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Abstract

The robustness of convolutional neural networks (CNNs)
is vital to modern AI-driven systems. It can be quanti-
fied by formal verification by providing a certified lower
bound, within which any perturbation does not alter the
original input’s classification result. It is challenging due
to nonlinear components, such as MaxPool. At present,
many verification methods are sound but risk losing some
precision to enhance efficiency and scalability, and thus,
a certified lower bound is a crucial criterion for evaluat-
ing the performance of verification tools. In this paper,
we present MaxLin, a robustness verifier for Maxpool-
based CNNs with tight Linear approximation. By tight-
ening the linear approximation of the MaxPool function,
we can certify larger certified lower bounds of CNNs. We
evaluate MaxLin with open-sourced benchmarks, includ-
ing LeNet and networks trained on the MNIST, CIFAR-10,
and Tiny ImageNet datasets. The results show that MaxLin
outperforms state-of-the-art tools with up to 110.60% im-
provement regarding the certified lower bound and 5.13 ×
speedup for the same neural networks. Our code is avail-
able at https://github.com/xiaoyuanpigo/maxlin.

1. Introduction

Convolutional neural networks (CNNs) have achieved re-
markable success in various applications, such as speech
recognition [47] and image classification [34]. However,
accompanied by outstanding effectiveness, neural networks
are often vulnerable to environmental perturbation and ad-
versarial attacks [31, 39]. Such fragility will lead to dis-
astrous consequences in safety-critical domains, e.g., self-
driving [16] and face recognition [17]. Therefore, a formal
and deterministic robustness guarantee is indispensable be-
fore a network is deployed [3].

*Chunrong Fang and Zhenyu Chen are the corresponding authors.

The methodology of robustness verification can be di-
vided into two categories: complete verifiers and incom-
plete verifiers. Complete methods [20, 21] can verify the
robustness of piece-wise linear networks without losing
any precision but fail to work on more complex network
structures [25]. Incomplete but sound verification [19, 38,
43, 51] aims to scale to different types of CNNs. The
major challenge of robustness verification of CNNs stems
from their non-linear properties. Most incomplete veri-
fiers [19, 28, 41, 43, 48] focus on the ReLU- and Sigmoid-
based networks whose activations are uni-variate functions
and are simple to verify, ignoring multi-variate functions
like MaxPool. Multi-variate function MaxPool is widely
adopted in CNNs [18, 26, 46] yet is far more complex
to verify. Until recently, some attempts [4, 27, 37, 45]
have been made to certify the robustness of MaxPool-based
CNNs. Unfortunately, many of these verification frame-
works [37, 41, 48] can only certify l∞ perturbation form.
Furthermore, these existing methods are limited in terms of
(1) efficiency: multi-neuron relaxation [33] fail to scale to
larger models due to long calculation time; (2) precision:
single-neuron relaxation [4, 27, 37, 45] has loose certified
lower bounds because of imprecise approximation.

To address the above challenges, in this work, we pro-
pose MaxLin, an efficient and tight verification framework
for MaxPool-based networks via tightening linear approx-
imation. Specifically, to tighten linear approximation, we
minimize the maximum value of the upper linear bound
and minimize the average precision loss of the lower linear
bound of MaxPool. We also prove that our proposed up-
per bound is block-wise tightest. Compared with existing
neuron-wise tightness, our method acheives better certified
results. Further, based on single-neuron relaxation, MaxLin
gives the linear bounds directly after choosing the first and
second maximum values of the upper and lower bound of
the MaxPool’s input. Thus, MaxLin has high computation
efficiency. A simple example of MaxLin’s computation pro-
cess is shown in Figure 1. Moreover, MaxLin easily in-
tegrates with state-of-the-art verifiers, e.g., CNN-Cert [4],
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3DCertify [27], and α, β-CROWN [41, 48]. The integra-
tion allows MaxLin to certify different types of MaxPool-
based networks (e.g., CNNs or PointNet) with various ac-
tivation functions (e.g., Sigmoid, Artan, Tanh or ReLU)
against l1, l2, l∞-norm perturbations.

We evaluate MaxLin with open-sourced benchmarks on
the MNIST [24], CIFAR-10 [23], and Tiny ImageNet [11]
datasets. The experiment results show that MaxLin out-
performs the state-of-the-art techniques including CNN-
Cert [4], DeepPoly [37], 3DCertify [27], and Ti-Lin [45]
with up to 110.60%, 62.17%, 39.94%, and 49.26% im-
provement in terms of tightness, respectively. MaxLin has
higher efficiency with up to 5.13× speedup than 3DCer-
tify and comparable efficiency as CNN-Cert, DeepPoly,
and Ti-Lin. Further, we compare MaxLin with branch and
bound (BaB) methods, including α,β-CROWN [41, 48, 50],
ERAN1 and MN-BaB [12], on ERAN benchmarks. The re-
sults show that MaxLin has much higher certified accuracy
and less time cost across different perturbation ranges.

