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Abstract

Open-world Semi-Supervised Learning aims to classify
unlabeled samples utilizing information from labeled data,
while unlabeled samples are not only from the labeled
known categories but also from novel categories previously
unseen. Despite the promise, current approaches solely rely
on hazardous similarity-based clustering algorithms and
give unlabeled samples free rein to spontaneously group
into distinct novel class clusters. Nevertheless, due to the
absence of novel class supervision, these methods typically
suffer from the representation collapse dilemma—features
of different novel categories can get closely intertwined and
indistinguishable, even collapsing into the same cluster and
leading to degraded performance. To alleviate this, we pro-
pose a novel framework TRAILER which targets to attain
an optimal feature arrangement revealed by the recently
uncovered neural collapse phenomenon. To fulfill this, we
adopt targeted prototypes that are pre-assigned uniformly
with maximum separation and then progressively align the
representations to them. To further tackle the potential
downsides of such stringent alignment, we encapsulate a
sample-target allocation mechanism with coarse-to-fine re-
finery that is able to infer label assignments with high qual-
ity. Extensive experiments demonstrate that TRAILER out-
performs current state-of-the-art methods on generic and
fine-grained benchmarks. The code is available at https:
//github.com/Justherozen/TRAILER.

1. Introduction
The resounding achievements of deep learning heavily rely
on large-scale and accurately-annotated training data, which
is labor-intensive and time-consuming. To alleviate this,
semi-supervised learning (SSL) has emerged as a promi-
nent alternative [4, 55, 60], which exploits unlabeled data
for boosted performance. Despite the success, current SSL
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Figure 1. Left: Scenario of open-world SSL where unlabeled sam-
ples are from known and novel classes. Right: Visualization with-
out and with our targeted calibration mechanism. Without calibra-
tion, representations tend to get jumbled and inseparable, as in the
left where dog and cat categories converge into the same cluster.

methods are primarily based on the closed-world assump-
tion that labeled and unlabeled data share the same pre-
defined label space. Nevertheless, this assumption rarely
holds in real-world applications, where the model may en-
counter novel classes previously unseen in unlabeled data.
To relax this assumption, novel category discovery (NCD)
was first proposed [15, 21, 22] which assumes all unla-
beled data strictly belong to disjoint novel classes. Re-
cently, a more practical setting, open-world semi-supervised
learning (open-world SSL), also referred to as general-
ized category discovery (GCD), has received huge attention
[5, 46, 50] by generalizing standard SSL and NCD. It as-
sumes that unlabeled data contain both known classes from
the labeled data and similar yet distinct novel classes.

The goal of open-world SSL is to classify the already-
known classes from the labeled data, as well as to discover
new classes in unlabeled data without annotations and as-
sign instances to them. Nascent efforts have been made to
address this practical yet under-investigated task [20, 33,
41, 50]. The essence of these recent works is to rashly
rely on the similarity-based [5, 41] or contrastive-based
[46] clustering algorithm in feature space to spontaneously
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group different samples into separate clusters. Some meth-
ods further integrate self-training techniques with generated
pseudo-labels for boosted performance [20, 33]. However,
due to the missing supervision and semantic shift for novel
categories, the self-organized clustering step can get over-
fitted and biased towards the known classes, leading to a
representation collapse dilemma— the feature distance be-
tween one novel category and another category may get
too close and finally become inseparable, even converging
within a single cluster and thus jeopardizing generalization
performance, as illustrated in the left of Figure 1.

On the other hand, a recent study has unveiled a feature-
classifier alignment phenomenon termed neural collapse
(NC) [38]. It indicates that under ideal conditions, the last-
layer features of the same class tend to collapse into their
within-class mean. Meanwhile, these within-class means of
all classes will be aligned with classifiers and formed as a
simplex equiangular tight frame (ETF) at the end of train-
ing, as elaborated in Section 3.1. Intuitively, such an elegant
NC phenomenon affords an optimal feature structure with
minimized within-class variance and maximized between-
class variance [36], coinciding with what we fervently de-
sire. Nevertheless, in open-world SSL, the absence of novel
class annotation can hinder the representation learning and
thus disrupt the natural induction of NC.

