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Figure 1. Neural customizable human avatar. Our method takes as input monocular or sparse multi-view videos and outputs disentangled
human representations, including normal, albedo, shadow, and illumination. Such disentanglement enables control of the learned human
avatar with arbitrary poses/viewpoints and various customization options such as adjusting shape, shadow, lighting and texture.

Abstract

Human avatar has become a novel type of 3D asset with
various applications. Ideally, a human avatar should be fully
customizable to accommodate different settings and envi-
ronments. In this work, we introduce NECA, an approach
capable of learning versatile human representation from
monocular or sparse-view videos, enabling granular cus-
tomization across aspects such as pose, shadow, shape, light-
ing and texture. The core of our approach is to represent
humans in complementary dual spaces and predict disentan-
gled neural fields of geometry, albedo, shadow, as well as an
external lighting, from which we are able to derive realistic
rendering with high-frequency details via volumetric render-
ing. Extensive experiments demonstrate the advantage of our
method over the state-of-the-art methods in photorealistic
rendering, as well as various editing tasks such as novel pose
synthesis and relighting. Our code is available at https:
//github.com/iSEE-Laboratory/NECA.

∗Corresponding author.

1. Introduction

There is widespread demand for human avatars in many
emerging applications such as the metaverse, telepresence,
and 3D games. Among them, a basic common requirement
for human avatars is that they should be fully editable to
allow easy customization across aspects like pose, shape,
lighting, texture, and even shadow. While there are numer-
ous works on neural human avatar modelling, as illustrated
in Tab. 1, they are mostly tailored for either animation or
relighting purposes, failing to offer full customization capa-
bilities for avatars thus being limited in overall practicality.

In this work, we present NECA, a novel framework that al-
lows learning fully customizable neural human avatars with
photorealistic rendering under any novel pose, viewpoint
and lighting, as well as the ability to edit shape, texture, and
shadow. To this end, we propose to learn human representa-
tion in both Canonical space and the surface space consisting
of UV features and local tangent coordinates, so as to capture
high-frequency dynamic variations and the shared charac-
teristics across poses with geometry priors for harvesting
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Table 1. Comparison of customizable attributes enabled by
existing neural human avatar reconstruction methods.

Method Pose Lighting Shadow Shape Texture

Neural Body [42] % % % % %

Neural Actor [31] ! % % ! !

Ani-NeRF [41] ! % % % %

DS-NeRF [75] ! % % ! !

SA-NeRF [63] ! % % ! !

HumanNeRF [59] ! % % % %

ARAH [56] ! % % % %

TAVA [29] ! % % % !

Relighting4D [9] % ! % % %

MonoHuman [68] ! % % % %

CustomHumans [20] ! % % ! !

UV Volumes [8] ! % % ! !

PoseVocab [30] ! % % % %

Sun et al. [53] ! ! % % %

Ours ! ! ! ! !

high-fidelity novel pose synthesis. Besides, to achieve full
customization capabilities, we employ distinct MLPs to pre-
dict geometry, albedo and shadow separately, and optimize
a spherical environmental lighting. The entire framework
is trained in a self-supervised manner, constrained only by
photometric losses and normal regularization.

In summary, the main contributions of this work are:
• We present NECA, which to our knowledge, is the

first framework that is able to learn fully customizable
neural human avatars allowing photorealistic rendering.

• We propose to learn human representation in dual
spaces for capturing high-frequency motion details and
geometry-aware characteristics, and represent avatars
as disentangled neural fields with distinct geometry and
appearance attributes for flexible control.

• Extensive experiments demonstrate the broad editing
capabilities of our approach, and our significant im-
provements over prior state-of-the-arts in various tasks
such as novel pose synthesis and relighting.