In summary, our work proposes an incomplete robust-
ness verification technique, MaxLin, with tighter linear ap-
proximation and better efficiency, which works for various
CNNs and lp-norm perturbations. By tightening linear ap-
proximation for MaxPool, our approach outperforms the
state-of-the-art tools with up to 110.60% improvement to
the certified robustness bounds and up to 5.13× speedup.

2. Related Work
We now introduce some topics closely related to robustness
verification and then introduce other related robustness ver-
ification techniques.

2.1. Adversarial Attacks and Defenses

Many research studies [7–9, 15, 36, 39, 42] show machine
learning models are vulnerable to adversarial examples.
Adversarial examples pose severe concerns for the deploy-
ment of machine learning models in security and safety-
critical applications such as autonomous driving. To defend
against adversarial examples, many defenses [10, 15, 19–
21, 28, 29, 41, 43, 48] were proposed. Empirical de-
fenses [5, 35] cannot provide a formal robustness guar-
antee and they are often broken by adaptive, unseen at-
tacks [1, 6, 14]. Thus, we study certified defenses in this
work. In particular, we focus on MaxPool-based convo-
lutional neural networks which are widely used for image
classification.

2.2. Robustness Verification for MaxPool-based
CNNs

As MaxPool is hard to verify, only a few research on ro-
bustness verification takes MaxPool into consideration. Re-

1ERAN: https://github.com/eth-sri/eran

cently, a survey on certified defense is proposed [30]. Ver-
ification approaches are usually divided into two classes:
complete verification and incomplete verification. As for
complete verifiers, Marabou [21] extends Reluplex [20] and
proposes a precise SMT-based verification framework to
verify arbitrary piece-wise linear network, including ReLU-
based networks with MaxPool layers. However, this com-
plete method cannot apply to other non-linear functions,
such as Sigmoid and Tanh. Recently, PRIMA [33] proposes
a general verification framework based on multi-neuron re-
laxation and can apply to MaxPool-based networks. Fur-
ther, MN-BaB [12] proposes a complete neural network ver-
ifier that builds on the tight multi-neuron constraints pro-
posed in PRIMA. However, multi-neuron relaxation meth-
ods may contain an exponential number of linear constraints
at the worst case [40] and cannot verify large models in a
feasible time(one day per input) [25].

To break the scalability barrier of the above work and
accelerate the verification process, linear approximation
based on single-neuron relaxation has been created. CNN-
Cert [4] proposes an efficient verification framework with
non-trivial linear bounds for MaxPool. However, CNN-Cert
is loose in terms of tightness and only applies to layered
CNNs and ResNet. DeepPoly [37] proposes a versatile ver-
ification framework for different networks. However, it cer-
tifies very loose robustness bounds and certifies robustness
only against l∞ perturbation form. Recently, 3DCertify
propose a novel verifier built atop DeepPoly and can cer-
tify the robustness of PointNet. 3DCertify uses the Double
Description method to tighten the linear approximation for
MaxPool. However, its linear approximation is still loose
and it is time-consuming. Ti-Lin [45] proposes the neuron-
wise tightest linear bounds for MaxPool by producing the
smallest over-approximation zone. However, MaxPool of-
ten comes after ReLU, Sigmoid, or other non-linear layers,
which pose a big challenge to tighten and thus, Ti-Lin is
still loose in tightness.

3. Preliminaries

This section introduces the minimal necessary background
of our approach.

3.1. MaxPool-based Neural Networks

We focus on certifying the robustness of MaxPool-based
networks for classification tasks. Our methods can refine
the abstraction of the MaxPool function in arbitrary net-
works. For simplicity, we formally use F : Rn0 → RnK

to represent a neural network classifier with (K+1) lay-
ers and F = fK ◦ fK−1 ◦ · · · f2 ◦ f1. Here f1 :
Rn0 → Rn1 , · · · , fK : RnK−1 → RnK . The symbol
f i, i = 1, · · · ,K could be an affine, activation, fully con-
nected, or MaxPool function. In this work, the non-linear
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Figure 1. A toy example of MaxLin linear approximation. To simplify, the input size is two, and the perturbation radius is one. lki (x
k
i )

and uk
i (x

k
i ) are the lower and upper linear bounds of the output of the i-th neuron(xk

i ) in the k-th layer, respectively. Lk
i (x1, x2) and

Uk
i (x1, x2) are the global lower and upper linear bounds of the output of the i-th neuron in the k-th layer, respectively. The blue surface is

the output of the current neuron, and the activation function here is the Tanh function.

block in neural architectures could be activation or activa-
tion+MaxPool. The MaxPool function is defined as follows.

MaxPool(xi1 , · · · , xin) = max{xi1 , · · · , xin}

where i1, · · · , in are the indexes of the input that will be
pooled associated with the i-th output of the current layer.

As for other notations used in our approach, nk repre-
sents the number of neurons in the k-th layer and [K] repre-
sents the set {1, · · · ,K}. F k

j (x) : Rn0 → R to denote the
j-th output of the k-th layer and xk−1 to denote the input
of the k-th layer.