In an effort to salvage this and accomplish the appealing
feature arrangement of NC, we propose a novel framework,
Targeted Representation AlIgnment for open-world semi-
supervised LEaRning (dubbed TRAILER). Key to our
method, TRAILER leverages a targeted classifier to pro-
gressively align embeddings to the pre-assigned ETF struc-
ture, eventually fulfilling the optimal state of uniformly and
maximally separated embeddings. Despite the promise, this
calibration procedure is still susceptible to false alignment
stemming from unreliable pseudo-labels. To mitigate this,
we integrate a hierarchical sample-target allocation strategy
that comprises two sequential steps: (i)-rough sample as-
signment based on the optimal transport mechanism; (ii)-
label refinery by casting the known-novel separation prob-
lem to a specific weakly-supervised paradigm termed PU
learning [2, 13, 62]. Such an allocation mechanism can
provide more precise pseudo-labels and thus facilitate rep-
resentation calibration. Through our visualized results in
Figure 1 and Section 4.3, TRAILER does indeed induce
discriminative and non-skewed embeddings. Empirically,
TRAILER surpasses state-of-the-art approaches on differ-
ent evaluation benchmarks, e.g., improves the best baseline
by 3.1%, 2.9%, and 1.5% overall accuracy on CIFAR-10,
CIFAR-100 and ImageNet-100 datasets, respectively.

2. Related Work
Closed-World Semi-Supervised Learning has been
widely explored [4, 44, 55, 66] to learn from limited la-

beled and massive unlabeled data. Pseudo labeling [31, 42]
and consistency regularization [30, 44, 55] are two promi-
nent techniques. The former is based on self-training that
utilizes model predictions as optimization targets [40, 56],
while the latter enforces model to produce consistent out-
puts for different views of the same image [3, 4, 43, 55].
However, these methods are primarily based on the closed-
world assumption that labeled and unlabeled data share the
same pre-defined label space, which limits their real-world
application where unlabeled samples from previously un-
seen classes may emerge. Open-set SSL [19, 24, 25, 45]
relaxes this by simply rejecting all unseen class instances,
but still fails to classify them into distinct novel categories.

Open-World Semi-Supervised Learning further accom-
modates real-world scenarios [5, 20, 46]. It is also known as
generalized category discovery (GCD) [50] and is a natural
extension of novel category discovery (NCD). NCD is first
introduced in [21] and improved in later works [15, 22] to
discover new categories by leveraging the knowledge from
labeled known categories. However, NCD assumes that all
unlabeled samples belong to novel classes and thus fails to
recognize known class samples. Most recently, open-world
SSL generalizes NCD to identify unlabeled samples from
both known and novel classes [5]. To tackle this, several
incipient solutions have been proposed [20, 59], which typ-
ically involve similarity-based representation learning and
then involve sample clustering to generate pseudo-labels for
self-training. ORCA [5] is the pioneering work that inte-
grates an uncertainty-based margin loss to control the intra-
class variance of different classes. OpenCon [46] further de-
rives a semi-supervised constrastive mechanism to produce
compact feature space. Despite the promise, these meth-
ods solely rely on spontaneous clustering based on sample
similarity, overlooking potential risks that representations
of different classes possibly converge into the same cluster,
thus leading to the representation collapse dilemma.

Neural Collapse describes an elegant alignment phe-
nomenon [38], which states that the last-layer features will
collapse into their within-class centers and these centers
together with classifiers will eventually form a simplex
equiangular tight frame (ETF). Stemming from the appeal-
ing symmetry, a plethora of studies have been triggered to
explain this phenomenon theoretically [26, 48, 58, 65]. NC
is proved to be the global optimality under ideal conditions
with the CE [18, 26] and the MSE [23, 64] loss functions.
The NC phenomenon has also been investigated in some
specific scenarios like imbalanced learning [54, 57, 63]
noisy label learning [37, 52], transfer learning [17] and in-
cremental learning [58]. In our work, we investigate the
opportunities of inducing such optimal feature arrangement
of NC through targeted calibration for open-world SSL.
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Figure 2. Overview of TRAILER. For representation calibration, we leverage the targeted classifier ϕetf to align the feature towards the
optimal arrangement of ETF progressively while maintaining the within-class compactness with prototypical clustering. For sample-target
allocation, the unlabeled samples are provided with reliable pseudo-labels with rough assignment and subsequent label refinery.

