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Abstract

The spatial non-uniformity and diverse patterns of
shadow degradation conflict with the weight sharing man-
ner of dominant models, which may lead to an unsatis-
factory compromise. To tackle with this issue, we present
a novel strategy from the view of shadow transformation
in this paper: directly homogenizing the spatial distribu-
tion of shadow degradation. Our key design is the random
shuffle operation and its corresponding inverse operation.
Specifically, random shuffle operation stochastically rear-
ranges the pixels across spatial space and the inverse oper-
ation recovers the original order. After randomly shuffling,
the shadow diffuses in the whole image and the degrada-
tion appears in a homogenized way, which can be effec-
tively processed by the local self-attention layer. More-
over, we further devise a new feed forward network with
position modeling to exploit image structural information.
Based on these elements, we construct the final local win-
dow based transformer named HomoFormer for image
shadow removal. Our HomoFormer can enjoy the lin-
ear complexity of local transformers while bypassing chal-
lenges of non-uniformity and diversity of shadow. Extensive
experiments are conducted to verify the superiority of our
HomoFormer across public datasets. Code is available at
https://github.com/jiexiaou/HomoFormer.

1. Introduction

Shadow is ubiquitous in images captured under natural
scenes when the light sources are partially or fully blocked.
However, shadow not only impairs the visual quality of im-
ages but imposes severe limitations on various subsequent
downstream vision tasks, e.g., object tracking [40] and de-
tection [36], face recognition [56], etc. Hence, it is signifi-
cant to restore clean images from their shaded counterparts.

One of main obstacles of image de-shadowing is that the
spatial distribution of shadow degradation is non-uniform
and the patterns of shadow are diverse. These character-
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Figure 1. Schematic illustration of challenges posed by non-
uniform distribution of shadow. Non-uniformity imposes a con-
straint to weight sharing models, where they struggle to seek for a
compromise among regions of various degenerated degrees. Ran-
dom shuffle creates a homogenized distribution, laying the foun-
dation for the weight-sharing local self-attention.

istics make shadow very hard to be modeled by dominant
models, such as convolutional neural networks (CNNs) and
window based Transformers [34]. It is caused by the inher-
ent weight sharing property of those models. The build-in
weight sharing property determines that they have to utilize
a single set of parameters to cover shadow cases of com-
plex degraded degree, which may lead to an unsatisfactory
compromise. Fig. 1 illustrates this idea schematically.

To overcome this challenge, one straightforward solution
is to choose advanced models, which are capable of model-
ing interactions with spatial heterogeneity. In other words,
the desired model is anticipated to take an adaptive action
relying on the concrete content of shadows. A competitive
candidate is vanilla vision transformers [4, 10], which, by
leveraging the global self-attention, are capable of process-
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ing images adaptively. Although vanilla vision transform-
ers can tackle with this heterogeneity issue to some degree,
their application is still limited by the quadratic complexity
with respect to the input resolution, which is usually high
(e.g., 840 × 640) for this task. Local window based Trans-
formers [34] can process images efficiently in linear com-
plexity while they suffer from the weight sharing when deal-
ing with non-uniform shadow degradation. In this work, we
turn to explore another side of the coin: is it possible to ho-
mogenize the non-uniform distribution instead of passively
choosing more sophisticated models for adaptation?

To achieve this goal, we wish to directly transform the
original non-uniform shadow by some function, imple-
mented by a dedicated operation pair S(·) and IS(·). S(·)
is used to project the non-uniform distribution to a homog-
enized space while IS(·) is the exact inverse operation of
S(·) to project it back. We provide a potential solution that
S(·) is the random shuffle operation and IS(·) is the cor-
responding inverse shuffle operation. Specifically, through
stochastic rearrangement across spatial space, each pixel
will be allocated to any position with the equal probabil-
ity, accomplishing the purpose of homogenizing the non-
uniform distribution. On the other hand, the random rear-
rangement of pixels thoroughly destroys the semantic infor-
mation (see Fig. 1, image semantics are lost after shuffling).
Consequently, after series of calculations in the homoge-
nized space, it is necessary to project inversely to align with
the original space. Fortunately, the random shuffle opera-
tion can be inverted exactly. We can readily invert the ran-
dom shuffle to reconstruct the image semantics by recover-
ing original relative positions between pixels. Notably, ran-
dom shuffle operation and its inverse are extremely cheap to
be implemented, without introducing additional parameters
or FLOPs.