3.2. Robustness Verification For Neural Networks

Robustness verification aims to find the minimal adversar-
ial attack range. In other words, robustness verification can
give the largest certified robustness bound, within which
there exist no adversarial examples around the original in-
put. Such the maximum absolute safe radius is defined as
local robustness bound ϵr, which are the formal robustness
guarantees provided by complete verifiers.

Define x0 be an input data point. Let Bp(x0, ϵ) denotes
x0 perturbed within an lp-normed ball with radius ϵ, that is
Bp(x0, ϵ) = {x|∥x − x0∥p ≤ ϵ}. We focus on l1, l2, and
l∞ adversary, i.e. p = 1, 2,∞. Let t denote the true label
of x0. Then local robustness bound is defined as follows.

Definition 1 (Local robustness bound). F is a neural net-
work and ϵr ≥ 0. ϵr is called as the local robust-
ness bound of the input x0 in the neural network F if

(argmax
i

Fi(x) = t,∀x ∈ Bp(x0, ϵr)) ∧ (∀δ > 0,∃xa ∈

Bp(x0, ϵ+ δ)s.t. argmax
i

Fi(xa) ̸= t).

It is of vital importance to certify local robustness bound
for networks. However, it is an NP-complete problem for
the simple ReLU-based fully-connected networks [20] and
computationally expensive with the worse case of exponen-
tial time complexity [30]. Therefore, it is practical to lose
some precision to certify a lower bound than ϵr, which is
provided by incomplete verifiers.

Definition 2 (Certified lower bound). F is a neural net-
work and ϵl ≥ 0. ϵl is called as a certified lower bound
of the input x0 in the neural network F if (ϵl < ϵr) ∧
(argmax

i
Fi(x) = t,∀x ∈ Bp(x0, ϵl)).

Because incomplete verifier risks precision loss to gain
scalability and efficiency, the value of ϵl becomes a key cri-
terion to evaluate the tightness of robustness verification
methods and is used as the metric for tightness in our ap-
proach.

3.3. Linear Approximation

Define lk−1,uk−1 are the lower and upper bound of the
input of the k-th layer, that is, xk−1 ∈ [lk−1,uk−1]. The
essence of linear approximation technique is giving linear
bounds to every layer, that is ∀k ∈ [K], lk(xk−1) ≤
fk(xk−1) ≤ uk(xk−1),∀xk−1 ∈ [lk−1,uk−1].
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Definition 3 (Upper/Lower linear bounds). Let si be
the input associated with the the i-th neuron ouput and
fk
i (s

i,k−1) be the function of the i-th neuron in the k-th
layer of neural network F . With xk−1 ∈ [lk−1,uk−1] ⊂
Rnk−1 , if si,k−1 ⊂ Rn and there exists ak

u,a
k
l ∈ Rn and

bku, b
k
l ∈ R such that ∀si,k−1 ⊂ xk−1 ∈ [lk−1,uk−1],

uk
i (s

i,k−1) = ak
us

i,k−1+bku, l
k
i (x

k−1) = ak
l s

i,k−1+bkl

lki (s
i,k−1) ≤ fk

i (s
i,k−1) ≤ uk

i (s
i,k−1)

then, uk
i (s

i,k−1) and lki (s
i,k−1) are called upper and

lower linear bounds of fk
i (s

i,k−1), respectively.

It is worth mentioning that n is determined by the type
of fk

i (s
i,k−1). When fk

i (s
i,k−1) is a univariate func-

tion(such as ReLU, Sigmoid, Tanh, or Arctan), n = 1.
When fk

i (s
i,k−1) is a multivariate function, n is equal to

the dimension of si,k−1. For example, when fk
i (s

i,k−1) is
MaxPool, n is equal to the size of the input to be pooled;
When the k-th layer is a convolutional layer, n corresponds
to the size of the weight filter, and the linear constraints are

uk(si,k−1) = w∗si,k−1+b, lk(si,k−1) = w∗si,k−1+b

where ∗ is the convolution operation. w and b are the filter’s
weights and biases, respectively. When the k-th layer is a
fully-connected layer, n = nk−1 and the linear constraints
are

uk(xk−1) = wsi,k−1 + b, lk(si,k−1) = wsi,k−1 + b

where w and b are the weights and biases assosicated with
the i-th ouput neuron in the fully-connected layer, respec-
tively.

After giving linear constraints to the predecessor lay-
ers, we can compute the global linear bounds of the current
layer, which is represented as:

Lk(x0) := Ak
l x

0 +Bk
l , U

k(x0) := Ak
ux

0 +Bk
u

where Lk(x0) ≤ F k(x0) ≤ Uk(x0),∀x0 ∈ Bp(x0, ϵ).
The whole procedure is a layer-by-layer process from the
first hidden layer to the last output layer, and we can com-
pute a certified lower bound after we get the global linear
bounds of the output layer.