3. Method
Problem Definition. In open-world SSL, we assume that
the training dataset D = Dl ∪ Du comprises two subsets:
a labeled set Dl = {xi, yi}mi=1 where the input image xi ∈
Rd and the ground-truth label yi come from a set of known
classes Cknown , and an unlabeled set Du = {xi}ni=1 where
the potential ground-truth label is from a set of classes Call .
In closed-world SSL, the unlabeled samples strictly come
from known classes, i.e., Call = Cknown . As for open-world
SSL which is more practical, the unlabeled samples can
come from either known classes Cknown or novel classes,
i.e., Cknown ⊂ Call . We consider Cnovel = Call\Cknown

as the set of novel classes. Following previous setting
[5, 15, 46], we assume the number of novel classes |Cnovel|
is known apriori, which can also be estimated using the off-
the-shelf methods [21, 50] as discussed in Section 4.3.

Learning Goal. For classification problem with K =
|Call | classes, open-world SSL aims to obtain a model fθ,ϕ :
Rd 7→ RK that recognizes samples from both known and
novel classes based on Dl and Du. Specifically, fθ,ϕ = hϕ◦
gθ can be decomposed into a representation backbone gθ
and a classification head hϕ with weights ϕ = [ϕ1, ..., ϕk] ∈
RP×K , for which we adopt a prototypical one following
[15] with logit h(z) = Norm(z)⊤Norm(ϕ). Formally,
given the weakly and strongly augmented view xi and x′

i

of the same image in batch B, we define zi, z
′
i ∈ RP as the

last-layer P -dimensional features and pi = softmax(h(zi))
as output probability. Normalization for features is denoted
as Norm(z) = z/||z||2 and omitted in the subsequent.

Warm-up Phase. Similar to previous works [5, 33], we
also include a commonly adopted warm-up strategy at

the start of training. The overall objectives to cluster
known classes and discover potential novel samples con-
sist of three losses: 1) the cross-entropy loss (CE) Lce

on labeled samples Dl which is elaborated later in Sec-
tion 3.1; 2) the self-supervised contrastive loss Lcon =

− log
exp(z⊤

i z′
i/τ)∑n

j=1 exp(z⊤
i z′

j/τ)
on all samples; and 3) the entropy

regularization Lent =
∑K

k=1 p
k log(pk) for preventing the

trivial solution of assigning all instances to the same class,
where p = 1

|B|
∑

xi∈B pi is the average probability of the
batch. The overall losses for warm-up are formulated,

Lwarm = Lce + Lcon + αLent (1)

where α is a weighting parameter. After warm-up, we also
would like to group unlabeled samples into distinct clusters
and assign them pseudo-labels for self-training. As men-
tioned earlier, the crucial challenge is how to abstain from
the representation collapse dilemma and obtain discrimina-
tive features without novel class annotations. To fulfill this,
we first draw inspiration from neural collapse phenomenon.

3.1. Neural Collapse for Representation Calibration

Recent works have disclosed the Neural Collapse phe-
nomenon [17, 38] which corresponds to an optimal feature-
classifier alignment towards a simplex equiangular tight
frame (ETF). This offers a uniformly and equally separated
feature arrangement that is desirable for open-world SSL.

Definition 1 (Simplex ETF) A Simplex equiangular tight
frame (ETF) refers to a collection of K equal-length and
maximally-equiangular P -dimensional embedding vectors
E = [e1, ..., eK ] ∈ RP×K which satisfies:

E =

√
K

K − 1
U

(
IK − 1

K
1K1⊤

K

)
(2)
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where IK is the identity matrix,1K is an all-ones vector, and
U ∈ RP×K(P ≥ K) allows a rotation.

All vectors in a simplex ETF E have an equal ℓ2 norm and
the same pair-wise maximal equiangular angle − 1

K−1 [57],

e⊤k1
ek2

=
K

K − 1
δk1,k2

− 1

K − 1
,∀k1, k2 ∈ [1,K] (3)

where δk1,k2 = 1 when k1 = k2 and 0 otherwise. The NC
phenomenon can be described by the following properties
under ideal conditions: (1) The last-layer features converge
to their within-class means, and the within-class means of
all classes converge to different vertices of a simplex ETF.
(2) The normalized classifier weights converge to the same
simplex ETF. Notably, this process is implicit and natural
since it is induced with common optimizers such as SGD,
rather than enforced by an explicit objective.

As discussed above, NC has provided an optimal ETF
structure for feature arrangement with minimal within-class
covariance and maximum between-class covariance (i.e.,
maximized Fisher discriminant ratio [16]), which coincides
with our goal of deriving discriminative and non-skewed
embeddings. However, NC is delicate and can fail to be
naturally induced under imperfect conditions [37, 57]. For
open-world SSL, the missing novel class annotations can
also lead to biased features and break the NC optimality.