2. Related Work
Human Avatar Reconstruction. Early methods explicitly
represent human avatars with deformable templates such
as SMPL [32] and its derivatives [37, 40]. Such template-
based representation has a fixed mesh topology, and always
fails to capture high-fidelity details. In recent years, the ad-
vent of neural implicit fields has witnessed the great success
in 3D reconstruction [10, 34–36, 39, 52, 54, 55]. Among
them, SDF-based methods [18, 46, 47, 61, 62, 74] demon-
strate promising results in creating lifelike human models.
However, they are unable to represent animatable humans.
Various later methods [19, 22, 31, 41, 75] are designed to
address this limitation by deforming the human body from

observation space to canonical space [59, 68]. Particularly,
Animatable NeRF [41] proposes to learn per-pose related
latent codes for skinning weights in the observation space
for deformation, but it requires extra fine-tuning in the in-
ference stage. ARAH [56] uses a root-finding algorithm [6]
for transformations, thereby enabling novel pose rendering,
but at the cost of low rendering speed. Note, as lighting and
texture information are usually integrated into a single MLP
in these methods, they do not support any appearance editing.
There also exist some works that allow appearance editing
[8, 20, 29, 63], but they mainly focus on shape, pose, and
texture adjustments.

Human Relighting. A widely adopted technique for relight-
ing human is inverse rendering [2, 14, 27, 33, 38, 48, 67],
which aims to disentangle geometry, material, and lighting
from observed images. However, they are either restricted
to novel view and novel pose synthesis because of lacking
underlying 3D representation [27, 38], or depend heavily
on the hard-to-obtain one-light-at-a-time (OLAT) images
[14]. Recent implicit-field based methods [1, 11, 24, 51, 58,
69, 72, 73] address these limitations by directly learning
the underlying 3D structure and unknown illumination from
the input images, relying on photometric or geometry loss.
While these methods demonstrate promising novel view syn-
thesis results and fine-grained geometry reconstruction, they
are mostly tailored for static scenes and not applicable to dy-
namic humans with complex non-rigid motion and shadow.
By extending NeRF [35], some concurrent works [9, 53, 64]
gain applicability to dynamic humans. Nevertheless, they
struggle to render high-fidelity humans under arbitrary novel
poses [9], and none of them provide capabilities for texture
and shadow editing.

3. Method
Our method aims to generate a fully customizable hu-

man avatar from as few as a monocular video. We represent
the human avatar in complementary dual spaces (Sec. 3.1),
for capturing both high-frequency pose-aware features and
geometry-aware subject-level characteristics. From such rep-
resentation, we derive the disentangled neural fields, each
dedicated to a specific attribute such as SDF, shadow, albedo,
as well as environmental lighting (Sec. 3.2). The disentangle-
ment is learned in a self-supervised manner, with only photo-
metric losses and normal regularization (Sec. 3.3). Once the
avatar has been generated, we can adjust each decomposed
attributes separately for diverse applications, ranging from
reposing and relighting to reshaping, shadow editing and
texture swapping, as demonstrated in our experiments. An
overview of our method is shown in Fig. 2.

3.1. Dual-space Dynamic Human Representation

Motivation. Most existing works define neural representa-
tion in either Canonical space or the surface space of the de-
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Figure 2. Overview of NECA. We first sample points along the camera ray and transform the query points from observation space to
canonical space. Next, we query the pose-aware feature by projecting points to factorized tri-plane that per-pose optimized. Then we construct
tangent space of the nearest surface point to the query points on SMPL, and obtain the subject-level feature by concatenating the tangent
space local coordinate and the learned latent code in the surface space. Finally, to enable flexible customization, we disentangle the neural
fields into attributes including SDF, albedo and shadow, as well as a learnable environmental lighting, by decoding the extracted features
with distinct MLPs. The entire network is trained in a self-supervised manner, with only photometric losses and normal regularization.

