrase-Region Brief 235M 7.95 1007M
Detailed 126M 31.65 1289M
More detailed 126M 70.53 1278M

Table 1. Annotation statistics of FLD-5B dataset.

annotations, 1.3B region-text annotations, and 3.6B text-
phrase-region annotations. Each image is annotated with
text, region-text pairs, and text-phrase-region triplets and
each annotation type has multiple instances varying in di-
verse granularity. The statistics for each annotation type
within our dataset are presented in Table 1. We present the
detailed analysis on FLD-5B dataset in ??.

We provide a comparison between our dataset and the
existing datasets that are commonly used for training foun-
dation models in Table 2. Our dataset has several advan-
tages over the previous ones, such as having more anno-
tations in total and per image. Moreover, the annotations
in our dataset span multiple levels of spatial and semantic
granularity, which allows for more diverse and comprehen-
sive visual understanding tasks.

6. Experiments

Our Florence-2 models are trained on FLD-5B to learn
a universal image representation. We investigate two model
variants with different sizes: Florence-2-B model with 232
million parameters and Florence-2-L model with 771 mil-
lion parameters. The detailed architectures of each model
and training setup are given in ????. We conduct our exper-
iments in three main parts: (1) We evaluate the zero-shot
performance of our method on various tasks to show its
inherent ability to handle multiple tasks without any extra
fine-tuning on task-specific data using one single general-
ist model. (2) We show the adaptability of our method by
further training one single generalist model with additional
supervised data on a wide range of tasks, achieving compet-
itive state-of-the-art performance.

6.1. Zero-shot Evaluation Across Tasks

We present a powerful vision foundation model that does
not require task-specific supervised annotations for fine-
tuning. The zero-shot performance of our model is shown
in Table 3. For image-level tasks, Florence-2-L achieves a
135.6 CIDEr score on the COCO caption benchmark [41],

utilizing less than 1% of the parameters compared to the
80B Flamingo [3] model (which has an 84.3 CIDEr score).
For region-level grounding and referring expression com-
prehension tasks, Florence-2-L establishes a new record
in zero-shot performance achieving a 5.7 improvement in
Flickr30k [49] Recall@1, and approximately 4%, 8%, and
8% absolute improvements on Refcoco, Refcoco+, and Re-
fcocog [72], respectively, compared to the Kosmos-2 [48]
model, which has 1.6B parameters. Additionally, our pre-
trained model attains a 35.8% mIOU in the Refcoco refer-
ring expression segmentation (RES) [72] task, a capability
not supported by prior foundation models.

6.2. Generalist Model with Public Supervised Data

We demonstrate the versatility and effectiveness of our
model as a vision foundation that can be transferred to var-
ious downstream tasks. We fine-tune Florence-2 models
by adding a collection of public datasets that cover image-
level, region-level, pixel-level tasks, yielding one generalist
model for various vision tasks. The details of the dataset
collection are provided in ??. Tables 4 and 5 compare our
model with other state-of-the-art models. Our key findings
are:

Simple design for strong performance. Florence-2
demonstrates strong performance with standard multi-
modality Transformer encoder-decoder without special de-
signs, particularly for region-level and pixel-level tasks.
For example, Florence-2-L outperforms PolyFormer [42]
on both RefCOCO REC task and RES task by 3.0 Ac-
curacy@0.5 and 3.54 mIOU respectively, where Poly-
Former [42] adapts specifically designed regression-based
prediction head for coordinates. Florence-2-L also out-
performs previous SOTA method UNINEXT [65] on Re-
fCOCO by 0.8 Accuracy@0.5, where UNINEXT [65] is
based on advanced object detector Deformable DETR [77]
and DINO [75].

Competitive performance with fewer parameters.
Florence-2-L achieves competitive performance without
the need for LLMs, showcasing efficiency in handling di-
verse tasks while maintaining a compact size. For instance,
Florence-2-L attains a CIDEr score of 140.0 on the COCO
Caption karpathy test split [27], outperforming models
with significantly more parameters, such as Flamingo (80B
parameters, 138.1 CIDEr score).

