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Figure 1. The proposed CityDreamer generates a wide variety of unbounded city layouts and multi-view consistent appearances, featuring
well-defined geometries and diverse styles.

Abstract
3D city generation is a desirable yet challenging task,

since humans are more sensitive to structural distortions in
urban environments. Additionally, generating 3D cities is
more complex than 3D natural scenes since buildings, as
objects of the same class, exhibit a wider range of appear-
ances compared to the relatively consistent appearance of
objects like trees in natural scenes. To address these chal-
lenges, we propose CityDreamer, a compositional genera-
tive model designed specifically for unbounded 3D cities.
Our key insight is that 3D city generation should be a com-
position of different types of neural fields: 1) various build-
ing instances, and 2) background stuff, such as roads and
green lands. Specifically, we adopt the bird’s eye view scene
representation and employ a volumetric render for both
instance-oriented and stuff-oriented neural fields. The
generative hash grid and periodic positional embedding
are tailored as scene parameterization to suit the distinct
characteristics of building instances and background stuff.
Furthermore, we contribute a suite of CityGen Datasets,
including OSM and GoogleEarth, which comprises a vast
amount of real-world city imagery to enhance the realism
of the generated 3D cities both in their layouts and appear-
ances. CityDreamer achieves state-of-the-art performance
not only in generating realistic 3D cities but also in local-
ized editing within the generated cities.

1. Introduction

In the wave of the metaverse, 3D asset generation has
drawn considerable interest. Significant advancements have
been achieved in generating 3D objects [45, 57, 58], 3D
avatars [24, 29, 60], and 3D scenes [7, 11, 34]. Cities, being
one of the most crucial 3D assets, have found widespread
use in various applications, including urban planning, en-
vironmental simulations, and game asset creation. There-
fore, the quest to make 3D city development accessible to
a broader audience encompassing artists, researchers, and
players, becomes a significant and impactful challenge.

In recent years, notable advancements have been made
in the field of 3D scene generation. GANCraft [22] and
SceneDreamer [11] use volumetric neural rendering to pro-
duce images within the 3D scene, using 3D coordinates and
corresponding semantic labels. Both methods show promis-
ing results in generating 3D natural scenes by leveraging
pseudo-ground-truth images generated by SPADE [42]. A
very recent work, InfiniCity [34], follows a similar pipeline
for 3D city generation. However, creating 3D cities presents
greater complexity compared to 3D natural scenes. Build-
ings, as objects with the same semantic label, exhibit a wide
range of appearances, unlike the relatively consistent ap-
pearance of objects like trees in natural scenes. This fact
may decrease the quality of generated buildings when all
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buildings in a city are given the same semantic label.
To handle the diversity of buildings in urban environ-

ments, we propose CityDreamer, a compositional genera-
tive model designed for unbounded 3D cities. As shown
in Figure 2, CityDreamer differs from existing methods in
that it splits the generation of building instances and back-
ground stuff like roads, green lands, and water areas into
two separate modules: the building instance generator and
the city background generator. Both generators adopt the
bird’s eye view (BEV) scene representation and employ a
volumetric renderer to generate photorealistic images via
adversarial training. Notably, the scene parameterization is
meticulously tailored to suit the distinct characteristics of
background stuff and buildings. Background stuff in each
category typically has similar appearances while exhibit-
ing irregular textures. Hence, we introduce the generative
hash grid to preserve naturalness while upholding 3D con-
sistency. In contrast, building instances exhibit a wide range
of appearances, but the texture of their façades often dis-
plays regular periodic patterns. Therefore, we design peri-
odic positional encoding, which is simple yet effective for
handling the diversity building façades. The compositor fi-
nally combines the rendered background stuff and building
instances to generate a cohesive image.

To enhance the realism of our generated 3D cities, we
construct a suite of CityGen Datasets, including OSM
and GoogleEarth. The OSM dataset, sourced from Open-
StreetMap [1], contains semantic maps and height fields of
80 cities, covering over 6,000 km2. These maps show the
locations of roads, buildings, green lands, and water areas,
while the height fields primarily indicate building heights.
The GoogleEarth dataset, gathered using Google Earth Stu-
dio [2], features 400 orbit trajectories in New York City.
It includes 24,000 real-world city images, along with se-
mantic and building instance segmentation. These annota-
tions are automatically generated by projecting the 3D city
layout, based on the OSM dataset, onto the images. The
Google Earth dataset provides a wider variety of realistic
urban images from different perspectives. Additionally, it
can be easily expanded to include cities worldwide.