formable human template [32], each with its own advantages
and limitations. Concretely, Canonical space is more generic
and offers greater feature capacity to capture high-frequency
details, but may lead to disturbing misalignment across poses
because of ignoring the shape prior of the human body. In
contrast, the surface space leverages the shape prior, focus-
ing on the proximate surface volume. Nevertheless, it relies
much on pose prior, which limits the expressiveness of the
learned representation. Therefore, we propose to incorpo-
rate the strengths of both spaces. We define the pose-aware
representation in Canonical space to mitigate the influence
of strong pose prior and enhance expressiveness for diverse
motion dynamics, and the subject-level representation in
the surface space due to its consistency across poses. In a
recent work [31], Canonical coordinates and UV features
are both utilized in NeRF. They however do not explicitly
learn Canonical space feature representation, resulting in
relatively limited capability to represent motion variations.
Moreover, the surface space feature is only employed for
color prediction, leaving the shape prior unexploited.

Canonical space for pose-aware feature. Pose changes
lead to high-frequency appearance variations, such as dynam-
ics of clothing and shadows resulting from self-occlusion.
To better capture such intricate pose-dependent details,
We adopt tri-plane representation [21, 44, 49] to learn
pose-aware features. Concretely, we construct tri-plane
T

{XY,XZ,Y Z}
θ

∈ RL×L×D for each training pose θ in the
canonical space. Given a query point xo in the observation
space, we transform it to the canonical space using inverse

linear blend skinning [32]:

xc =

Nj∑
b

WbB
−1
b xo. (1)

Here, b is index of joints, Nj denotes the total number of
joints. Wb denotes the skinning weight of point xo associ-
ated with joint b, and B−1

b is the transformation of joint
b from the observation space to the canonical space. We
follow the approach outlined in [31] to calculate skinning
weight Wb. We can then fetch the pose-aware feature po for
xo by projecting xc onto three feature planes, and sample
corresponding features:

po = ⊕(tXY
θ , tXZ

θ , tY Z
θ ,θ), (2)

where ⊕ denotes concatenation, t{XY,XZ,Y Z}
θ

are the sam-
pled features from the feature planes by bilinear interpolation.
We append pose θ to be more robust.

However, this straightforward implementation incurs sig-
nificant memory costs due to the per-pose unique tri-plane
feature. To reduce memory cost, we employ CP decomposi-
tion [4, 5, 17] to factorize the feature planes into orthogonal
feature vectors. This is achieved by factorizing the axis-
aligned planes into a sum of R outer products of 1D vectors:

Tmn
θ =

R∑
r=1

vm
r ◦ vn

r ◦ vmn
r , (3)

where m,n are different axes from {X,Y, Z}. v{x,y,z}
r ∈

RL represent learned axis-aligned vectors, and v{xy,xz,yz}
r ∈
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Figure 3. Local coordinate used by [20, 31, 70] and the one
used by us. (a) Previous works defined their local coordinate in
UV space. The three pink points will be mapped to the same red
point on the surface, thus share the same feature. Such many-to-one
problem is also mentioned in [63]. (b) We complement UV space
with local tangent space. Although pink points are still mapped
to the same surface point, now they have different coordinates in
the local tangent space. Their features are therefore different. As
previous works, our local coordinate is also rotation invariant.

RD represent learned vectors in the feature dimension. We
dramatically compress the tri-plane, reducing the memory
complexity from O(L2) to O(RL) where R ≪ L.

The learned factorized tri-planes from all training poses
form a pose-aware feature dictionary {Tθ}. During test
time, given an unseen pose, we select the top 5 most similar
training poses, and average the features obtained from corre-
sponding tri-planes, weighted by the pose similarity. A recent
work, PoseVocab [30], also uses a pose-aware embedding
dictionary, but it learns global features for each local joint
and its feature representativeness is degraded for achieving
better memory efficiency. In our case, pose-aware features
are learned with a global pose based on the factorized tri-
plane, resulting in features with strong representation power
while keeping a low memory footprint.