Adaptable generalization across task levels. Florence-2
demonstrates competitive performance across image-level,
pixel-level, and region-level tasks, emphasizing its adapt-
ability and effectiveness in addressing challenges in com-
puter vision and natural language processing. For example,
in the TextVQA task, Florence-2-L sets a new state-of-the-
art performance with an accuracy of 81.5 without any exter-
nal OCR token input, surpassing previous methods [12,15].
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Dataset Rep. Model #Images #Annotations Spatial hierarchy Semantics granularity

JFT300M [58] ViT [21] 300M 300M Image-level Coarse
WIT [51] CLIP [51] 400M 400M Image-level Coarse
SA-1B [29] SAM [29] 11M 1B Region-level Non-semantic
GrIT [48] Kosmos-2 [48] 91M 137M Image & Region-level Fine-grained
M3W [3] Flamingo [3] 185M 43.3M* Multi-image-level Fine-grained
FLD-5B (ours) Florence-2 (ours) 126M 5B Image & Region-level Coarse to fine-grained

Table 2. Comparison with datasets in vision foundation model training. *Flamingo’s annotations are counted in the number of documents,
where each document may have multiple images.
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Florence-2-L 0.77B 135.6 120.8 72.8 37.5 84.4 56.3 61.6 51.4 53.6 57.9 49.9 68.0 67.0 35.8

Table 3. Zero-shot performance of generalist vision foundation models. The models do not see the training data of the evaluation tasks
during training. Florence-2 models are pre-trained on FLD-5B dataset. Karpathy test split is used for COCO caption evaluation.

These achievements emphasize Florence-2’s efficiency
in handling diverse tasks while maintaining a compact size,
making it a unique and valuable asset in the ever-evolving
landscape of AI research and applications.

7. Related Works
7.1. Vision-Language Foundation Models

Recent vision-language pre-training models [26, 51, 73]
have demonstrated impressive zero-shot transfer abilities to
vision-language alignment and image classification tasks,
thanks to the alignment of vision and text embeddings ex-
tracted from respective encoders through contrastive learn-
ing objectives [46, 57]. These models, trained on weakly
large-scale image-text data, have been extended to more
downstream tasks such as object detection, achieving state-
of-the-art performance with task-specific adaptation heads.
Other studies [3,40,61,70] use a multi-modality decoder for
autoregressive text prediction, employing language model-
ing pre-training objectives. The methods for combining vi-
sion and language embeddings vary: GIT [61] concatenates
vision and text tokens for the decoder input with a causal
attention mask, and CoCa [70] utilizes attentional poolers
with learnable queries to select task-specific vision tokens.

Beyond image captioning pre-training task, some re-
search [15,44,62] attempts to formulate more vision tasks in
a unified sequence-to-sequence learning paradigm, includ-

ing object detection and image segmentation. Customized
special tokens accommodate representations beyond pure
text, such as bounding boxes [10, 44, 62]. This approach
uses the same architecture for pre-training and downstream
tasks, potentially using the same set of weights for all tasks.
Our method, which falls into this category, aims to ob-
tain foundation models that understand dense information
beyond image-level captions. It shares the same encoder-
decoder design as other multi-modality encoder-decoder
models [15,44] adapted for sequence-to-sequence learning,
but uses our built large-scale comprehensive annotation data
instead of combining existing sparse annotated data.

7.2. Vision Datasets

Comprehensive annotations. The evolution in com-
puter vision has shifted from focusing on single-perspective
datasets, like image classification [18], to multi-perspective,
comprehensive annotations for each visual data point [32,
35, 41]. Datasets such as MS-COCO [13, 41] and Visual
Genome [32] offer rich spatial and semantic annotations,
enhancing model interactions across annotations. How-
ever, their size is limited due to the cost of human verifica-
tion. Our large-scale datasets maintain comprehensive an-
notations, including text, region-text pairs, and text-phrase-
region triplets, with less human involvement.