4. MaxLin: A Robustness Verifier for
MaxPool-based CNNs

In this section, we present MaxLin, a tight and efficient ro-
bustness verifier for MaxPool-based networks.

4.1. Tightening Linear Approximation for MaxPool

In this subsection, we propose our MaxPool linear bounds.
We use f(x1, · · · , xn) = max{x1, · · · , xn} to represent
the MaxPool function without loss of generality.

Theorem 1. Given f(x1, · · · , xn) = max{x1, · · · , xn},
xi ∈ [li, ui], we select the first and the second maximum
values of the set {ui|i = 1, · · · , n} and assume their in-
dexs are i, j, respectively. We use lmax to denote the max-
imum value of the set {li|i = 1, · · · , n}. Define m =
(m1, · · · ,mn) = (u1+l1

2 , · · · , un+ln
2 ) ∈ Rn. Then, the

linear bounds of the MaxPool function are:
Upper linear bound:
u(x1, · · · , xn) :=

∑
i ai(xi− li)+ b. Specifically, there

are two different cases:
Case 1: If (li = lmax) ∧ (li ≥ uj), ai = 1; b = li; ak =

0,∀k ̸= i.
Case 2: Otherwise, ai =

ui−uj

ui−li
; b = uj ; ak = 0,∀k ̸=

i.
Lower linear bound:
l(x1, · · · , xn) = xj , j = argmax

i
(mi).

4.2. Block-wise Tightest Property

Existing methods [4, 19, 22, 37, 45] give the neuron-
wise tightest linear bounds, producing the smallest
the over-approximation zone for the ReLU, Sigmoid,
Sigmoid(x)Tanh(y),x·Sigmoid(y) and MaxPool functions,
respectively. This notion ignores the interleavings of neu-
rons and leads to non-optimal results. In this paper, we in-
troduce the notion of block-wise tightest, that is, the vol-
ume of the over-approximation zone between the global lin-
ear bounds of the ReLU+MaxPool block is the minimum.
This notion considers the interleavings of neurons, and the
achieved results will be superior to existing neuron-wise
tightest. Without loss of generality, we assume Activation
is at the k-th layer, and we use Uk+1

b (·) and Lk+1
b (·) to de-

note the global upper and lower linear bounds of the Acti-
vation+MaxPool block, respectively. Then, we define the
notion of block-wise tightest as follows:

Definition 4 (Block-wise Tightest). The global linear
bounds of the Activation+MaxPool block are Uk+1

b (xk)

and Lk+1
b (xk), respectively. Then, we define Uk+1

b (xk)

and Lk+1
b (xk) is the block-wise tightest if and only if∫∫

xk−1∈[lk−1,uk−1]
(Uk+1

b (xk−1) − Lk+1
b (xk−1))dxk−1

reach the minimum.

Furthermore, if the non-linear block is ReLU+MaxPool
and the abstraction for ReLU is not precise and instead uses
the neuron-wise tightest upper linear bound, then MaxLin
has the provably block-wise tightest upper linear bound.

Theorem 2. If the preceding layer of the MaxPool func-
tion is ReLU with u(x) = u

u−l (x − l) as the upper linear
bound [4, 37, 48], the upper linear bound in Theorem 1 is
the block-wise tightest.

We put the proofs of Theorem 1 and Theorem 2 in the
supplementary material.
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Figure 2. A toy example of how MaxLin computing global bounds
lK and uK against l∞ adversary. The first, second, third, and
fourth hidden layers are the affine, ReLU, MaxPool, and affine
functions, respectively.

4.3. Computing Certified Lower Bounds

The whole process of computing certified lower bounds can
be divided into two parts: (i) computing the global upper
and lower bounds lK ,uK of the network output FK(x)
and (ii) searching the maximal certified lower bound.

4.3.1 Computing the global upper and lower bounds
lK ,uK of the network output FK(x)

Given a certain perturbation range ϵ and an original input
x0, MaxLin can tightly compute the global upper and lower
bounds lK ,uK of the network output FK(x) to check
whether ϵ is a certified safe perturbation radius or not.

This process starts at a basic step, that is, we give a pair
of linear bounds with the input range Bp(x0, ϵ) of f1(x),
and then with k = 1, we compute l1, u1 based on Equation
(1) which are deduced [43] by Holder’s inequality.

F k(x) ≤ ϵ∥Ak
u∥q +Ak

ux0 +Bk
u,

F k(x) ≥ −ϵ∥Ak
l ∥q +Ak

l x0 +Bk
l

(1)

where ∥ · ∥q is lq norm and 1
p + 1

q = 1. In our work, we
focus on l1, l2, l∞-norm adversary and thus, p = 1, 2,∞.