Surface space for subject-level feature. Subject-level fea-
ture describes pose-agnostic characteristics. We employ the
SMPL model [32] as prior to align poses, and define our
subject-level feature on its UV map. While earlier methods
[20, 31, 70] have adopted the UV volume as pose-agnostic
space, their approaches incur the many-to-one problem [63]
illustrated in Fig. 3(a): multiple 3D points are mapped to
the same point on edges and vertices, due to the finite area
of each triangle. Inspired by [3], we address such limitation
by constructing tangent space for any point on the SMPL
surface, and encode the query 3D point based on its local
coordinate in the tangent space of the nearest surface point,
as a supplement to the UV feature map.

Specifically, for a surface point xs, we construct its asso-
ciated tangent space by creating the local coordinates from
its tangent vector ts, bitangent vector bs, and normal vector
ns:

M(xs) = [ts,bs,ns]
T . (4)

More details on calculating TBN matrix Ms can be found
in our supplementary material. For each 3D query point xo

in the observation space, we first find its nearest surface

point x∗
s on the SMPL mesh, and then transform the global

coordinate of xo to the local tangent space.

xl = M(x∗
s)(xo − x∗

s). (5)

Eq. (5) can differentiate all 3D points given a particular
tangent space without the many-to-one problem. The derived
xl is invariant to human pose change. To indicate the position
of xs and provide geometry awareness, we calculate the
associated UV feature gs of the surface point x∗

s .

gs = Bu∗
s ,v

∗
s
(C[Vf ]). (6)

Here, {Cv} is a set of learnable latent codes associated with
SMPL vertices v = [1, ..., Nv]. Vf are the three vertices
of the triangle xs falls in, and C[Vf ] denotes their latent
codes. Bus,vs

(·) is the interpolation operation based on the
barycentric coordinates (u∗

s, v
∗
s ).

With both xl and gs, our subject-level feature so of the
query point xo is formulated as the concatenation of them.
We in practice also encode xl with the positional encoding
function introduced in [35].

3.2. Disentangled Neural Fields

The proposed NECA is designed to facilitate diverse cus-
tomization tasks, including shape, pose, texture, lighting
and shadow. Reposing and reshaping are achieved by the
adoption of SMPL model. We enable other customization
functionalities by decoding the extracted features into dis-
tinct neural fields. Unlike [35] which produces density and
radiance, our method consumes the canonical position xc,
the viewing direction e, the pose-aware feature po and the
subject-level feature so into SDF d, albedo a, shadow v,
while simultaneously optimizing the representation L for
lighting. Such an approach expands our editing capability by
exposing more controllable attributes for rendering.

The overall process (xc, e, so,po) → (d, a, v) is
achieved by three separate MLPs. First, the geometry MLP
takes all the inputs except for the viewing direction and
outputs SDF d and a latent feature h, similar to [30, 56]:

d,h = MLPgeo(xc, so,po; Θgeo). (7)

The output SDF can be converted to density σ with meth-
ods such as [66] for volumetric rendering. Moreover, we can
calculate normal vector by normalizing the gradient of SDF
d with respect to xc [43, 60]:

nc =
∂d

∂xc
/||

∂d

∂xc
||2. (8)

The normal vector provides critical information about geome-
try details and orientation, which also benefits our prediction
of shadow by another shadow MLP:

v = MLPshadow(e,nc,h; Θshadow). (9)
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NB [42] AN [41] DS [75] ARAH [56] PV [30] Ours Ground truth

Figure 4. Qualitative comparison of novel pose synthesis on ZJU-MoCap dataset.

Finally, the albedo MLP predicts the albedo given latent
feature h and xc:

a = MLPalbedo(xc,h; Θalbedo). (10)

Besides the intrinsic characteristics, we also optimize a
particular representation of the environmental lighting. We
assume the lighting during capturing the input videos is
unchanged and in gray-scale, and utilize the learnable light
probes [9, 13] to represent it in latitude-longitude format as
I ∈ R16×32×1. Note that although we assume the light is
gray-scale during training, we can replace it with arbitrary
light with RGB color during testing time for relighting.