Scalable annotations. Over the past decade, vision datasets
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Method #params
COCO Caption NoCaps TextCaps VQAv2 TextVQA VizWiz VQA
Karpathy test val val test-dev test-dev test-dev

CIDEr CIDEr CIDEr Acc Acc Acc

Specialist Models

CoCa [70] 2.1B 143.6 122.4 - 82.3 - -
BLIP-2 [39] 7.8B 144.5 121.6 - 82.2 - -
GIT2 [61] 5.1B 145 126.9 148.6 81.7 67.3 71.0
Flamingo [3] 80B 138.1 - - 82.0 54.1 65.7
PaLI [15] 17B 149.1 127.0 160.0△ 84.3 58.8 / 73.1△ 71.6 / 74.4△

PaLI-X [12] 55B 149.2 126.3 147 / 163.7△ 86.0 71.4 / 80.8△ 70.9 / 74.6△

Generalist Models

Unified-IO [44] 2.9B - 100 - 77.9 - 57.4
Florence-2-B 0.23B 140.0 116.7 143.9 79.7 63.6 63.6
Florence-2-L 0.77B 143.3 124.9 151.1 81.7 73.5 72.6

Table 4. Performance of specialist and generalist models on captioning and VQA tasks. Specialist Models refer to those that are fine-tuned
specifically for each task, while Generalist Models denote a single model fine-tuned in a task-agnostic manner, applicable across all tasks.
△ indicates usage of external OCR as input.

Method #params
COCO Det. Flickr30k RefCOCO RefCOCO+ RefCOCOg RefCOCO RES

val2017 test val test-A test-B val test-A test-B val test val
mAP R@1 Accuracy Accuracy Accuracy mIoU

Specialist Models

SeqTR [76] - - - 83.7 86.5 81.2 71.5 76.3 64.9 74.9 74.2 -
PolyFormer [42] - - - 90.4 92.9 87.2 85.0 89.8 78.0 85.8 85.9 76.9
UNINEXT [65] 0.74B 60.6 - 92.6 94.3 91.5 85.2 89.6 79.8 88.7 89.4 -
Ferret [68] 13B - - 89.5 92.4 84.4 82.8 88.1 75.2 85.8 86.3 -

Generalist Models

UniTAB [66] - - - 88.6 91.1 83.8 81.0 85.4 71.6 84.6 84.7 -
Florence-2-B 0.23B 41.4 84.0 92.6 94.8 91.5 86.8 91.7 82.2 89.8 82.2 78.0
Florence-2-L 0.77B 43.4 85.2 93.4 95.3 92.0 88.3 92.9 83.6 91.2 91.7 80.5

Table 5. Performance of specialist and generalist models on region-level tasks. Specialist Models refer to those that are fine-tuned
specifically for each task, while Generalist Models denote a single model fine-tuned in a task-agnostic manner, applicable across all tasks.

have rapidly scaled up from thousands [33, 37] to billion
examples [26, 74] to encompass more visual concepts for
better generalization. This shift is evident in recent foun-
dation models that employ massive quantities of data [6].
These large datasets typically collect images from the web
and parse noisy annotations from the corresponding meta-
data, such as category label from query [58, 74], short de-
scription from alt-text [26, 51], as well as detailed descrip-
tion from interleaved text [3, 36]. Despite their diversity,
these annotations suffer from randomness and limited types
(i.e., texts only). Some works [29, 40] attempt to scale up
annotations using pseudo-label generation with iteratively
trained models, which offer higher quality without signifi-
cant diversity loss. Our data pipeline extends these large-
scale, web-crawled noisy annotations with higher-quality,
autonomous annotations generated from multiple special-
ist models. The pipeline iteratively refines labels and com-
pletes missing pieces, resulting in a scalable and compre-

hensive dataset for learning a unified visual representation.

8. Conclusion
The Florence Project endeavors to develop a founda-

tional vision model endowed with diverse perceptual capa-
bilities, encompassing spatial hierarchy and semantic gran-
ularity. To this end, we construct FLD-5B dataset contain-
ing an extensive collection of 126M images paired with 5B
comprehensive annotations, which are collected by the Flo-
rence data engine. Subsequently, we pre-train Florence-2
on this rich dataset through comprehensive multitask learn-
ing in a unified manner. Florence-2 has exhibited remark-
able zero-shot capabilities that extend across a wide spec-
trum of visual tasks, such as captioning, object detection,
visual grounding, and referring segmentation, among oth-
ers. Experimental results highlight its potent universal rep-
resentation, significantly enhancing a wide range of down-
stream tasks.
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