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Abstract

Image warping, a classic task in computer vision, aims

to use geometric transformations to change the appearance

of images. Recent methods learn the resampling kernels

for warping through neural networks to estimate missing

values in irregular grids, which, however, fail to capture

local variations in deformed content and produce images

with distortion and less high-frequency details. To address

this issue, this paper proposes an effective method, namely

MFR, to learn Multi-Frequency Representations from in-

put images for image warping. Specifically, we propose a

progressive filtering network to learn image representations

from different frequency subbands and generate deformable

images in a coarse-to-fine manner. Furthermore, we em-

ploy learnable Gabor wavelet filters to improve the model’s

capability to learn local spatial-frequency representations.

Comprehensive experiments, including homography trans-

formation, equirectangular to perspective projection, and

asymmetric image super-resolution, demonstrate that the

proposed MFR significantly outperforms state-of-the-art

image warping methods. Our method also showcases su-

perior generalization to out-of-distribution domains, where

the generated images are equipped with rich details and less

distortion, thereby high visual quality. The source code is

available at https://github.com/junxiao01/MFR.

1. Introduction

Image warping aims to change the appearance of images
by performing geometric transformations, which involves
changing the positions of image pixels to new positions in
a predefined coordinate systems. As a basic technique in
computer vision, image warping has become an indispens-
able component in numerous vision tasks, such as facial ma-
nipulation [11, 46], image registration [12, 20, 31], image
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Figure 1. Illustration of local image patches generated by SRWarp
[41], LTEW [22], and our proposed MFR.

synthesis [1, 52], etc., substantially affecting their overall
performance.

Traditional image warping methods usually apply an in-
verse transformation function to deform images and depend
on interpolation techniques, such as bicubic interpolation,
to estimate the missing values in irregular grids. How-
ever, previous studies [9, 30, 36, 41] have revealed that
these interpolation-based methods often introduce undesir-
able jagging and blurry artifacts, leading to image quality
degradation. Recent works [22, 41] have formulated im-
age warping as a generalized image super-resolution (SR)
problem with varying scaling factors in the spatial domain.
This is equivalent to stretching local image regions with
different scaling factors in different directions. To gener-
ate deformable image content, Son et al. [41] employed a
pretrained SR model for feature extraction and introduced
adaptive warping layers to model the resampling kernel.
On the other hand, Lee et al. [22] treated image representa-
tion in a continuous space and utilized the coordinate-based
MLP model to synthesize content in irregular grids. Never-
theless, we observe that these methods encounter challenges
in captured local variations in the deformable images, and
their generated images are often distorted and lack high-
frequency details, as demonstrated in Fig. 1. Furthermore,
these methods exhibit poor generalization performance in
out-of-distribution data, i.e., scaling factors and geometric
transformation not included in the training dataset, signifi-
cantly limiting their real-world applications. Consequently,
there is still substantial potential for improvement in image
warping.
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In this paper, we propose an effective approach to learn
multi-frequency representations from an input image for
image warping, namely MFR. Concretely, a progressive
filtering network is devised to learn the image represen-
tations from different frequency subbands in the feature
space. Moreover, the proposed model starts from the input
coarse-scale images and gradually produces finer-scale de-
tails through the learned frequency representations, result-
ing in a coarse-to-fine generation process. As image warp-
ing intrinsically involves significant local deformation, we
incorporate learnable Gabor wavelet filters to improve our
model’s learning capability of spatial-frequency represen-
tations, particularly beneficial for handling high-frequency
information in local regions. Extensive experiments have
shown that MFR can remarkably outperform state-of-the-
art image warping methods in various vision tasks, includ-
ing homography transformation, equirectangular projection
(ERP) to perspective projection, and asymmetric image
super-resolution. Notably, our model demonstrates superior
generalization capability to out-of-distribution data, yield-
ing images with rich details and high visual quality.