The contributions are summarized as follows:

• We propose CityDreamer, a compositional generative
model designed specifically for unbounded 3D cities,
which disentangles instance-oriented and stuff-oriented
neural fields for buildings and backgrounds.

• We construct the CityGen Datasets, including OSM and
GoogleEarth, with realistic city layouts and appearances,
respectively. GoogleEarth includes images with multi-
view consistency and building instance segmentation.

• The proposed CityDreamer showcases its superior capa-
bility in generating large-scale and diverse 3D cities. Ad-
ditionally, it enables localized editing within the gener-
ated cities.

2. Related Work
3D-Aware GANs. Generative adversarial networks
(GANs) [20] have achieved remarkable success in 2D im-
age generation [27, 28]. Efforts to extend GANs into 3D
space have also emerged, with some works [17, 40, 55] in-
tuitively adopting voxel-based representations by extend-
ing the CNN backbone used in 2D. However, the high
computational and memory cost of voxel grids and 3D
convolution poses challenges in modeling unbounded 3D
scenes. Recent advancements in neural radiance field
(NeRF) [39] have led to the incorporation of volume ren-
dering as a key inductive bias to make GANs 3D-aware.
This enables GANs to learn 3D representations from 2D im-
ages [8, 18, 21, 41, 59]. Nevertheless, most of these meth-
ods are trained on curated datasets for bounded scenes, such
as human faces [27], human bodies [25], and objects [56].
Scene-Level Content Generation. Unlike impressive 2D
generative models that mainly target single categories or
common objects, generating scene-level content is a chal-
lenging task due to the high diversity of scenes. Semantic
image synthesis, such as [15, 22, 37, 42], shows promis-
ing results in generating scene-level content in the wild
by conditioning on pixel-wise dense correspondence, such
as semantic segmentation maps or depth maps. Some
approaches have even achieved 3D-aware scene synthe-
sis [22, 31, 36, 37, 50], but they may lack full 3D consis-
tency or support feed-forward generation for novel worlds.
Recent works like [7, 11, 34] have achieved 3D consistent
scenes at infinity scale through unbounded layout extrap-
olation. Another bunch of work [3, 14, 43, 53] focus on
indoor scene synthesis using expensive 3D datasets [13, 51]
or CAD retrieval [16].

3. Our Approach
As shown in Figure 2, CityDreamer follows a four-step
process to generate an unbounded 3D city. Initially, the
unbounded layout generator (Sec. 3.1) creates an arbitrary
large city layout L. Subsequently, the city background gen-
erator (Sec. 3.2) produces the background image ÎG along
with its corresponding mask MG. Next, the building in-
stances generator (Sec. 3.3) generates images for building
instances {ÎiB}ni=1 and their respective masks {Mi

B}ni=1,
where n is the number of building instances. Lastly, the
compositor (Sec. 3.4) merges the rendered background and
building instances into a single cohesive image IC.

3.1. Unbounded City Layout Generator

City Layout Represenetation. The city layout determines
the 3D objects present in the city and their respective loca-
tions. The objects can be categorized into six classes: roads,
buildings, green lands, construction sites, water areas, and
others. Moreover, there is an additional null class used to
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Figure 2. Overview of CityDreamer. The unbounded layout generator creates the city layout L. Then, the city background generator
performs ray-sampling to retrieve features from L and generates the background image with a volumetric renderer focusing on background
stuff like roads, green lands, and water areas. Similarly, the building instance generator renders the building instance image with another
volumetric renderer. Finally, the compositor merges the rendered background and building images, producing a unified and coherent final
image. Note that “Mod.”, “Cond.”, “Bg.”, and “Bldg.” denote “Modulation”, “Condition”, “Background”, and “Building”, respectively.

represent empty spaces in the 3D volumes. The city lay-
out in CityDreamer, denoted as a 3D volume L, is created
by extruding the pixels in the semantic map S based on the
corresponding values in the height field H. Specifically, the
value of L at (i, j, k) can be defined as

L(i,j,k) =

{
S(i,j) if k ≤ H(i,j)

0 otherwise
(1)

where 0 denotes empty spaces in the 3D volumes.
City Layout Generation. Obtaining unbounded city lay-
outs is translated into generating extendable semantic maps
and height fields. To this aim, we construct the unbounded
layout generator based on MaskGIT [9], which inherently
enables inpainting and extrapolation capabilities. Specifi-
cally, we employ VQVAE [47, 52] to tokenize the seman-
tic map and height field patches, converting them into dis-
crete latent space and creating a codebook C = {ck|ck ∈
RD}Ki=1. During inference, we generate the layout token T
in an autoregressive manner, and subsequently, we use the
VQVAE’s decoder to generate a pair of semantic map S and
height field H. Since VQVAE generates fixed-size seman-
tic maps and height fields, we use image extrapolation to
create arbitrary-sized ones. During this process, we adopt
a sliding window to forecast a local layout token at every
step, with a 25% overlap during the sliding.