With the random shuffle operation and its inverse op-
eration, we have assess to a homogenized space without
any information loss, eliminating the constraint to mod-
els with weight sharing property (see Fig. 1). For now,
we come to the stage of considering a concrete model for
image de-shadowing. A subtle issue is that since ran-
dom shuffle destroys the relative position relationships, the
desired layer working in the homogenized space should
not rely on position-based information to model relation-
ships. Given these considerations, the desired layer is im-
plemented as the local self-attention [34] without utilize po-
sition encoding. We can move the responsibility of model-
ing structural information to subsequent feed forward net-
work (FFN) layer [43]. Accordingly, we introduce a local
window Transformer, dubbed HomoFormer, as the over-
all model. HomoFormer not only enjoys linear com-
plexity to input resolution, strong representation of trans-
formers but also bypasses the challenge of modeling non-
uniformly distributed shadow degradation. We conduct ex-

tensive and comprehensive experiments to verify the supe-
riority (Secs. 4.2 and 4.3) as well as explain the behavior
(Sec. 4.4) of our HomoFormer.

In summary, the main contributions of this work include:
• We analyse the challenge of modeling non-uniformly dis-

tributed shadow degradation and provide a fresh perspec-
tive to this problem: homogenizing the non-uniform dis-
tribution.

• We design the random shuffle and inverse shuffle, a com-
plementary operation pair without any loss of informa-
tion, to accomplish the homogenization.

• We elaborate a local window Transformer named Homo-
Former which can process image with linear complexity
while avoiding to suffer from modeling non-uniform and
diverse shadow.

• Extensive and comprehensive experiments on benchmark
datasets are conducted to verify and further explain the
superiority of our HomoFormer.

2. Related Works

2.1. Image Shadow Removal

Classic approaches [11, 12, 42, 52] for shadow removal
often leverage various handcrafted priors, e.g., illumina-
tion [48, 55], regions [17], density [1], or user interac-
tion [14]. Recently, with the splendor development of deep
learning, learning based methods have also achieved bril-
liant progress for image shadow removal. For instance, De-
shadowNet [38] aggregates context information by fusing
multi-level features to predict a shadow matte for shadow
removal. Hu et al. [19, 20] leverage a direction-aware spa-
tial context for detecting and removing shadows. Mask-
shadowGAN [21] proposes a framework that estimates the
shadow mask from the input shadow image and sequently
utilizes the masks as guidance for the shadow generation to
establish the cycle-consistency constraints. Cun et al. [8]
exploit the contextual features by stacking dilated convolu-
tions. Chen et al. [6] attempt to remove shadows by trans-
fer the contextual information from non-shadow regions to
shadow regions. Fu et al. [13] formulate the shadow re-
moval task as a multiple exposure images fusion problem.
DC-ShadowNet [23] integrates the domain classifiers and
the physics-based losses to achieve the unpaired shadow
removal. G2R [35] and BMNet [57] both introduce the
shadow generation process for boosting the performance
of shadow removal. Several works [9, 33] also employ
generative adversarial networks to enhance the reality of
shadow removed results or unpaired data training. SP+M-
Net [26] and EMDN [58] both attempt to propose the rea-
sonable shadow illumination models for shadow removal.
Guo et al. [15] make use of channel attention to exploit
the global contextual correlation between shadow and non-
shadow regions. Wan et al. [44] propose a style-guided
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Figure 2. The overall architecture of our proposed HomoFormer. The core of HomoFormer is to use random shuffle to homogenize the
original image space and employ local self-attention to model interactions in the homogenized space.

shadow removal network for better image-style consistency
after shadow removal.

2.2. Vision Transformer

Vision Transformers [10, 32, 34, 37, 47] have gained glo-
rious achievements in vision community. ViT [10] firstly
treated image patches as token sequence and applied the
vanilla transformer on it for image classification. Swin
Transformer [34] brought in the locality and hierarchy
prior to self-attention and adopted the shifted window self-
attention to establish a efficient architecture for various
tasks, including image classification, object detection and
semantic segmentation. A few transformers [4, 31, 46,
49, 50, 53] have also arose for various low-level vision
tasks. Nevertheless, most of them adopts the vanilla self-
attention or shifted window self-attention, suffering from
either huge complexity or modeling non-uniformly dis-
tributed shadow degradation. For image shadow removal,
ShadowFormer [15] adopts channel attention to aggregate
global context instead of spatial attention to avoid expen-
sive complexity. In comparison with ShadowFormer, our
motivation is to primarily focus on the non-uniform issue
of shadow and our HomoFormer still adopts the classic
paradigm of “self-attention→MLP” of vision transformers.