2. Related Works

2.1. Image Warping

Image warping serves as a foundational technique in com-
puter vision and has been widely used in various vision
tasks such as image registration [12, 20, 31], image gen-
eration [1, 52], and image editing [11, 46]. This technique
employs geometric transformations to map pixel positions
of images to new locations in a distinct coordinate system.
Traditional image warping methods [3, 5, 6, 13, 21] rely
on interpolation approaches to compute missing values in
irregular grids, but tend to introduce jagged and blurred ar-
tifacts, resulting in suboptimal performance. A recent ap-
proach by Son et al. [41] considers image warping as a
generalized image SR problem with varying scaling fac-
tors in local regions. They introduced an adaptive warp-
ing layer to generate transformed images by leveraging the
features extracted from pretrained SR models. Despite its
merits, this method exhibits poor generalization in generat-
ing large-scale images. To address this issue, Lee et al. [22]
provided an alternative method that treats image warping as
image representation in continuous spaces. They incorpo-
rated Fourier features of the coordinate information with the
SR features and employed a coordinate-based MLP model
to synthesize the warped images. However, this MLP model
has limited model capability in feature representation and
fails to capture local variations in deformable content, re-
sulting in distortion in the generated images. In contrast,
our method focuses on learning local high-frequency repre-
sentations for effectively generating high-frequency details
in deformable regions.

2.2. Learning in the Frequency Domain

Image representations in the frequency domain typically
contain distinct patterns and have demonstrated their effec-
tiveness in numerous vision tasks, including image clas-
sification [33–35, 43, 49], domain generalization [8, 16,
29, 39, 50], and image generation [4, 10, 18, 19, 25, 28,
37, 42, 47, 48]. Notably, Huang et al. [16] introduced a
randomization technique in the frequency domain to learn
domain-invariant features for domain generalization. Simi-
larly, Yang et al. [50] swapped the low-frequency spectrum
between the source and target domains to achieve domain
alignment, enhancing the model’s generalization capabili-
ties. For the generation of high-quality images, Tancik et

al. [42] introduced Fourier features to enhance the repre-
sentation ability of the implicit neural representation meth-
ods. Sitzmann et al. [40] proposed the Sinusoidal Repre-
sentation Network (SIREN) in which the ReLU function
is replaced with a sinuous activation function, demonstrat-
ing the potential of frequency representation learning. In-
spired by the success of frequency learning in various ap-
plications, we propose an effective method to learn fre-
quency components from different frequency subbands in
the latent space specifically for image warping. Addition-
ally, to capture local variations in deformable image con-
tent, we propose using learnable Gabor wavelet filters to ex-
tract spatial-frequency representations from local regions.
This approach can significantly enhances the performance
by generating clear high-frequency details in the locally de-
formable areas.

3. Methodology

Given an input RGB image Iin 2 RW⇥H⇥3, our objec-
tive is to synthesize high-quality deformable image con-
tent by learning multi-frequency representations from the
input, where W and H represent the width and height of
the images, respectively. The overall pipeline of our pro-
posed MFR is shown in Fig. 2. It consists of two stages:
the feature encoding stage and the frequency learning stage,
which are elaborated in the following sections.

3.1. Feature Encoding

In the feature encoding stage, we employ a pretrained SR
model for projecting the input images to the latent feature
space. Subsequently, we leverage the local texture esti-
mator (LTE) [22] to integrate both coordinate information
(i.e., relative position) and geometric information (i.e., cur-
vature) into the output of the pretrained SR model. The
overall process of feature encoding is denoted as E�. This
incorporation results in latent representations of the input
image, denoted by X 2 RW⇥H⇥d, where d is the dimen-
sionality of the latent space. However, these representations
alone are insufficient to capture local variations for image
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Figure 2. The overall pipeline of the proposed MFR, which consists of two stages: feature encoding and frequency learning.

synthesis.

3.2. Frequency Learning

Given the latent features X obtained in the feature encod-
ing stage, we vectorized them into a set of latent vectors, ex-
pressed as {xn}Nn=1, where N = H⇥W is the total number
of latent vectors. Our proposed MFR contains a frequency
learning network which comprises L frequency learning
modules stacked sequentially. Each module learns the fre-
quency representations from the latent vectors and gener-
ates the corresponding deformed image content. Specifi-
cally, we assume that xi is the latent vector at the i-th pixel
position. MFR extracts frequency representations z of the
input latent vectors through a sequence of frequency learn-
ing modules F`, as follows:

z(0)
i

= G✓0(xi) + xi, (1)

z(`+1)
i

= G✓`(xi)⌦
⇣
W

(`)z(`)
i

+ b(`)
⌘
, (2)

for ` = 0, · · · , L � 1. z(`)
i

2 Rd represents the frequency
representation generated from the `-th module and the input
latent vector xi. G✓` : Rd ! Rd denotes the filter layer in
the `-th module. W (`) 2 Rd⇥d and b(`) 2 Rd represent the
weights and bias terms of the `-th layer, respectively. ⌦ de-
notes the element-wise multiplication. The proposed MFR
extracts frequency representations from the input using the
filtering layer and embeds them into the frequency repre-
sentation obtained from the previous module, to form new
frequency representations, resulting in a progressive learn-
ing procedure.