Loss Functions. The VQVAE treats the generation of the
height field and semantic map as two separate tasks, opti-
mizing them using L1 Loss and Cross Entropy Loss E , re-
spectively. Additionally, to ensure sharpness in the height
field around the edges of the buildings, we introduce an ex-
tra Smoothness Loss S [38].

ℓVQ = λR∥Ĥp−Hp∥+λSS(Ĥp,Hp)+λEE(Ŝp,Sp) (2)

where Ĥp and Ŝp denote the generated height field and se-
mantic map patches, respectively. Hp and Sp are the cor-
responding ground truth. The autoregressive transformer in
MaskGIT is trained using a reweighted ELBO loss [5].

3.2. City Background Generator

Scene Representation. Similar to SceneDreamer [11],
we use the bird’s-eye-view (BEV) scene representation for
its efficiency and expressive capabilities, making it eas-
ily applicable to unbounded scenes. Different from GAN-
Craft [22] and InfiniCity [34], where features are parameter-
ized to voxel corners, the BEV representation comprises a
feature-free 3D volume generated from a height field and a
semantic map, following Equation 1. Specifically, we initi-
ate the process by selecting a local window with a resolution
of NH

G ×NW
G ×ND

G from the city layout L. This local win-
dow is denoted as LLocal

G , which is generated from the cor-
responding height field HLocal

G and semantic map SLocal
G .
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Scene Parameterization. To achieve generalizable 3D rep-
resentation learning across various scenes and align con-
tent with 3D semantics, it is necessary to parameterize the
scene representation into a latent space, making adversar-
ial learning easier. For background stuff, we adopt the
generative neural hash grid [11] to learn generalizable fea-
tures across scenes by modeling the hyperspace beyond
3D space. Specifically, we first encode the local scene
(HLocal

G ,SLocal
G ) using the global encoder EG to produce

the compact scene-level feature fG ∈ RdG .

fG = EG(H
Local
G ,SLocal

G ) (3)

By leveraging a learnable neural hash function H, the in-
dexed feature fpG at 3D position p ∈ R3 can be obtained by
mapping p and fG into a hyperspace, i.e., R3+dG → RNC

G .

fpG = H(p, fG) =
( dG⊕

i=1

f i
Gπ

i
3⊕

j=1

pjπj
)

mod T (4)

where ⊕ denotes the bit-wise XOR operation. πi and πj

represent large and unique prime numbers. We construct
NL

H levels of multi-resolution hash grids to represent multi-
scale features, T is the maximum number of entries per
level, and NC

G denotes the number of channels in each
unique feature vector.
Volumetric Rendering. In a perspective camera model,
each pixel in the image corresponds to a camera ray r(t) =
o + tv, where the ray originates from the center of projec-
tion o and extends in the direction v. Thus, the correspond-
ing pixel value C(r) is derived from an integral.

C(r) =

∫ ∞

0

T (t)c(f
r(t)
G , l(r(t)))σ(f

r(t)
G )dt (5)

where T (t) = exp(−
∫ t

0
σ(f

r(s)
G )ds). l(p) represent the

semantic label at the 3D position p. c and σ denote the
color and volume density, respectively.
Loss Function. The city background generator is trained
using a hybrid objective, which includes a combination of a
reconstruction loss and an adversarial learning loss. Specif-
ically, we leverage the L1 loss, perceptual loss P [26], and
GAN loss G [32] in this combination.

ℓG = λL1∥ÎG − IG∥+ λPP (̂IG, IG) + λGG (̂IG,SG) (6)

where IG denotes the ground truth background image. SG

is the semantic map in perspective view generated by ac-
cumulating semantic labels sampled from the LLocal

G along
each ray. The weights of the three losses are denoted as
λL1, λP, and λG. Note that ℓG is solely applied to pixels
with semantic labels belonging to background stuff.