2.3. Image Shuffle Strategy

Shuffling pixels is a common technique in computer vision
but we shed new light on its potential for shadow removals.
Kang et al. [24] proposes to shuffle pixels in a local patch
as a training regularization. Except for distinct motivation,
HomoFormer extends the shuffling range to the whole im-
age. Pixel shuffle also plays a role in upsampling/down-
sampling to reshape features [29, 41]. It is used to ex-
change information between channel and space and does

not randomly disrupt the spatial rearrangements of pixels.
Recently, to capture non-local interactions, Xiao et al. [51]
proposes random shuffle to replace shifted window strategy
of Swin Transformer. Different from [51], the motivation
of HomoFormer is to create a homogenized space, which
is compatible with the weight-sharing mechanism. Besides,
we employ random shuffle throughout the network rather
than replace the shifted window strategy and develop the
separate SMLP module to model structural information.

3. Method
We first introduce the dedicate random shuffle operation and
inverse shuffle operation in Sec. 3.1. Then in Sec. 3.2, we
recall the formulation of local self-attention and then inte-
grate these two shuffle operations with local self-attention
to establish a elaborate layer calculating on the homoge-
nized space. FFN with structure modeling is proposed in
Sec. 3.3. Last, we present the overall Transformer model
for image shadow removal in Sec. 3.4.

3.1. Random Shuffle and Inverse Shuffle

Shadow degradation is non-uniformly distributed across
spatial space, which is undesirable for dominant models
with weight sharing property. To tackle with the non-
uniformity issue, we present two key operations to homog-
enize the distribution: the random shuffle operation S(·)
and corresponding inverse shuffle operation IS(·). Random
shuffle is responsible for stochastically permuting the ele-
ments of input while inverse shuffle corresponds to recover-
ing the original order. Formally, suppose that X is the input,
m is the list of index of X and m is the random permutation
of m, we have the definitions for random shuffle operation:

S(X)m = Xm. (1)
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Figure 3. Computational graph of the proposed local self-attention
with random shuffle.

After random shuffle, each pixel has an equal probability
of appearing in any position. Consequently, random shuf-
fle can play a key role in homogenizing the non-uniformly
distributed shadow degradation, eliminating the constraint
to weight sharing models.

On the other hand, random shuffle thoroughly destroys
the image semantics, which is closely related to the order
of pixels. Therefore, after possessing in the homogenized
space, it is necessary to invert the shuffle projection to align
with original feature. Motivated by that, we elaborate the
inverse shuffle operation, which has the definition:

IS(S(X)) = X. (2)

As analyzed above, the inverse shuffle operation is able to
offset the stochastic reordering of random shuffle operation.
Besides, since only rearrangement of elements is involved,
the shuffle operation pair is extremely efficient to be im-
plemented on modern accelerators, without incurring extra
parameters or FLOPs.

3.2. Local Self-Attention with Random Shuffle

Self-attention [43] can be summarized as mapping a query
and a set of key-value pairs to an output, where the query,
keys and values are obtained from linear projections of in-
put. The formulation of self-attention is expressed by

SA(X) = Softmax
(
XWQ(XWK)T√

dk

)
XWV . (3)

WQ,WK , and WV are parameter matrices for query, key
and value, respectively. Self-attention is often used to
model long-range interactions. However, its complexity in
both time and memory is quadratic with respect to the to-
ken number (the resolution of input image for vision tasks).
The quadratic complexity incurs prohibitively huge burden
in both computation and memory cost when self-attention
is directly applied to image shadow removal, since the in-
put resolution is often high. Swin Transformer [34] adopts
local self-attention instead of global self-attention, which
reduces significantly to linear complexity to input resolu-
tion. Specifically, local attention first partitions the input
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Figure 4. Computational graph of the proposed SMLP.

into non-overlapping windows, and restricts the comput-
ing of self-attention within local windows. The weights for
processing those non-overlapping windows are shared. The
mathematical formulation of local self-attention is

LSA(X) = SA (Par(X)) , (4)

where Par(·) denotes the partition function. Self-attention
can be implemented as the multi-head version to boost its
expressiveness [10, 34, 43]. For simplicity, we here take
single head case as example without loss of generality.