When the filter layer adopts a sinusoidal function like
SIREN [40], the associated frequency representations can
be express as z(`)

i
= sin(!`xi + �`), where !` and �` are

the filer frequency and phase in the `-th module. A larger

value of !` means that the corresponding module tends to
learn a higher frequency response from the input vector.
Yüce et al. [51] revealed that the network output can be
approximated by a polynomial function using the Taylor ex-
pansion. As a result, the L-th frequency representation z(L)

i

can be equivalently expressed as a linear combination of the
sinusoidal functions, as follows:

z(L)
i

=
NsineX

j=0

↵̂j sin(!̂jxi + �̂j), (3)

where the parameters ↵̂j , !̂j , and �̂j are dependent on the
parameters of the network. Nsine denotes the total number
of summation terms and is defined as follows:

Nsine =
L�1X

i=0

2i(d)i+1
, (4)

Obviously, Nsine grows exponentially with the number of
frequency learning modules used in our MFR. This means
that we can use a small number of frequency learning mod-
ules to obtain various frequency components of the input.

In each frequency learning module, we compute the out-
put y(`)

i
based on the associated frequency representation

z(`)
i

and the input xi as follows:

y(`)
i

= f�`(g`(z
(`)
i

) + xi), (5)

where g` is the gating mechanism in the `-th module, which
is a 1-D attention mechanism [14] and adaptively controls
the information flow from the frequency representation z(`)

i
.

f�` is the decoding function parametrized by �` in the `-th
module. At the output part of each module, we employ a
short connection to fuse the spatial representations xi with
the learned frequency representation z(`)

i
.

2997



After obtaining the output of each module, our model
computes the final output image y as follows:

y = ybic +
LX

`=1

y(`)
, (6)

where ybic represents the coarse-scale image content ob-
tained by performing bicubic interpolation to the input im-
age. Therefore, our model progressively generates fine-
scale image content and enhances the image quality.

3.3. Gabor Wavelet Filter Layer

The primary challenge in generating high-quality de-
formable images is to effectively capture local intensity
variations within deformable content. To facilitate this, the
filtering layers used in our model play a crucial role. Instead
of using conventional filters like SIREN [40] and Gaussian
filters, we incorporate 1-D Gabor wavelet filters into the fre-
quency learning modules which is defined as follows:

FGabor(x) = e
� (x�x0)2

↵2 e
�i!(x�x0). (7)

The Gabor wavelet filter is a Gaussian filter modulated
by a complex exponential term, which has demonstrated
remarkable capability to capture local variations in both
the spatial and frequency domains in image processing
[17, 23, 24, 26, 32, 38]. In Eq. (7), x0 is the predefined cen-
ter point. As the input x deviates from this center point, the
output response undergoes exponential decay. Similarly, we
can generate different output responses by controlling the
rate of exponential drop-off ↵ and the rate of the modulation
!. Our MFR can learn different frequency representations
by learning different values of these two parameters through
backpropagation. It is difficult for conventional filters, such
as SIREN [40] and Gaussian filters, to capture local varia-
tions from both the spatial and frequency domains simulta-
neously. In contrast, Gabor wavelet filters are defined over
compact supports in both the spatial and frequency domains
as shown in Fig. 3. As a result, it can effectively capture in-
tensity variations in local regions from both the spatial and
frequency domains for image warping.

4. Experiments and Analysis

4.1. Experiment Settings

Dataset information and implementation settings. The
proposed MFR was trained using DIV2K dataset [2], which
is a widely-used dataset in numerous low-level vision tasks
and provides 800 high-resolution images. In the training
stage, we randomly crop local image patches of size 48⇥48
from the input images as the training samples, and set the
batch size to 16. We used the `2 loss as the loss function.

Figure 3. Illustration of three 1-D filters: SIREN [40], Gaussian,
and GaborWavelet filters.

The Adam optimizer was utilized to update the model pa-
rameters with �1 = 0.9 and �2 = 0.999, and the total num-
ber of training epochs was 600. We initially set the learning
rate to 2 ⇥ 10�4 and adaptively decay it by utilizing the
cosine annealing strategy.