In the second step, without loss of generality, we as-
sume the current layer is the k-th layer. Given lk−1,uk−1,
we give upper and lower linear bounds uk(x), lk(x), re-
spectively. Then, we use Equation (1) to attain lk,uk

by backsubstitution [37], which we will illustrate in de-
tail later. k in the second step can be all positive integers
that are smaller than K. Repeating the second step from
k = 2 to k = K, we can get the value of lK and uK . If
lKt ≥ uK

j ,∀j ̸= t, j ∈ [nK ], ϵ is a certified safe pertur-
bation radius. Otherwise, ϵ cannot be certified to be a safe
perturbation radius.

A toy example. To better illustrate the process of back-
substitution, we give a toy example of how we compute
lK and uK of a five-layer fully-connected network, whose
biases are zero(see Figure 2). The i-th neuron at the k-
th layer is represented as xk

i and the perturbed input is
within B∞([0, 1]T , 1). The input layer(orange) and the out-
put layer(blue) both have two nodes, and the MaxPool func-
tion is a bivariate function for simplicity. In this example,
x4
1 is the output neuron of the true label.

Concretely, We get the value of u4
2 by backsubstitution:

x4
2 ≤ −x3

1 + x3
2

≤ −x2
1 + 0.29(x2

3 + 1.5) + 1

≤ −x1
1 + 0.29(0.25x1

1 + 2) + 1

≤ −0.93(x0
1 + x0

2) + 1.58

≤ −0.93(−1 + 0) + 1.58

≤ 2.51

Therefore, u4
2 = 2.51. We get l41 = −1, u4

1 = 2.79, l42 =
−3.03 similarly. u4

2 ≥ l41 means that ϵ = 1 is not a certified
safe perturbation range, and we need to decrease ϵ to find
the maximal robustness lower bound that we could certify.

Algorithm 1 Computing certified lower bound

Require: model F, input x, true label t;
Ensure: ϵl;

1: Let ϵ0 ← 0.005,ϵl ← ϵ0, ϵmin ← 0, ϵmax ← 1.
2: for i=0 to 14 do
3: Compute lK ,uK of F (x), where x ∈ Bp(x0, ϵl)

4: if lKt ≥ maxj ̸=t(u
K
j ) then

5: ϵmin = ϵl
6: ϵl = min(2ϵl,

ϵmax+ϵmin

2 );
7: else
8: ϵmax = ϵl
9: ϵl = max( ϵl2 ,

ϵmax+ϵmin

2 );
10: end if
11: end for
12: return ϵl

4.3.2 Computing maximal certified lower bound ϵl

We use the binary search algorithm to find the maximal
certified lower bound, which is the certified lower bound
results in our work(see Algorithm 1). To make sure the
perturbation range is larger than zero, we decrease or in-
crease the perturbation range(lines 1, 6, and 9). When the
perturbation range is certified safe(line 4), we then increase
ϵ(line 6); When ϵ cannot be certified safe, we then decrease
ϵ(line 9). The difference between ϵmax and ϵmin is already
reasonably small(≤ 2−15) after the process is repeated 15
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times. Finally, after the above checking process is repeated
15 times, the algorithm will terminate and return ϵl as the
certified lower bound results. For a K-layer convolutional
network, if we assume that the k-th layer has nk neurons
and the filter size is k × k, the time complexity of MaxLin
is O(K2 × maxnk

3). Detailed analysis are in the supple-
mentary material.

5. Experimental Evaluation

In this section, we conduct extensive experiments on
CNNs by comparing MaxLin with four state-of-the-
art backsubstitution-based tools (CNN-Cert [4], Deep-
Poly [37], 3DCertify [27], and Ti-Lin [45]). Further,
we compare MaxLin with BaB and multi-neuron abstrac-
tion tools (α,β-CROWN [41, 48, 50], ERAN and MN-
BaB [12]). The experiments run on a server running a 48
core Intel Xeon Silver 4310 CPU and 125 GB of RAM.

5.1. Experimental Setup

Framework. The linear bounds of MaxLin are indepen-
dent of the concrete verifier, and thus, we instantiate CNN-
Cert [4] and 3DCertify [27] verifiers with MaxLin to certify
the robustness of CNNs. Concretely, CNN-Cert verifier is
the state-of-the-art verification framework and can support
the l1, l2, l∞ perturbation form, while 3DCertify verifier is
built atop ERAN framework and can certify various net-
works against l∞ perturbation and other perturbation forms
(such as rotation).

Linear bounds for activations. As for the linear ap-
proximation of activations, we choose linear bounds in Ver-
iNet [19] as our Sigmoid/Tanh/Arctan’s linear bounds. Fur-
ther, we choose linear bounds in DeepPoly [37] as our
ReLU’s linear bounds. These linear bounds are all the prov-
able neuron-wise tightest [51] and stand for the highest pre-
cision among other relevant work [30]. It is noticeable that
when we compare MaxLin to other tools, only the linear
bounds for MaxPool are different for a fair comparison, that
is, both the linear bounds of the activation functions and the
other experiment setup are the same.