With all the above disentangled neural fields and the light-
ing, the color of a query point xo can be obtained using the
following rendering equation as in [9, 25, 45]:

c = a⊙ v ⊙
∑
i

Ii(no · ωi)∆ωi, (11)

where ⊙ denotes the Hadamard Product, no represents the
normal vector transformed to the observation space, ωi de-
notes the direction from query points xo in the observation
space to the light position, and (·) indicates the dot product.

To render the final color of a pixel, we follow the volumet-
ric rendering [26], by integrating the colors {ci, i ∈ [1, N ]}
of N sampled query points along the ray r from that pixel
position based on their density {σi}.

C(r) =
N∑
i

exp(−
i−1∑
j=1

σjδj)(1− exp(−σiδi))ci, (12)

where δi indicates the distance between two sampled points.

Our disentangled neural fields can produce higher-fidelity
rendering while maximizing controllability for customiza-
tion during rendering. Unlike traditional physically-based
rendering approaches which rely on BRDFs for color and
explicit visibility for shadows, our method leverages a data-
driven approach for inverse rendering. Such choice is more
robust to noise, and can better represent complex shadows,
such as those caused by clothes wrinkles.

3.3. Loss Function

We supervise the training of NECA with photometric
losses and normal regularization described below.

The photometric losses measure the consistency of the
rendering of NECA to the ground-truth targets. First, we
supervise our rendered pixel colors C(r) by minimizing the
squared Euclidean distance to the target pixel colors Cgt(r):

Lc = ∥Cgt(r)− C(r)∥22. (13)

Next, we employ a perceptual loss LPIPS [71] with VGG
network [50] as backbone to enhance the quality of the ren-
dered images:

Lp = ||V GGgt(r)− V GG(r)||22. (14)

Note, we apply patch-based ray sampling [59] to keep mem-
ory efficiency.

The foreground masks serve as supervisory signal for
geometry learning. We employ the binary cross-entropy loss
to reduce discrepancies in determining whether each ray
intersects the subject or not [43, 65].

Lm = BCE(sigmoid(−ρdr),M(r)). (15)
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Figure 5. Qualitative comparison of relighting under novel pose and view on ZJU-MoCap dataset. Given the original frame as reference,
we compare with Relighting4D on the estimated normal and albedo, as well as the generated relighting results. As shown, our method
outperforms Relighting4D in both appearance disentanglement and relighting. Please see the supplementary material for more results.

Here, ρ is a scale factor, dr is the minimal SDF value of ray
r, and M(r) is the ground truth binary mask.

We incorporate normal regularization to better capture
geometry details, which is also beneficial to the prediction
of albedo and shadow. One regularization is the eikonal loss
[12] that encourages the SDF field to be smooth:

Le =

(∥∥∥∥∥ ∂d

∂xc

∥∥∥∥∥
2

− 1

)2

. (16)

We also notice that normals occasionally face backward
due to the inherent symmetry of SMPL. To address this, we
introduce another normal regularization Ln:

Ln = max(−nc · ns, 0), (17)

where nc represents the normal vector as defined in Eq. (8),
and ns denotes the normal vector of the nearest SMPL vertex.
nc · ns indicates the dot product of the two vectors.

The overall training objective function for our network is
formulated as follows:

L =Lc + λpLp + λmLm + λeLe + λnLn, (18)

where we set λp = 0.1, λm = 1, λe = 0.1, λn = 0.1.

3.4. Implementation Details

We implement our network in Pytorch and train it for
200K iterations with a mini-batch size of 1 on an NVidia
RTX 4080 GPU. The entire network is optimized using the
Adam optimizer [28] with a learning rate decaying exponen-
tially from an initial value of 5×10−4 to 1×10−4. For each
training batch, we sample 1024 rays and 64 points per ray.
The patch size for the perceptual loss is set as 32, with a
single patch in use. We set |Cv| ∈ R16 for the latent code
attached to SMPL vertex. For tri-plane decomposition, we
set the grid resolution Lx × Ly × Lz as 512 × 512 × 128,
and a lower resolution along z-axis is used for memory
efficiency due to the flatness of human body [7]. We set
v
{xy,xz,yz}
r ∈ R32, and R = 48.