Despite its high efficiency, the weight sharing property
of local self-attention makes it undesirable for image de-
shadowing due to the spatial non-uniformity and diversity
of shadow. Given the random shuffle and inverse shuffle
operation, we can overcome this difficulty by integrating
the shuffle pair with local self-attention. Fig. 3 presents the
detailed computational graph. Specifically, the input X is
first stochastically rearranged by random shuffle operation
S(·), resulting a homogenized version of input denoted by
X̃ . The homogenized input is fed to local self-attention,
yielding the homogenized output Ỹ . Lastly, the homoge-
nized output is recovered to the original order of ultimate
output Y by inverse shuffle operation IS(·). The above pro-
cedure is formulated by

X̃ = S(X), Ỹ = LSA(X̃), Y = IS(Ỹ ). (5)

A potential concern may be whether the stochasticity in
pixel’s position brought by random shuffle will affect the
training stability of local self-attention. Fortunately, an im-
portant property of self-attention is that it is equivariant to
reordering [7], that is, it gives the same output regardless of
how the input tokens are shuffled. Therefore, self-attention
can serve as a desired layer processing the homogenized
feature without being interfered by stochasticity of random
shuffle. A distinction with original local self-attention [34]
is that relative position encoding is discarded, leaving struc-
tural information unexplored [2]. The reason is straightfor-
ward: after randomly shuffling, the position is no longer
reliable. But this problem can be readily solved by moving
the function of modeling structure-based interactions to the
subsequent feed forward network.
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3.3. FFN with Structure Modeling

Followed by the classic paradigm of Transformer, we wish
to design the basic transformer building block by employing
this customized self-attention followed by feed forward net-
work (FFN). Given the consideration that our customized
self-attention cannot exploit structure-based information to
explore structural information, we move the responsibility
of modeling structure-based interactions to the FFN. Typ-
ically, FFN in Transformer is implemented by two multi-
layer perceptrons (MLPs). We here resort to FFN to model
structure-based interactions. Reminder that CNNs allocate
weight according to the relative position, thus acting as a
simple layer to model structure-based interactions. Hence,
we design a simple FFN by inserting depth-wise convolu-
tion between MLPs, which we call SMLP. Fig. 4 shows the
procedure. Formally, SMLP computes as

X̂1 = MLP(X),

X̂2 = DConv1(X̂1)⊙DConv2(X̂1),

Y = MLP(X̂2),

(6)

where DConv1,2(·) denotes depth-wise convolution and ⊙
denotes the element-wise multiplication. Note that we dis-
card the GELU activation since it is redundant when work-
ing with element-wise multiplication [5], which is also val-
idated by our ablation study.

3.4. HomoFormer

Given the elemental blocks of local self-attention with ran-
dom shuffle and structure MLPs, we are now ready to
construct the ultimate Transformer (i.e., HomoFormer) by
integrating the basic building block in the widely used
UNet [22, 39] architecture. This process is straightfor-
ward and the overall architecture is illustrated in Fig. 2.
The loss function adopted for training our HomoFormer is
the single Charbonnier loss [3] instead of complex hybrid
loss [13, 57], whose mathematical expression is

L(I ′, I) =
√
||I ′ − I||2 + ϵ2, (7)

where I ′ and I are the output and shadow-free image re-
spectively. The constant ϵ is empirically set to 10−3 for
numerical stability.

4. Experiments
4.1. Experimental Settings

Random factors. Since random shuffle operations intro-
duce stochasticity, we run evaluation for five times, calcu-
late quantitative scores, and report the mean score 1, which

1In practice, the standard deviation is much smaller than the precision
of reported mean. Hence, we overlook the standard deviation.

is the default configuration (denoted by “HomoFormer” in
tables). Besides, given these random factors, it is expected
for the model to average it outputs as the final prediction,
i.e., marginalizing the random factors from Bayesian per-
spective. However, random shuffle operations are inde-
pendent for each self-attention layer, resulting in exponen-
tial number of combinations. Therefore, we approximate
the expected prediction using Monte Carlo averaging. The
number of Monte Carlo samples is set to 8, which is marked
by “HomoFormer+” in tables. We will further study the ef-
fect of the sample number in ablation study.