To remedy this, we resort to effectuating an explicit NC
and fulfilling the appealing feature arrangement with rep-
resentation calibration, which is achieved by leveraging a
targeted prototypical classifier hetf . In specific, hetf is pre-
assigned with weights ϕetf ∈ RP×K , which is a random
simplex ETF with optimal structure as Definition 1 and is
fixed rather than learnable during training. By assuming a
known label ŷi for each sample xi, the standard CE loss Lce

is then replaced as Letf , which is formulated,

Letf (xi, ŷi) = − log
exp

(
zi

⊤ · ϕetf
ŷi

/τ
)

∑K
k=1 exp

(
zi⊤ · ϕetf

k /τ
) (4)

where τ is the temperature parameter. Through Letf , the
feature zi is drawn closer to its corresponding target ϕetf

ŷi

and pulled away from other class vectors of ETF structure.
For the labeled sample (xi, yi), we directly set ŷi = yi.

As for unlabeled data without gound-truth labels, we de-
sign a sample-target allocation strategy to generate pseudo-
labels ŷ, whose details are shown in Section 3.2.

Progressive Alignment. Notably, if we directly optimize
the loss Letf after the warm-up phase, the provisionally
clustered samples would be forcibly dragged to the corre-
sponding targeted vector ϕetf

ŷ . As a result, the already-
learned clustering compactness can get compromised and
the within-cluster feature distribution can get jumbled.

To address this, we intend to align the representations
in a progressive manner to preserve the compactness within
each cluster during calibration. Formally, given sample xi

with pseudo-label ŷi, we also maintain the authentic proto-
types µk = Norm(Avgŷi=k(zi)) for each class 1 ≤ k ≤ K.
To preserve the compactness of cluster structure, a proto-
typical clustering loss is also integrated,

Lproto(zi, ŷi) = − log
exp

(
zi

⊤ · µŷi
/τ

)∑K
k=1 exp (zi

⊤ · µk/τ)
(5)

The overall classification loss is then formulated,

Lcls = λLproto + (1− λ)Letf (6)

where λ is a calibration strength parameter that is gradually
ramped down from 1 to 0. With such a progressive manner,
the embeddings are cautiously and smoothly drawn closer
to the targeted optimal arrangement of ETF while the with-
in cluster compactness is preserved.

3.2. Hierarchical Sample-Target Allocation

In previous steps, we involve targeted classifiers to regulate
representation learning. Nevertheless, our stringent calibra-
tion still holds unexpected risks. Lacking supervision, the
calibration process for unlabeled samples largely relies on
the quality of generated pseudo-labels. When the pseudo-
labels are unreliable, the feature alignment procedure can be
misguided towards the wrong cluster. To overcome this, we
introduce our hierarchical sample-target allocation mecha-
nism with course-to-fine assignment in what follows.

Rough Assignment through Optimal Transport. For
pseudo-label generation, one may adopt model prediction
argmax1≤k≤K hk(zi) directly. However, this may lead to
degenerate solutions where data points of different cate-
gories map into a single category [1], thus resulting in repre-
sentation collapse. To mitigate this, we adopt a widely-used
equipartition constraint [6, 15] for rough label assignment,
which is attained by solving an optimal transport problem.

Formally, given a batch B of b unlabeled samples with
the logit matrix P = [h(z1), ..., h(zb)] whose columns
are output logits by hetf and the label-assignment matrix
Q = [q1, ..., qb] ∈ [0, 1]K×b whose columns are the to-be-
assigned soft labels qi. Q is estimated by,

Q = max
Q∈Γ

Tr(Q⊤P) + ϵH(Q)

s.t. Γ = {Q ∈ RK×b
+ | Q1b =

1

K
1k,Q

⊤1K =
1

b
1b}

(7)

where H(·) is the entropy function, ϵ is a hyperparameter
and Tr(·) is the trace function. The solution of Eq. (7) is
obtained using the Sinkhorn-Knopp algorithm [11]. Please
refer to Appendix A for more optimization details.
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Label Refinery with Known-Novel Separation. After
the rough assignment, we obtain unpolished soft labels
q ∈ [0, 1]K . However, the aforementioned skewed predic-
tions towards known classes stemming from overfitting re-
main unresolved. To rectify this, we prioritize the subtask
of precisely demarcating known and novel classes for label
refinery, which is achieved by including an auxiliary binary
head haux and reformulating this binary task as the classical
positive unlabeled (PU) learning problem [2, 13, 62].