Datasets. Our experiments are conducted on MNIST,
CIFAR-10, and Tiny ImageNet, the well-known image
datasets. The MNIST [24] is a dataset of 28× 28 handwrit-
ten digital images in 10 classes(from 0 to 9). CIFAR-10 [23]
is a dataset of 60,000 32×32×3 images in 10 classes. Tiny
ImageNet [11] consists of 100,000 64 × 64 × 3 images in
200 classes. The value of each pixel is normalized into [0,1]
and thus, the perturbation radius is in [0,1].

Benchmarks. We evaluate the performance of MaxLin
on two classes of maxpool-based networks: (I) CNNs,
whose activation function is the ReLU function and with
Batch Normalization; (II) LeNet, whose activation function
is the Sigmoid, tanh, or arctan function. The networks used

in experiments are all open-sourced and come from ERAN
and CNN-Cert.

Metrics. We refer to the metrics in CNN-Cert. As for
tightness, we use 100(ϵ′l−ϵl)

ϵl
% to quantify the percentage of

improvement, where ϵ′l and ϵl represent the average certified
lower bounds certified by MaxLin and other comparative
tools, respectively. As for efficiency, we record the aver-
age computation time over the correctly-classified images
and use t

t′ to represent the speedup of MaxLin over other
baseline methods, where t and t′ are the average compu-
tation time of MaxLin and other tools, respectively. Some
detailed experiment setups are in the Appendix.

5.2. Performance on CNN-Cert

As both MaxLin and Ti-Lin are built upon CNN-Cert,
the state-of-the-art verification framework, we compare
MaxLin to CNN-Cert and Ti-Lin. The generation way of
the test set is the same as CNN-Cert, which generates 10
test images randomly.

As for the tightness, MaxLin outperforms CNN-Cert and
Ti-Lin in all settings with up to 110.60% and 49.26% im-
provement in Table 1, respectively. The reason why MaxLin
outperforms Ti-Lin, the neuron-wise tightest technique, is
that minimizing the over-approximation zone is more effec-
tive for a single non-linear layer, whose nearest predeces-
sor and posterior layers are linear. The MaxPool layer is
usually placed after the activation layer and thus, Ti-Lin is
inferior to MaxLin. As for time efficiency, as they share
the same verification framework, CNN-Cert, and they can
directly give linear bounds for MaxPool, the time cost of
these three methods is almost the same.

5.3. Performance on ERAN

As MaxLin, DeepPoly, and 3DCertify are built upon the
ERAN framework, which only can verify robustness against
the l∞ adversary, we compare MaxLin with DeepPoly and
3DCertify atop ERAN framework. CNNs with 4, 5, and 6
layers are from CNN-Cert, and CNNs with 7 and 8 layers
are not supported by ERAN due to some undefined opera-
tions in the networks. MNIST LeNet Arctan is not used in
this experiment as ERAN does not support arctan. Further-
more, ERAN does not support Tiny ImageNet either. The
generation way of the test set is the same as ERAN, which
chooses the first 10 images to test tools.

As for tightness, MaxLin outperforms DeepPoly and
3DCertify with up to 62.17% and 39.94% improve-
ment in Table 2, respectively. MaxLin computes much
tighter certified lower bounds than 3DCertify in most
cases, and the only bad result of MaxLin only occurs in
MNIST LeNet Sigmoid when compared with 3DCertify.
This is reasonable. As the weights and biases of networks
are quite different from each other, which makes the perfor-
mance of verifiers varies on different networks as discussed
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Table 1. Averaged certified lower bounds and runtime on CNNs on MNIST, CIFAR-10, and Tiny ImageNet datasets tested by CNN-Cert,
Ti-Lin, and MaxLin.

Dataset Network Certified Bounds(10−5) Bound Improvement(%) Average Runtime(min)
lp CNN-Cert Ti-Lin MaxLin vs. CNN-Cert vs. Ti-Lin CNN-Cert Ti-Lin MaxLin

MNIST

CNN l∞ 1318 1837 2083 58.04↑ 13.39↑ 1.76 1.73 1.37
4 layers l2 4427 6478 7131 61.08↑ 10.08↑ 1.39 1.38 1.40

36584 nodes l1 8544 12642 13808 61.61↑ 9.22↑ 1.38 1.38 1.50
CNN l∞ 1288 1817 2712 110.60↑ 49.26↑ 8.44 8.76 7.82

5 layers l2 5164 7359 9987 93.40↑ 35.71↑ 11.90 9.18 7.47
52872 nodes l1 10147 14292 19000 87.25↑ 32.94↑ 10.77 9.46 7.70

CNN l∞ 1025 1382 1942 89.46↑ 40.52↑ 20.46 20.87 15.90
6 layers l2 3954 5409 6981 76.56↑ 29.06↑ 20.56 20.41 15.94

56392 nodes l1 7708 10455 13218 71.48↑ 26.43↑ 20.60 20.01 15.93
CNN l∞ 647 930 1289 99.23↑ 38.60↑ 24.71 24.55 18.91