Datasets. Shadow removal experiments are conducted on
the two representative benchmark datasets. (i) Adjusted
ISTD (ISTD+) dataset [26] comprises of 1870 images
triples (shadow images, shadow-free images, and shadow
mask), which is divided into 1330 training triplets and 540
testing triplets. Compared with ISTD dataset [45], ISTD+
dataset [26] reduces the illumination inconsistency between
the shadow and shadow-free image of ISTD by the image
processing algorithm. Due to the repeated data, we move
evaluation results on ISTD dataset to Supplementary Ma-
terial; (ii) SRD dataset [38] is composed of 2680 training
pairs and 408 testing pairs. Due to the lack of ground truth
shadow masks in SRD, we directly utilize the public SRD
shadow masks provided by DHAN [8] for the training and
testing phase.

Evaluation metrics. To compare with other methods
quantitatively, following the previous methods [13, 18, 23,
45], we utilize the root mean square error (MAE) in the
LAB color space between the estimated images and ground
truth shadow-free images. For the MAE metric, the lower
values mean more faithful restoration, thus better results.
Moreover, we also adopt the classic Peak Signal-to-Noise
Ratio (PSNR) and structural similarity (SSIM) criterion to
evaluate the performance of various methods in the RGB
space. For the PSNR and SSIM metrics, higher values in-
dicate better results. For consistent comparison, we resize
estimated shadow-free images to the resolution of 256×256
to obtain quantitative results.

4.2. Comparison on the ISTD+ Dataset

We report the MAE score in comparison with other
state-of-the-art methods on the ISTD+ Dataset [26] in
Tab. 2. Twelve previous SOTA methods are included,
ranging from traditional shadow removal method: Guo et
al. [18], to recent deep learning based methods: Deshad-
owNet [38], ST-CGAN [54], ShadowGAN [21], SP+M-
Net [26], Param+M+D-Net [27], G2R [35], Fu et al. [13],
Jin et al. [23], BMNet [57], SG-ShadowNet [44], and Shad-
owFormer [15]. To guarantee fair comparison, the results
of these compared methods are provided by the authors or
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Table 1. Quantitative comparisons with the SOTA methods on the SRD dataset [38]. The best and the second results are boldfaced and
underlined, respectively.

Method Shadow Region Non-Shadow Region All Region
PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓

Input images 18.96 0.871 36.69 31.47 0.975 4.83 18.19 0.829 14.05
Guo et al. [18] (TPAMI’12) - - 29.89 - - 6.47 - - 12.60
DeshadowNet [38] (CVPR’17) - - 11.78 - - 4.84 - - 6.64
DSC [20] (TPAMI’19) 30.65 0.960 8.62 31.94 0.965 4.41 27.76 0.903 5.71
DHAN [8] (AAAI’20) 33.67 0.978 8.94 34.79 0.979 4.80 30.51 0.949 5.67
Fu et al. [13] (CVPR’21) 32.26 0.966 8.55 31.87 0.945 5.74 28.40 0.893 6.50
Jin et al. [23] (ICCV’21) 34.00 0.975 7.70 35.53 0.981 3.65 31.53 0.955 4.65
BMNet [57] (CVPR’22) 35.05 0.981 6.61 36.02 0.982 3.61 31.69 0.956 4.46
SG-ShadowNet [44] (ECCV’22) - - 7.53 - - 2.97 - - 4.23
ShadowFormer [15] (AAAI’23) 36.91 0.989 5.90 36.22 0.989 3.44 32.90 0.958 4.04
ShadowDiffusion [16] (CVPR’23) 38.72 0.987 4.98 37.78 0.985 3.44 34.73 0.970 3.63
Li et al. [30] (ICCV’23) 39.33 0.985 6.09 35.61 0.967 2.97 33.17 0.941 3.83
HomoFormer(ours) 38.81 0.987 4.25 39.45 0.988 2.85 35.37 0.972 3.33
HomoFormer+(ours) 38.64 0.987 4.33 40.04 0.989 2.76 35.50 0.972 3.29

Table 2. Quantitative comparisons with the SOTA methods on the
ISTD+ datasets. The best and the second results are boldfaced
and underlined, respectively.