Evaluation settings. To assess the effectiveness of our
model in image warping, we evaluate the model on three
vision tasks, including homography transformation, ERP
to perspective projection, and asymmetric image super-
resolution. The masked peak signal-to-noise ratio (mP-
SNR) [41] is adopted as the performance metric in the ho-
mography transformation task. In asymmetric image super-
resolution, the PSNR is used to evaluate the reconstruction
quality with different scaling factors.

4.2. Experiments on Homography Transformation

We compare our MFR with SRWarp [41] and LTEW [22]
on benchmark datasets provided in [22] in both the in-scale
setting and the out-of-scale settings. In the in-scale setting,
the scaling factors are involved in the training dataset. How-
ever, in the out-of-scale setting, the scaling factors are not
included in the training dataset. To ensure a fair compari-
son, we adopt RRDB [45] as the SR backbone for feature
extraction in these three models. For completeness, we in-
clude the results from bicubic interpolation and the original
RRDB model. For the RRDB model, we first use the model
to generate the images, which are then resampled by bicu-
bic interpolation. For SRWarp and LTEW, we directly use
their public source codes for implementation.

Table 1 shows the average mPSNR scores of different
image warping methods for homograph transformation on
the benchmark datasets with two evaluation settings. It is
obvious that our MFR achieves better performance than
the compared models in the in-scale setting, especially in
the Urban100W dataset, and the performance of MFR is
0.18dB higher than the LTEW method. In the out-of-scale
setting, the proposed MFR significantly outperforms the
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Table 1. The average mPSNR of different image-warping methods for homograph transformation on benchmark datasets with the in-scale
(is) and out-of-scale (os) settings. The best results are highlighted in bold.

Methods
DIV2KW Set5W Set14W B100W Urban100W

is os is os is os is os is os

Bicubic 27.85 25.03 35.00 28.75 28.79 24.57 28.67 25.02 24.84 21.89

RRDB [45] 30.76 26.84 37.40 30.34 31.56 25.95 30.29 26.32 28.83 23.94

SRWarp-RRDB [41] 31.04 26.75 37.93 29.90 32.11 25.35 30.48 26.10 29.45 24.04

LTEW-RRDB [22] 31.10 26.92 38.20 31.07 32.15 26.02 30.56 26.41 29.50 24.25

MFR-RRDB (Ours) 31.18 27.12 38.23 31.19 32.26 26.26 30.62 26.53 29.68 24.51

HR Image Bicubic RRDB SRWarp [38] LTEW [21] MFR (Ours) GT

Figure 4. Illustration of the images generated by different image-warping methods in the in-scale setting.

HR Image Bicubic RRDB SRWarp [38] LTEW [21] MFR (Ours) GT

Figure 5. Illustration of the images generated by different image-warping methods in the out-of-scale setting.

compared models in all benchmark datasets. In particular, it
outperforms the second-best model (i.e., LTEW) by 0.20dB
and 0.26dB on the DIV2KW and Urban100W datasets, re-
spectively. These results show that MFR has a superior gen-
eralization capability to handle out-of-scale images. Addi-
tionally, for visual comparison, we select two generated im-
ages from each evaluation setting in Fig. 4 and Fig. 5. As
observed, SRWarp and LTEW have limited ability to gen-
erate texture and detailed information, resulting in distorted
image content. In contrast, MFR can effectively synthesize
high-frequency information, such as edges, textures, etc.,

leading to the generated images with high visual quality.

4.3. Experiments on ERP to Perspective Projection

In addition to evaluating the performance of MFR on im-
ages with out-of-distribution scales, we further explore its
generalization capability on out-of-distribution transforma-
tions, i.e., perspective projection of ERP images. To con-
duct this investigation, we employ MFR, initially trained
for homography transformation, on ERP images from the
Flick360 validation dataset [7]. The size of the input ERP
images is 2048 ⇥ 1024, and we project the images to the
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ERP Image LTEW [21] MFR (Ours)BicubicPerspective Image

Figure 6. Illustration of the results (ERP images ! Perspective images) generated by different image-warping methods.

size of 1024 ⇥ 1024 with a field of view (FOV) of 120�.
As this dataset does not provide ground-truth images in the
perspective view, we compare the performance of different
methods through visual results. We choose two generated
images and illustrate them in Fig. 6. For better comparison,
we cropped two local regions marked by green rectangles
and enlarged them.

As observed, the original EPR images suffer from seri-
ous deformation, but our MFR can effectively align them
in the perspective views, while preserving local image con-
tent, compared with other image-warping methods. MFR
produces images with less distortion and delivers clear de-
tails, resulting in superior visual quality.