PU learning tackles a special case of binary classifica-
tion where the model has access to a labeled set containing
merely positive samples and an unlabeled set with both pos-
itive and negative samples. Thus, the task of distinguishing
known and novel classes can be intuitively converted to PU
learning by regarding known and novel as positive and neg-
ative respectively. A flurry of methods has been designed
for PU learning [10, 27, 34], among which we adopt a prior-
free variational algorithm [8] with loss Laux to optimize the
newly devised haux . See Appendix A for more details.

After that, we elicit the binary prediction ŷaux for haux ,
where 1 and 0 indicate prediction of known and novel re-
spectively. Then we leverage ŷaux to refine the label q,

qj =

{
qj if I(j ∈ Cknown) = ŷaux

0 otherwise
(8)

where qj is the j-th entry of q, 1 ≤ j ≤ K and I(·) is the
indicator function. That is, we retain the known/novel class
components of soft label q based on prediction ŷaux and
discard the remaining inconsistent components. The refined
q are then utilized for the final hard pseudo-label generation
ŷi = argmax1≤k≤K qk in Lcls of Eq. (6).

Pseudo-Label Filtering. While the proposed sample-
target allocation mechanism can enhance the quality of
pseudo-labels, the remaining obstinate noisy pseudo-labels
can still impede model training, especially in the early
stages when the model output is not accurate enough. To
neutralize this, we further utilize a high-confidence selec-
tion to select clean pseudo-labels from noisy ones for Du.
Formally, for each class 1 ≤ j ≤ K, we select a clean sub-
set Dj

sel from Dj
u = {(x, ŷ) ∈ Du|ŷ = j} class by class

with the highest confidence scores in the first R percent,

Dj
sel = {(x, ŷ) ∈ Dj

u| rank(qj) < R%} (9)

Then the integral selected set is merged as Dsel =
∪K
j=1D

j
sel . The classification loss in Eq. (6) is then merely

valid on Dsel . In practice, we set a small R to ensure the
precision of selected samples at the beginning and gradu-
ally increase it to integrate more clean samples. Finally, the
overall training loss is given by,

Ltotal = Lcls + Laux + Lcon + αLent (10)

where Lcon and Lent are described in Eq. (1). Through this
procedure, Our sample-target allocation mechanism is able
to provide pseudo-labels with high quality and guide the
representation calibration toward the correct targets. The
overview of TRAILER is illustrated in Figure 2.

4. Experiment
In this section, we present the main results and part of the
ablation results to verify the effectiveness of TRAILER.
More experimental details and results, such as the results
with less labeled data, can be found in Appendix.

4.1. Setup

Datasets. We first evaluate TRAILER on three datasets
CIFAR-10, CIFAR-100 [29] and ImageNet-100, which is
randomly sub-sampled with 100 classes from ImageNet
[12] following [5]. For each dataset, We first divide classes
into the first 50% known and the rest 50% novel classes
following [5]. Then we randomly select a portion (50%)
of samples from the known classes as labeled Dl, and the
remaining along with all novel class samples are regarded
as unlabeled Du. We also conduct experiments with differ-
ent novel class ratios and on the fine-grained semantic shift
benchmarks (SSB) [51], including CUB-200 [53], Stanford
Cars [28], FGVC-Aircraft [35], and a naturally long-tailed
Herbarium 19 [47] datasets, as discussed in Section 4.3.

Baselines. We compare TRAILER with various open-
world SSL baselines, including ORCA [5], GCD [50],
OpenCon [46], NACH [20], OpenLDN [41], GPC [61] and
OpenNCD [33]. We also provide comparisons with SSL,
open-set SSL, and NCD baselines following [20, 33]. For
traditional and open-set SSL baselines including FixMatch
[44], DS3L [19], and CGDL [45], we extend them to be
applicable to novel classes by selecting samples with lower
confidence scores as novel and applying k-means clustering
to obtain results. For NCD methods including DTC [21],
RankStats [22], and UNO+ [15], they are extended to clas-
sify known classes by using Hungarian algorithm to match
some discovered classes with known classes. For perfor-
mances of baselines, we directly adopt reported results from
receptive papers or from [33], except OpenLDN was re-
tested under transductive setting. All compared methods
are implemented based on pre-trained ResNet using Sim-
CLR [9] following [5], except DTC and OpenCon which
have specialized pre-training procedure. We run all experi-
ments three times and report the averaged results.