Novel View Novel Pose Param.PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NB [42] 28.2 0.944 0.096 23.7 0.893 0.145 4.37M
AN [41] 25.8 0.913 0.146 23.2 0.887 0.165 1.96M
DS [75] 27.8 0.937 0.125 23.8 0.892 0.157 0.50M
ARAH [56] 28.4 0.947 0.082 24.5 0.909 0.109 87.09M
PV [30] 27.5 0.939 0.068 24.3 0.905 0.095 24.08M
Ours 28.5 0.946 0.067 25.0 0.914 0.091 18.37M

Table 2. Quantitative comparison of novel pose/view synthesis
on all 9 subjects on ZJU-MoCap dataset. As shown, our method
achieves the best results with comparable model size.

4. Experiments

4.1. Evaluation Datasets and Metrics

Datasets. We evaluate our method on an indoor dataset
ZJU-MoCap [42], an outdoor dataset NeuMan [23]. ZJU-
MoCap consists of 9 sequences with dynamic humans with
complex motion captured by multiple cameras in laboratory
environment. We train and evaluate our method on all 9 se-
quences, and follow the training and testing view and pose
split introduced in [42]. NeuMan consists of videos of ap-
proximately 10 to 20 seconds in length, where the “Bike”
and “Seattle” sequences are employed for training and eval-
uation. Note, we also evaluate our method on DeepCap [15]
and DynaCap [16] datasets, and quantitatively validate our
superiority in relighting using a synthetic dataset. Please see
the supplementary material for details.

Metrics. We follow previous work to evaluate our method
on novel pose synthesis and relighting using three standard
metrics, i.e., Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM) [57], and Learned Per-
ceptual Image Patch Similarity (LPIPS) [71]. Akin to [42],
we employ a bounding box surrounding the human as mask
for metric calculation. Note, for other edits allowed by our
method (e.g., reshaping, retexturing, and reshadowing), we
only provide visual results as there are no ground-truths.

4.2. Comparison with State-of-the-art Methods

Evaluation on novel pose synthesis. We compare our
method against the following five state-of-the-art methods
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Normal Albedo Shadow R. w/ S. R. w/o S. R. w/ S. R. w/o S. R. w/ S. R. w/o S.

Figure 6. More relighting results on the indoor ZJU-MoCap (top row) and the outdoor NeuMan (bottom two rows) datasets. “R. w/
S.” and “R. w/o S.” refer to results with and without shadows, respectively. Our method produces high-fidelity dynamic human renderings
that respond faithfully to novel lighting. Please check the supplementary videos for more results.

Figure 7. Results of shape editing on subjects “315” and “377”
of ZJU-MoCap.

on novel pose synthesis: Neural Body (NB) [42], Animat-
able NeRF (AN) [41], Dual-Space NeRF (DS) [75], ARAH
[56], and PoseVocab (PV) [30]. For fair comparison, we pro-
duce their results using publicly-available implementation
provided by the authors with recommended parameter set-
ting. Tab. 2 reports the quantitative results, where we can see
that our method outperforms the compared baselines in all
three metrics. It is worth mentioning that our method also
produces good novel view synthesis results. In addition, we
show visual comparison in Fig. 4. Comparing the results,
it is clear that our method can render photorealistic images
with much more high-frequency details.

Evaluation on relighting. For relighting, we compare our
method with Relighting4D [9], by naively placing the re-
lighted human in a new background. We did not compare
with [53, 64], since they have no publicly available code for
now. Fig. 5 gives the comparison results on relighting, as
well as normal and albedo. As shown, our method generates

Figure 8. Results of retexturing. Our method allows to swap
textures between body parts from different subjects.