4.4. Experiments on Asymmetric Image Super-

resolution

We compare the proposed MFR with MetaSR [15],
ArbSR [44], and LTEW [22] for asymmetric image super-
resolution, in both the in-scale and out-of-scale settings. All
methods adopt the RCAN model [53] as the backbone for a
fair comparison. Four benchmark datasets, including Set5,
Set14, B100, and Urban100, are used for evaluation. For the
original RCAN model, we first upsample the images with a
scaling factor of 4, followed by the bicubic interpolation to
achieve the desired size.

Tables 2 and 3 illustrate the average PSNR scores of dif-
ferent methods for asymmetric image SR on benchmark
datasets in the in-scale and out-of-scale settings, respec-
tively. In the in-scaling setting, MFR can achieve better
performance than the compared methods. Similarly, in the
out-of-scaling setting, our MFR exhibits superior general-
ization capability on different benchmark datasets, in partic-
ular, for the B100 and Urban100 datasets with large scaling
factors. In addition, we show the images generated by dif-
ferent methods under the in-scale and out-of-scale settings
in Fig. 7 and Fig. 8, respectively. These results demonstrate

that the proposed MFR has a better ability to generate high-
frequency information, including textures and edges, than
the compared methods, resulting in the best visual quality.

4.5. Ablation Study

4.5.1 Experiments on Various Filters

The choice of filters plays a significant role in learning fre-
quency representations in our model. In this experiment,
we investigate the impact of different filters on the perfor-
mance. To facilitate the evaluation, we compare the learn-
able Gabor wavelet filter with the SIREN filter [40] and the
conventional Gabor filter. Instead of adaptively updating the
filter parameters, we evaluate the performance of our model
using static Gabor filters. To ensure a fair comparison, all
models employ EDSR [27] as the backbone for feature en-
coding. Table 4 shows the average mPSNR of our model
using different filters for homography transformation on the
DIV2KW dataset.

We find that the impact of employing different filters
in our model is marginal in the in-scale setting but it be-
comes substantial in the out-of-scale setting. We demon-
strate the images generated using different filters in Fig. 9.
From these results, we find that employing learnable Ga-
bor wavelet filters can significantly enhance MFR’s capa-
bility to produce high-frequency details while avoiding dis-
tortion, which benefits from the compactness property of
Gabor wavelet filters in both the spatial and frequency do-
mains. This property enables our proposed MFR to effec-
tively capture local variations in deformable images.

4.5.2 Experiments on Network Structures

Moreover, we study how the structure of the network af-
fects the performance of our MFR. In the generation of
deformable images, we adopt a short connection to fuse
the spatial representations from the input with the fre-
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Table 2. The average PSNR(dB) of state-of-the-art methods for asymmetric-scale SR on the benchmark datasets in the in-scale setting.
The best and the second-best results are highlighted in red and blue, respectively.

Methods
Set5 Set14 B100 Urban100

⇥1.5
⇥4.0

⇥1.5
⇥3.5

⇥1.6
⇥3.05

⇥4.0
⇥2.0

⇥3.5
⇥2.0

⇥3.5
⇥1.75

⇥4.0
⇥1.4

⇥1.5
⇥3.0

⇥3.5
⇥1.75

⇥1.6
⇥3.0

⇥1.6
⇥3.8

⇥3.55
⇥1.55

Bicubic 30.01 30.86 31.40 27.25 27.88 27.27 27.45 28.86 27.94 25.93 24.92 25.19

RCAN [53] 34.14 35.05 35.67 30.35 31.02 31.21 29.35 31.30 29.98 30.72 28.81 29.34

MetaSR-RCAN [15] 34.20 35.17 35.81 30.40 31.05 31.33 29.43 31.26 30.09 30.73 29.03 29.67

ArbSR-RCAN [44] 34.37 35.40 36.05 30.55 31.27 31.54 29.54 31.40 30.22 31.13 29.36 30.04

LTEW-RCAN [22] 34.45 35.46 36.12 30.57 31.21 31.55 29.62 31.40 30.24 31.25 29.57 30.21

MFR-RCAN (Ours) 34.48 35.49 36.13 30.66 31.33 31.63 29.65 31.42 30.26 31.33 29.65 30.29

HR Image Bicubic ArbSR [41] LTEW [21] MFR (Ours) GT

×
3.
55

/×
1.
55

×
1.
6/

×
3

Figure 7. Illustration of the visual results generated by different asymmetric-scale SR methods in the in-scale setting.