Evaluation Metrics. Following [5, 33], we evaluate the
transductive performance on both known and novel classes.
For novel classes, we utilize the Hungarian algorithm to de-
rive the optimal assignments and then calculate accuracy
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Methods CIFAR-10 CIFAR-100 ImageNet-100
Known Novel All Known Novel All Known Novel All

FixMatch [44] 71.5 50.4 49.5 39.6 23.5 20.3 65.8 36.7 34.9
DS3L [19] 77.6 45.3 40.2 55.1 23.7 24.0 71.2 32.5 30.8
CGDL [45] 72.3 44.6 39.7 49.3 22.5 23.5 67.3 33.8 31.9
DTC [21] 53.9 39.5 38.3 31.3 22.9 18.3 25.6 20.8 21.3
RankStats [22] 86.6 81.0 82.9 36.4 28.4 23.1 47.3 28.7 40.3
SimCLR [9] 58.3 63.4 51.7 28.6 21.1 22.3 39.5 35.7 36.9
ORCA [5] 88.2 90.4 89.7 66.9 43.0 48.1 89.1 72.1 77.8
GCD [50] 78.4 79.7 79.1 68.5 33.5 45.2 82.3 58.3 68.2
OpenLDN [41] 92.3 86.8 88.6 67.3 40.4 49.4 74.5 45.7 55.3
OpenCon [46] 90.4 91.1 89.3 69.1 47.8 52.7 90.6 80.8 83.8
NACH [20] 89.5 92.2 91.3 68.7 47.0 52.1 91.0 75.5 79.6
OpenNCD [33] 88.4 90.6 90.1 69.7 43.4 49.3 90.0 77.5 81.6

TRAILER (Ours) 93.4 95.0 94.4 69.7 48.7 55.6 91.4 82.4 85.3

Table 1. Accuracy comparison of known, novel, and all classes on CIFAR-10, CIFAR-100 and ImaneNet-100 dataset. The dataset is
composed of 50% known classes and 50% novel classes, with 50% of the known classes labeled. Bold entries indicate superior results.

Ablation CIFAR-10 CIFAR-100
Known Novel All Known Novel All

TRAILER 93.4 95.0 94.4 69.7 48.7 55.6

w/o Rep Calibration 94.1 58.9 70.6 69.2 14.9 33.4
with λ = 0 93.9 91.8 92.5 70.2 46.6 54.6

w/o Rough Assign 92.9 92.3 92.5 69.3 37.9 48.3
w/o Label Refinery 95.2 89.6 91.5 70.3 45.4 53.7
w/o PL Filtering 92.2 90.5 91.0 69.9 43.6 52.2

Table 2. Ablation results on CIFAR-10 and CIFAR-100. ‘Rep’
and ‘PL’ indicate representation and pseudo-label respectively.

1
n

∑n
i=1 I(yi = perm(ŷi)) where perm(·) is the matching

permutation. The overall joint accuracy is also measured by
Hungarian match using both known and novel classes.

Implementation Details. For CIFAR experiments, we
use ResNet-18 as the backbone. The model is trained for
200 epochs with warm-up of 15 epochs. We employ the
Adam optimizer with a batch size of 200 and an initial
learning rate of 5e−4, which decays by a cosine scheduler.
The temperature τ is set as 0.3 and 0.5 for CIFAR-10 and
CIFAR-100. We linearly ramp down λ from 1 to 0 and ramp
up selection ratio R% from 0.3 to 0.9 for pseudo-label filter-
ing. The label refinery is enabled after training haux for 15
epochs. For the optimization of Sinkhorn-Knopp, we adopt
hyperparameters from [15] and set ϵ = 0.05 with 3 itera-
tions. We put more implementation details for ImageNet-
100 and fine-grained dataset in Appendix A.

4.2. Main Reults

Table 1 shows the comparison results on the CIFAR-
10, CIFAR-100, and ImageNet-100 datasets, including

(a) Without calibration. (b) With calibration.

Figure 3. T-SNE feature visualization on CIFAR-10. Different
colors represent the corresponding ground-truth classes. Without
calibration, the dog and cat classes collapse into the same cluster.

the accuracy of the ‘Known’, ‘Novel’, and ‘All’ classes.
TRAILER significantly outperforms all the rivals by a con-
siderable margin in terms of overall accuracy on different
datasets. Specifically, on CIFAR-10, TRAILER improves
upon the best baseline by 1.1%, 2.8%, and 3.1% for the
‘Known’, ‘Novel’, and ‘All’ classes respectively. More-
over, on the more challenging CIFAR-100 and ImageNet-
100 datasets with larger label space, while most baselines
demonstrate a notable performance drop, TRAILER shows
robustness and reaches an extraordinary trade-off between
the known and novel classes. It consistently maintains supe-
rior performance with 2.9% and 1.5% overall enhancement.
These results empirically demonstrate the efficacy of our
proposed TRAILER for the task of open-world SSL.