Method
Region Shadow Non-Shadow All

MAE↓ MAE↓ MAE↓
Input images 40.2 2.6 8.5
Guo et al. [18] (TPAMI’12) 22.0 3.1 6.1
DeshadowNet [38] (CVPR’17) 15.9 6.0 7.6
ST-CGAN [54] (CVPR’18) 13.4 7.7 8.7
ShadowGAN [21] (ICCV’19) 12.4 4.0 5.3
SP+M-Net [26] (ICCV’19) 7.9 3.1 3.9
Param+M+D-Net [27] (ECCV’20) 9.7 3.0 4.0
G2R [35] (CVPR’21) 7.3 2.9 3.6
Fu et al. [13] (CVPR’21) 6.5 3.8 4.2
Jin et al. [23] (ICCV’21) 10.3 3.5 4.6
BMNet [57] (CVPR’22) 5.6 2.5 3.0
SG-ShadowNet [44] (ECCV’22) 5.9 2.9 3.4
ShadowFormer [15] (AAAI’23) 5.2 2.3 2.8
ShadowDiffusion [16] (CVPR’23) 4.9 2.3 2.7
Li et al. [30] (ICCV’23) 5.9 2.9 3.3
HomoFormer(ours) 5.0 2.3 2.7
HomoFormer+(ours) 5.0 2.2 2.6

Table 3. Abalation study on the ISTD+ datasets.

Method
Region Shadow Non-Shadow All

MAE↓ MAE↓ MAE↓
w/o random shuffle 6.4 2.5 3.0
w/o structure 5.6 2.5 2.9
Ours (default) 5.0 2.3 2.7

obtained from the original paper. As shown in Tab. 2, our
HomoFormer achieves lower MAE score than all previous
SOTA methods, for example with the gain of 0.4 compared
with BMNet [57], suggesting that our method is capable of
restoring the clean image more faithfully. Moreover, with
Monte Carlo averaging, our method (HomoFormer+) ob-

tains better results in both shadow and non-shadow region.
Fig. 5 shows that compared with other methods, our Ho-
moFormer produces results with less boundary artifacts.
Supplementary material provides extended results on SBU
dataset [28] to further support its generalization.

4.3. Comparison on SRD Dataset

In Table Tab. 1, we report the quantitative comparisons
in terms of PSNR/SSIM/MAE with other SOTA methods
on the SRD dataset [38], including Guo et al. [18], De-
shadowNet [38], DSC [20], DHAN [8], Fu et al. [13],
Jin et al. [23], BMNet [57], SG-ShadowNet [44] Shadow-
Former [15], Li et al. [30] and ShadowDiffusion [16]. Our
method also achieves the best de-shadowing performance
with the lowest MAE and the highest PSNR/SSIM values.
Compared with ShadowFormer [15], the PSNR value of our
method is improvod from 32.90 dB to 35.37 dB. Besides,
we also provide the visual comparisons in Fig. 6. We can
observe that HomoFormer can remove shadow with less
artifacts left.

4.4. Ablation Study and Analysis

To verify our choice and further promote understanding for
our method, we conduct ablation experiments and analysis
based on the ISTD+ Dataset [26].

Effect of random shuffle. To study the effect of random
shuffle, we design a model variant by removing the random
shuffle and inverse shuffle. As shown in Tab. 3, MAE in-
creases on shadowed (+1.4), non-shadowed (+0.2) and all
regions (+0.3), which suggests that random shuffle helps in
removing shadow degradation clearly and maintaining the
non-shadowed region faithfully. The underlying reason is
that random shuffle homogenizes the non-uniformed distri-
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(a) input (b) SP+M-N (c) Jin et al. (d) BMNet (e) SG-ShadowNet (f) ShadowFormer (g) HomoFormer (h) GT

Figure 5. Visual comparisons with state-of-the-art methods on the ISTD+ dataset [26]. First row: the full-size evaluations. Second row:
the enlarged region. Our HomoFormer obtains visually pleasant results with less artifacts.

(a) input (b) DSC (d) BMNet (e) SG-ShadowNet (f) HomoFormer (g) GT(c) DHAN

Figure 6. Visual comparisons with state-of-the-art methods on the SRD dataset [38].

bution of degradation, which is beneficial for the weight-
sharing local self-attention.