7 layers l2 2733 4022 5228 91.29↑ 29.99↑ 25.08 23.80 18.92
56592 nodes l1 5443 8002 10248 88.28↑ 28.07↑ 22.86 22.87 18.78

CNN l∞ 847 1221 1666 96.69↑ 36.45↑ 26.51 26.66 22.19
8 layers l2 3751 5320 6641 77.05↑ 24.83↑ 25.01 24.85 22.01

56912 nodes l1 7515 10655 12897 71.62↑ 21.04↑ 23.72 24.23 22.27
LeNet ReLU l∞ 1204 1864 2093 73.83↑ 12.29↑ 0.16 0.17 0.17

3 layers l2 6534 10862 11750 79.83↑ 8.18↑ 0.16 0.17 0.17
8080 nodes l1 17937 30305 32313 80.15↑ 6.63↑ 0.16 0.17 0.17

LeNet Sigmoid l∞ 1684 2042 2567 52.43↑ 25.71↑ 0.26 0.28 0.27
3 layers l2 9926 12369 14535 46.43↑ 17.51↑ 0.27 0.27 0.27

8080 nodes l1 26937 33384 38264 42.05↑ 14.62↑ 0.27 0.27 0.27
LeNet Tanh l∞ 613 817 943 53.83↑ 15.42↑ 0.27 0.27 0.27

3 layers l2 3462 4916 5424 56.67↑ 10.33↑ 0.27 0.27 0.27
8080 nodes l1 9566 13672 14931 56.08↑ 9.21↑ 0.27 0.27 0.27
LeNet Atan l∞ 617 836 961 55.75↑ 14.95↑ 0.26 0.27 0.27

3 layers l2 3514 5010 5517 57.00↑ 10.12↑ 0.28 0.27 0.27
8080 nodes l1 9330 13345 14522 55.65↑ 8.82↑ 0.27 0.28 0.27

CIFAR-10

CNN l∞ 108 129 147 36.11↑ 13.95↑ 3.09 2.92 2.94
4 layers l2 751 1038 1172 56.06↑ 12.91↑ 2.47 2.51 2.50

49320 nodes l1 2127 3029 3392 59.47↑ 11.98↑ 2.46 2.48 2.49
CNN l∞ 115 146 169 46.96↑ 15.75↑ 13.10 13.04 13.07

5 layers l2 953 1342 1519 59.39↑ 13.19↑ 12.39 12.69 12.61
71880 nodes l1 2850 4087 4582 60.77↑ 12.11↑ 12.34 12.61 12.51

CNN l∞ 99 120 139 40.40↑ 15.83↑ 28.56 28.63 28.61
6 layers l2 830 1078 1217 46.63↑ 12.89↑ 27.63 27.89 27.49

77576 nodes l1 2387 3174 3558 49.06↑ 12.10↑ 27.66 27.36 27.68
CNN l∞ 66 83 96 45.45↑ 15.66↑ 33.37 33.27 33.44

7 layers l2 573 773 889 55.15↑ 15.01↑ 32.48 32.77 32.42
77776 nodes l1 1673 2303 2623 56.78↑ 13.89↑ 33.56 32.55 32.96

CNN l∞ 56 70 85 51.79↑ 21.43↑ 36.86 37.54 37.64
8 layers l2 536 705 835 55.78↑ 18.44↑ 37.46 36.59 36.91

78416 nodes l1 1609 2160 2532 57.36↑ 17.22↑ 36.89 37.01 37.38

Tiny ImageNet
CNN l∞ 77 123 128 66.23↑ 4.07↑ 184.94 183.98 185.81

7 layers l2 580 939 962 65.86↑ 2.45↑ 184.36 183.25 185.07
703512 nodes l1 1747 2875 2934 67.95↑ 2.05↑ 193.62 183.93 184.03

in [51]. However, we argue that MaxLin outperforms ex-
isting state-of-the-art verifiers on maxpool-based networks
as MaxLin computes larger certified lower bounds in most
cases.

As for time efficiency, 3DCertify is quite time-
consuming as it tries to find the best upper linear bound
from the linear bounds set gained by the Double Descrip-
tion Method [13]. However, MaxLin can give the upper
and lower linear bounds directly after choosing the first and
second maximum values of the upper and lower bound of
maxpool’s input l and u and thus, is efficient. Therefore,
MaxLin has up to 5.13× speedup compared with 3DCertify
and almost the same time efficiency as DeepPoly in Table 2.

5.4. Evaluating The Block-wise Tightness

To further illustrate the superiority of the block-wise tight-
ness, we compare MaxLin and the baselines by the vol-
ume of the Activation+MaxPool block. The pool size is
2 × 2, and the number of inputs is 50. The Activation has
three types: (i) ReLU, whose linear bounds are the prov-
ably neuron-wise tightest [37, 49]; (ii) Adaptive-ReLU [48],
whose upper linear bounds is u(x) = ReLU(u)−ReLU(l)

u−l and
lower linear bounds is adaptive: l(x) = ax, a ∈ [0, 1]; (iii)
Sigmoid, whose linear bounds are the provably neuron-wise
tightest [19]. Specifically, we employ a random sampling
approach to determine both the upper and lower bounds for
each pixel, following a uniform distribution U(−10, 10).
Simultaneously, we randomly select the value of a from
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Table 2. Averaged certified lower bounds and runtime on CNNs on the MNIST and CIFAR-10 datasets tested by DeepPoly, 3DCertify, and
MaxLin.