Table 3. The average PSNR(dB) of state-of-the-art methods for asymmetric-scale SR on the benchmark datasets in the out-of-scale setting.
The best and the second-best results are highlighted in red and blue, respectively.

Methods
Set5 Set14 B100 Urban100

⇥3.0
⇥8.0

⇥3.0
⇥7.0

⇥3.2
⇥6.1

⇥8.0
⇥4.0

⇥7.0
⇥4.0

⇥7.0
⇥3.5

⇥8.0
⇥2.8

⇥3.0
⇥6.0

⇥7.0
⇥2.9

⇥3.2
⇥6.0

⇥3.2
⇥7.6

⇥7.1
⇥3.1

Bicubic 25.69 26.35 26.84 24.27 24.62 24.79 24.67 25.58 24.98 22.55 21.92 22.15

RCAN [53] 29.00 30.01 30.46 26.48 26.94 27.11 26.06 27.19 26.47 25.52 24.50 24.84

MetaSR-RCAN [15] 28.75 29.74 30.38 26.32 26.85 27.03 26.07 27.15 26.45 25.50 24.47 24.84

ArbSR-RCAN [44] 28.37 29.35 30.08 26.06 26.63 26.84 25.91 27.14 26.40 25.36 24.12 24.61

LTEW-RCAN [22] 29.26 30.16 30.64 26.60 27.06 27.25 26.25 27.28 26.62 25.85 24.79 25.18

MFR-RCAN (Ours) 29.27 30.12 30.68 26.61 27.12 27.31 26.29 27.32 26.66 25.88 24.85 25.26

quency representations learned from the networks with a
gate mechanism. To evaluate the effectiveness of these two
mechanisms, we evaluate the model performance with and
without using the short connection and the gate mechanism.
The average mPSNR scores of MFR for homography trans-

formation on the DIV2KW and Urban100W datasets are il-
lustrated in Table 5.

Table 5 shows that MFR cannot achieve satisfactory per-
formance by only using frequency representations, without
the short connection. Using the gate mechanism, the perfor-
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HR Image Bicubic ArbSR [41] LTEW [21] MFR (Ours) GT

×
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×
4

×
3.
2/

×
7.
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Figure 8. Illustration of the visual results generated by different asymmetric-scale SR methods in the out-of-scale setting.

Table 4. The average mPSNR of MFR using different filters for
homography transformation on the DIV2K dataset. “GW-S” and
“GW-L” denote the static and learnable Gabor wavelet filter, re-
spectively. The best results are highlighted in bold.

SIREN [40] Gabor GW-S GW-L

is 30.87 30.83 30.86 30.88

os 26.81 26.86 26.86 26.90

SIREN [37] Gabor Static Gabor
Wavelet

Learnable Gabor
Wavelet (Ours)

GT

Figure 9. Illustration of visual results generated by our models
using different filters.

mance of the proposed MFR can be further improved. Over-
all, network structure is substantial for the performance of
our MFR. However, it is worth noting that the optimal net-
work structure should be tailored to specific applications
and implementation scenarios.

5. Conclusion

In this paper, we propose a novel and effective method to
learn the frequency representations of input images for im-
age warping, namely MFR. Concretely, our MFR first em-
ploys a pretrained image super-resolution model to project
the input image into the latent space. Then, we propose
a filtering network to progressively learn frequency repre-

Table 5. The average mPSNR of MFR using different network
structures for homography transformation on the DIV2KW and
Urban100W datasets. “SC” and “Gate” denote the short connec-
tion and the gate mechanism, respectively. The best results are
highlighted in bold.

SC Gate
DIV2KW Urban100W

is os is os

30.72 26.80 29.02 24.07

! 30.86 26.88 29.33 24.42

! 30.79 26.83 29.12 24.11

! ! 30.88 26.90 29.68 24.51

sentations from different frequency subbands of the input
features and generate deformable images in a coarse-to-fine
manner. Furthermore, we incorporate Gabor wavelet fil-
ters into our model to enhance the capability to simulta-
neously capture local variations in deformable regions in
both the spatial and frequency domains. Experiments show
the superior performance of the proposed MFR in vari-
ous tasks, including homography transformation, equirect-
angular to perspective projection, and asymmetry image
super-resolution, significantly outperforming state-of-the-
art image-warping methods. In addition, our MFR ex-
hibits better generalization ability when processing out-of-
distribution images with large scaling factors and transfor-
mations. The images generated by our model have rich de-
tailed information and reduced distortion, resulting in the
best visual quality.
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