To take a further step towards understanding the behav-
ior of random shuffle, we visualize intermediate features of
our default HomoFormer and the variant without random
shuffle. Fig. 7 shows some representative examples from
the first encoding layer and last decoding layer. Generally,
without random shuffle, local self-attention has to utilize a
single parameter set to reach a compromise among regions
with various shaded degrees (see Fig. 1). We can observe
this effect from experiments: for features from the first en-
coding layer (column 2−3 in Fig. 7), the highlighted region
discards nearly all textures without random shuffle, which is
harmful for recovering faithful results. For the features from
the last decoding layer, we wish they should be as clean as
possible, i.e. they should contain no artifacts brought by
degradation, since they will be used to construct the final
clean output. Observing the features from the last decoding
layer, we find that HomoFormer with random shuffle pro-
duces much more visually pleasing results. These observa-
tions together lead to the conclusion that random shuffle is
beneficial for extracting more effective features (more tex-
tures or less artifacts in our case).

Uncertainty can predict errors. Uncertainty can play a
significant role for computer vision [25]. For shadow re-

moval, uncertainty can estimate the degree of confidence
about the prediction. The presented HomoFormer provides
a natural approach to estimate its uncertainty due to its in-
herent random shuffle behaviour. For example, we can eval-
uate an image multiple times and compute the standard de-
viation as the uncertainty. Fig. 9 suggests that uncertainty
computing without resorting to groundtruth image can pre-
dict where errors are prone to take place, which is of practi-
cal significance for real-world scenarios.
Effect of structure-modeling in FFN. Since we discard the
structural information in local self-attention, we move the
responsibility of modeling structural information to FFN.
We validate the effectiveness by removing depth-wise con-
volution in FFN. Tab. 3 suggests that the absence of position
modeling impairs the performance significantly.
Effect of the number of Monte Carlo samples. To
marginalize random factors, we leverage Monte Carlo av-
eraging to approximate the expectation. In theory, as the
sampled number tends to infinity, the average gets close to
the true expectation. We investigate this property on SRD
dataset. Fig. 8 reveals that the performance is first promoted
and then converged as the sample number increases. The
sampled number of 8, which we adopt as the default value,
can produce promising results while saving computations
as much as possible.
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The first encoding layer The last decoding layer

Random 
shuffle

Random 
shuffle

input

Figure 7. Visualization of features from the first encoding layer and last decoding layer. Features of the first row are taken from the variant
model without random shuffle and the second row corresponds to features from the default HomoFormer model. Compared with the
variant without random shuffle, features from the default HomoFormer contain more detailed textures in the shallow layer (column 2-3)
and faithful contents in the deep layer (column 4-5).

Figure 8. Effect of the number of Monte Carlo samples.

5. Discussions and Future Works

In this paper, we integrate the invertible shuffle operation
with local self-attention, providing a fresh perspective to the
challenge of modeling complex shadow degradation with
non-uniform distribution and diverse pattern. Expect the
motivation of being compatible with weight-sharing, the ef-
fectiveness of HomoFormer can be explained from the view
of global interactions. We assume that pixels within an im-
age are related. Random shuffle can pull two pixels into a
single window regardless their distance. Hence, local SA
on a shuffled image is equivalent to capturing sparse global
interactions from that image, providing rich information for
model to learn. Besides, since non-uniformity and diversity
are not unique to shadow degradation, we are also excited
about the future of homogenization in more general image
restoration tasks, such as image inpainting, which is also

(a) Input (b) Uncertainty distribution (c) Error distribution

Figure 9. Uncertainty originating from random shuffle can be used
to predict the error distribution (i.e., |I−I ′|) between the evaluated
clean image I ′ and shadow-free image I .

our future work.

6. Conclusion
In this paper, we provide a fresh perspective to tackle with
the issue of modeling complex shadow degradation with
non-uniform distribution and diverse pattern. By the elab-
orate random shuffle and inverse shuffle operation pair, the
non-uniform distribution is homogenized, laying the foun-
dation for effectively modeling the complex degradation
with weight sharing models. Based on that, we estab-
lish a novel local window based transformer named Homo-
Former for image shadow removal. Our HomoFormer can
enjoy the efficient linear complexity to input resolution as
well as overcome the challenge of modeling non-uniformly
distributed shadow degradation. We conduct extensive and
comprehensive experiments to validate and understand the
proposed method.
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