Dataset Network Certified Bounds(10−6) Bound Improvement(%) Average Runtime(min) Speedup
DeepPoly 3DCertify MaxLin vs. DeepPoly vs. 3DCertify DeepPoly 3DCertify MaxLin vs. 3DCertify

MNIST

Conv Maxpool 2802 3247 4544 62.17↑ 39.94↑ 0.54 1.21 0.58 2.09
CNN, 4 layers 9375 10621 11272 20.23↑ 6.13↑ 1.34 4.44 1.48 3.01
CNN, 5 layers 6642 7629 7948 19.66↑ 4.18↑ 5.40 13.13 5.51 2.38
CNN, 6 layers 6339 7325 7554 19.17↑ 3.13↑ 11.88 27.87 12.47 2.23
LeNet ReLU 8849 10937 11225 26.85↑ 2.63↑ 0.14 0.69 0.19 3.70
LeNet Sigmoid 12122 14716 14506 19.67↑ -1.43↓ 0.15 1.01 0.20 5.13
LeNet Tanh 2966 3637 3675 23.90↑ 1.04↑ 0.17 0.82 0.19 4.31

CIFAR-10

Conv Maxpool 661 725 754 14.07↑ 4.00↑ 8.16 9.84 8.35 1.18
CNN, 4 layers 1204 1460 1542 28.07↑ 5.62↑ 2.64 4.25 2.64 1.61
CNN, 5 layers 1223 1537 1579 29.11↑ 2.73↑ 11.82 17.75 12.44 1.43
CNN, 6 layers 1065 1415 1440 35.21↑ 1.77↑ 24.60 40.44 24.89 1.62
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Figure 3. The average volume of the Activation+MaxPool
block computed by CNN-Cert, DeepPoly, 3DCertify, Ti-Lin and
MaxLin.

a uniform distribution U(0, 1). Figure 3 shows the aver-
age volume of the Activation+MaxPool block computed
by the baselines and MaxLin. Concretely, MaxLin has
the smallest volume of the over-approximation zone of
the ReLU+MaxPool and Adaptive-ReLU+MaxPool blocks
among the baseline methods, which validates the correct-
ness of Theorem 2. Further, in terms of S-shaped activa-
tion functions, MaxLin has the smallest results regarding
the average volume. This shows that when the upper linear
bound is not the provably block-wise tightest, MaxLin can
also reduce the over-approximation zone of the non-linear
block. Moreover, The results show that the neuron-wise
tightest linear bounds (Ti-Lin) could only keep high prec-
sion through one layer, while MaxLin could keep the tight-
ness through one-block propagation. The results in Figure 3
are consistent with the results in Table 1 and 2 and indicate
the advantage of the block-wise tightest upper linear bound
in terms of precision.

5.5. Additional Experiments

We conduct additional experiments to further demonstrate
the superiority and broad applicability of MaxLin. The de-
tailed settings are in the Appendix, and we perform the
following experiments: (I) We compare the output inter-

val [lK ,uK ] computed by MaxLin and Ti-Lin to further
illstrates the advantages of the block-wise tightness over
the neuron-wise tightness. (II) We conduct extensive ex-
periments by comparing the time efficiency of BaB-based
and backsubstitution-based verification frameworks. (III)
We compare MaxLin with BaB-based verification frame-
works, including VNN-COMP 2021-2023 [2, 32] winner
α,β-CROWN [41, 48, 50], ERAN using multi-neuron ab-
straction and MN-BaB [12] on ERAN benchmark. (IV)
We also conduct experiments by certifying the robustness
of PointNet on the ModelNet40 dataset [44] to illustrate the
broad applicability of MaxLin.

6. Conclusion
In this paper, we propose MaxLin, a tight linear approxi-
mation approach to MaxPool for computing larger certified
lower bounds for CNNs. MaxLin has high execution ef-
ficiency as it uses the single-neuron relaxation technique
and computes linear bounds with low computational con-
sumption. MaxLin is built atop CNN-Cert and 3DCer-
tify, two state-of-the-art verification frameworks, and thus,
can certify the robustness of various networks(e.g., CNNs
and PointNet) with arbitrary activation functions against
l1, l2, l∞ perturbation form. We evaluate MaxLin with
open-sourced benchmarks on the MNIST, CIFAR-10, and
Tiny ImageNet datasets. The results show that MaxLin
outperforms the SOTA tools with at most 110.60% im-
provement regarding the certified lower bound and 5.13 ×
speedup for the same neural networks.
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