Input Removed Input Reference Transferred

Figure 9. Results of shadow editing on the DynaCap dataset
[16]. Our method allows to remove shadows (left two columns) and
also transfer shadows between humans (right three columns).

physically realistic relighting results under novel pose, while
Relighting4D fails to generate natural-looking results when
the human in videos performs dramatic movement. Fig. 6
shows more relighting results produced by our method, in
both indoor and outdoor scenes. As can be seen, for all these
cases, our method produces high-quality results.

4.3. More Customization Results

In addition to novel pose synthesis and relighting, our
method also allows editing of shape, texture, and shadow.
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w/o normal reg. w/ normal reg. w/o normal reg. w/ normal reg.

Figure 10. Effect of normal regularization Ln. As shown, adopt-
ing Ln benefits obtaining more accurate normal map.

Model Num of views PSNR ↑ SSIM ↑ LPIPS ↓
w/o normal reg. 4 26.6 0.928 0.084
w/o pose-aware 4 26.6 0.929 0.078
w/o subject-level 4 26.6 0.928 0.079
full method 1 24.2 0.906 0.117
full method 4 26.8 0.930 0.079

Table 3. Ablation studies on ZJU-MoCap. “w/o normal reg.”
refers to the exclusion of the proposed normal regularization Ln,
while “w/o pose-aware” indicates removal of the pose-aware fea-
ture, and “w/o subject-level” means that the subject-level feature is
omitted. Note, here we report the average results of novel view and
novel pose synthesis.

Fig. 7 shows our shape editing results, which are produced
by adopting our local coordinate defined in tangent space
to transform query points between different shape spaces.
Following [63], we achieve retexturing by mapping the 3D
query points from the target subject to the source subject. For
each point in the canonical space of the target subject, we
first adjust its position according to the bounding boxes of
the two subjects, and then query the color from the canonical
space of the source subject. By composing multiple learned
neural human fields, we can achieve texture swapping, as
shown in Fig. 8. Moreover, Fig. 9 shows that our method is
applicable to shadow editing, and allows to eliminate self-
cast shadows caused by clothing wrinkles and locally transfer
shadows from one person to another. More customization
results can be found in the supplementary material.

4.4. More Analysis

Ablation studies. Here we conduct ablation studies to vali-
date the effectiveness of our subject-level feature, pose-aware
feature, and normal regularization. Besides, we examine the
performance of our method on single-view video. Tab. 3 sum-
marizes the quantitative results of ablation studies. Fig. 10
presents visual comparison to verify the necessity of our nor-
mal regularization, while Fig. 11 demonstrates the benefit
of subject-level and pose-aware features to our approach.
Please see also the supplementary material for more results
and analysis on different numbers of R in Eq. (3) and other
possible alternatives (i.e., relative position, direction, and

w/o pose-aware full method ground truth

w/o subject-level full method ground truth

Figure 11. Effect of pose-aware and subject-level features. As
shown, these features help achieve better alignment effect.

UVH) for our local tangent coordinate.

Limitations. Since obtaining the subject-level feature re-
quires to project the query point to the nearest point on
SMPL faces, our performance can be sensitive to the esti-
mated SMPL parameters. In addition, as we do not explicitly
model visibility, shadows under complex novel poses may be
erroneous. Moreover, we may generate blurred retexturing
results due to large pose variance, and unrealistic reshaping
results for extreme shape. Finally, similar to the vanilla NeRF,
our method has to be optimized for each human separately.

5. Conclusion

We have presented a novel framework called NECA for
learning fully customizable human avatars from sparse-view
or even monocular videos. In contrast to previous methods
which offer limited editing capabilities, we provide neural
avatar that allows high-fidelity editing on pose, viewpoint,
lighting, shape, texture, and shadow. Extensive experiments
validate the versatility and practicality of our approach, and
our improvements over prior state-of-the-arts in novel pose
synthesis and relighting. We hope that our work can shed
light on the creation of customizable human avatar and its
related applications.
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