4.3. Analysis

Results on Semantic Shift Benchmarks. We further
conduct experiments on fine-grained semantic shift bench-
marks (SSB) [51] following previous work [50, 61]. For
fair comparisons, we adopt the same training and compar-
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Methods CUB Stanford Cars FGVC-Aircraft Herbarium 19
Known Novel All Known Novel All Known Novel All Known Novel All

k-means 38.9 32.1 34.3 10.6 13.8 12.8 14.4 16.8 16.0 12.9 12.8 12.9
RankStats+ [22] 51.6 24.2 33.3 61.8 12.1 28.3 36.4 22.2 26.9 55.8 12.8 27.9
UNO+ [15] 49.0 28.1 35.1 70.5 18.6 35.5 56.4 32.2 40.3 53.7 14.7 28.3
ORCA [5] 45.6 30.2 35.3 50.1 10.7 23.5 31.8 17.1 22.0 30.9 15.5 20.9
GCD [50] 56.6 48.7 51.3 57.6 29.9 39.0 41.1 46.9 45.0 51.0 27.0 35.4
OpenCon [46] 63.8 52.1 54.7 78.6 32.7 49.1 - - - 58.9 28.6 39.3
GPC [61] 58.2 53.1 55.4 59.2 32.8 42.8 42.5 47.9 46.3 51.7 27.9 36.5

TRAILER (Ours) 71.3 61.9 65.1 71.7 47.6 55.4 62.6 50.5 54.5 57.0 37.8 44.5

Table 3. Results on the Semantic Shift Benchmarks. Bold entries indicate superior results and blank ones indicate results are not provided.

(a) Binary accuracy of haux . (b) Pseudo-label precision.

Figure 4. (a) Accuracy of binary prediction between known and
novel classes in first 100 epochs. (b) Per-class pseudo-label pre-
cision for unlabeled samples on CIFAR-10 with and without label
refinery. Class indexes 0-4 are known while 5-9 are novel.

isons protocol from [50] and utilize ViT-B/16 backbone [14]
with DINO pre-trained weights [7]. As shown in Table 3,
it can be observed that TRAILER exceeds the baselines
by a substantial lead in all metrics, with improvements of
8.8%, 14.8%, 2.6%, and 9.2% for ‘Novel’ accuracy on these
datasets. These results consistently demonstrate its superior
performance, even under challenging fine-grained tasks.

Benefits of Representation Calibration. To explore the
benefits of representation calibration, we conduct ablations
and equip TRAILER with different representation learning
strategies: 1) TRAILER w/o Rep Calibration which dismiss
the feature alignment of the targeted classifier and instead
utilize the vanilla learnable classifier; 2) TRAILER with
λ = 0 which discards the progressive manner for direct cal-
ibration. From Table 2, although TRAILER w/o Rep Cal-
ibration remains competitive on known classes, it suffers
from a calamitous performance plunge for novel classes,
which indicates the efficacy of representation calibration.
TRAILER with λ = 0 achieves decent performance, but
still underperforms TRAILER perceptibly, indicating the
advantage of the progressive manner.

We further visualize the representation with and without
representation calibration on CIFAR-10 using t-SNE [49]

Figure 5. Confusion matrix between known and novel classes on
CIFAR-10. TRAILER can alleviate biased predictions.

in Figure 3 and in Appendix B. It can be shown that repre-
sentation calibration facilitates inducing compact and non-
skewed representations, discarding which can lead to repre-
sentation collapse—the representations are biased towards
known classes, where the dog class (novel, brown) and part
of horse class samples (novel, grey) collapse into the cluster
of the cat class (known, red), as shown in Figure 3a.

Effect of Sample-Target Allocation. Next, we ablate the
effectiveness of the sample-target allocation mechanism in
Table 2. For the coarse-level assignment, we test the vari-
ant TRAILER w/o Rough Assign which sticks to the vanilla
softmax function for rough label assignment of q and suf-
fers from rigorous performance degradation, especially on
CIFAR-100. For the fine-level refinery, we test the variant
TRAILER w/o Label Refinery which discards the refinery
procedure of auxiliary head haux. Although such a variant
exhibits slightly better performance for the known classes,
it significantly lags behind TRAILER for the novel classes.

To demonstrate it more intuitively, we visualize the accu-
racy of binary prediction for haux between known and novel
classes in Figure 4a. We can find that haux quickly achieves
high prediction accuracies and such accurate separation be-
tween known and novel indeed refines the rough assignment
supplementarily, finally enhancing the pseudo-label preci-
sion on 9 of 10 classes, as shown in Figure 4b. Such a
mechanism also alleviates the biased prediction, as shown
in Figure 5 where a non-trivial amount of novel samples are
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(a) Equiangularity (b) Maximal separation

Figure 6. Visualizations on the (a) equiangularity and (b) maxi-
mal separation properties of neural collapse on CIFAR-10 in the
first 100 epochs. Representation calibration enables TRAILER to
achieve feature arrangement with equal and maximal separation.

Ablation Estimation of K Known Novel All

TRAILER Known (100) 69.7 48.7 55.6
ORCA Known (100) 66.9 43.0 48.1
TRAILER Estimated (124) 71.1 44.3 53.3
ORCA Estimated (124) 66.3 40.0 46.4

Table 4. Ablations with unknown class number K on CIFAR-100.

misidentified as known (the number in red) for baselines.

Empirical Visualizations for Neural Collapse. In the
previous section, we have provided the embedding visual-
ization. Here we supply some quantitative results in addi-
tion. Recall that two core properties of NC are equiangu-
larity and maximal separation. Given the centered class-
means ẑk for features from all classes 1 ≤ k ≤ K,
for equiangularity, we calculate the standard deviation
of the cosines between each pair Stdk ̸=k′(cos(ẑk, ẑk

′
)).

For maximal separation, we calculate the average value
Avgk ̸=k′(cos(ẑk, ẑk

′
) + 1

K−1 ) since the optimal pair-wise
angle is − 1

K−1 as discussed in Eq. (3). The trends of
these two metrics on the CIFAR-10 dataset with and with-
out representation calibration are shown in Figure 6. No-
tably, equiped with representation calibration, the standard
deviations of the cosines and shifted average cosine values
approach zero, which indicates that TRAILER achieves the
engaging feature structure that is close to neural collapse.

Unknown Number of Novel Classes. The previous ex-
periments follow previous protocols and assume that the
class number is known apriori [5, 15, 46], which is some-
times impractical in real-world applications and brings chal-
lenges for both TRAILER and the other baselines. A sim-
ple resolution is to first use estimation methods [32, 39] to
derive the number of classes before deployment, for exam-
ple, k-estimation with Brent’s algorithm from [50] or cross-
validating using labeled probe set from [5, 21, 46]. On

(a) Accuracy for known classes. (b) Accuracy for novel classes.

Figure 7. Accuracy comparisons for known and novel classes on
CIFAR-10 with different novel class ratios ranging from 0.1 to 0.9.

CIFAR-100 the former gets exactly 100 while the latter de-
rives 124 and was adopted by us for further exploration. We
then utilize this estimation result to rerun the experiment by
initializing the corresponding number of classifier vectors.
As shown in Table 4, TRAILER is able to achieve compet-
itive performance even when the number of classes is not
known in advance. We further provide additional results
with different estimated class numbers K from 80 to 130 in
Appendix B to demonstrate the robustness of TRAILER.

Effect of Novel Class Ratio. Here we further evaluate the
performance of TRAILER on the CIFAR-10 dataset with
different ratios of novel classes from 0.1 to 0.9. As shown
in Figure 7, we can see that TRAILER displays robust per-
formance when the ratio of novel classes grows larger from
0.1 to 0.9 and consistently manifests superior performance
than other baselines on both known and novel classes.

5. Conclusion

In this work, we propose a novel framework TRAILER for
open-world SSL. We first take inspiration from the recently
discovered neural collapse phenomenon and intend to at-
tain its appealing feature arrangement with minimal within-
class and maximum between-class covariance. To achieve
this, we adopt a targeted classifier and align representations
towards its pre-assigned optimal structure in a progressive
manner. To mitigate the potential risk of misalignment, we
tackle the sample-target assignment for unlabeled samples
with a coarse-to-fine allocation mechanism. Comprehen-
sive experiments show that TRAILER enhances the base-
lines by a notable margin on both generic and fine-grained
benchmarks. We hope our work can inspire future research
to leverage the appealing properties of the neural collapse
phenomenon for tasks in open-world scenarios.
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