3.3. Building Instance Generator

Scene Representation. Just like the city background gen-
erator, the building instance generator also uses the BEV
scene representation. In the building instance generator, we
extract a local window denoted as LLocal

Bi
from the city lay-

out L, with a resolution of NH
B × NW

B × ND
B , centered

around the 2D center (cxBi
, cyBi

) of the building instance Bi.
The height field and semantic map used to generate LLocal

Bi

can be denoted as HLocal
Bi

and SLocal
Bi

, respectively. As all
buildings have the same semantic label in S, we perform
building instantiation by detecting connected components.
We observe that the façades and roofs of buildings in real-
world scenes exhibit distinct distributions. Consequently,
we assign different semantic labels to the façade and roof of
the building instance Bi in LLocal

Bi
, with the top-most voxel

layer being assigned the roof label. The rest building in-
stances are omitted in LLocal

Bi
by assigned with the null class.

Scene Parameterization. In contrast to the city back-
ground generator, the building instance generator employs
a novel scene parameterization that relies on pixel-level fea-
tures generated by a local encoder EB . Specifically, we start
by encoding the local scene (HLocal

Bi
,SLocal

Bi
) using EB , re-

sulting in the pixel-level feature fBi
, which has a resolution

of NH
B ×NW

B ×NC
B .

fBi = EB(H
Local
Bi

,SLocal
Bi

) (7)

Given a 3D position p = (px, py, pz), the corresponding
indexed feature fpBi

can be computed as

fpBi
= O(Concat(f

(px,py)
Bi

, pz)) (8)

where Concat(·) is the concatenation operation. f (px,py)
Bi

∈
RNC

B denotes the feature vector at (px, py). O(·) is the po-
sitional encoding function used in the vanilla NeRF [39].

O(x) = {sin(2iπx), cos(2iπx)}N
L
P −1

i=0 (9)

Note that O(·) is applied individually to each value in the
given feature x, which are normalized to lie within the range
of [−1, 1].
Volumetric Rendering. Different from the volumetric ren-
dering used in the city background generator, we incorpo-
rate a style code z in the building instance generator to
capture the diversity of buildings. The corresponding pixel
value C(r) is obtained through an integral process.

C(r) =

∫ ∞

0

T (t)c(f
r(t)
Bi

, z, l(r(t)))σ(f
r(t)
Bi

)dt (10)

Note that the camera ray r(t) is normalized with respect to
(cxBi

, cyBi
, 0) as the origin.

Loss Function. For training the building instance genera-
tor, we exclusively use the GAN Loss. Mathematically, it
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(b) City Layout
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Figure 3. Overview of CityGen Datasets. (a) The OSM dataset
comprising paired height fields and semantic maps provides real-
world city layouts. (b) The city layout, generated from the height
field and semantic map, facilitates automatic annotation genera-
tion. (c) The GoogleEarth dataset includes real-world city appear-
ances alongside semantic segmentation and building instance seg-
mentation. (d) The dataset statistics demonstrate the variety of
perspectives available in the GoogleEarth dataset.

can be represented as

ℓB = G (̂IBi ,SBi) (11)

where SBi denotes the semantic map of building instance Bi

in perspective view, which is generated in a similar manner
to SG. Note that ℓB is exclusively applied to pixels with
semantic labels belonging to the building instance.

3.4. Compositor

Since there are no corresponding ground truth images for
the images generated by the City Background Generator
and Building Instance Generator, it is not possible to train
neural networks to merge these images. Therefore, the com-
positor uses the generated images ÎG and {ÎBi

}ni=1, along
with their corresponding binary masks MG and {MBi

}ni=1,
the compositor combines them into a unified image IC,
which can be represented as

IC = ÎGMG +

n∑
i=1

ÎBiMBi (12)

where n is the number of building instances.

Table 1. A Comparison of GoogleEarth with representative
city-related datasets. Note that the number of images and area
are counted based on real-world images. “sate.” represents satel-
lite. “inst.”, “sem.”, and “plane” denote “instance segmentation”,
“semantic segmentation”, and “plane segmentation” respectively.

Dataset # Images Area View Annotation 3D

KITTI [19] 15 k - street sem. ✗
Cityscapes [12] 25 k - street sem. ✗
SpaceNet MOVI [54] 6.0 k - sate. inst. ✗
OmniCity [30] 108 k - street/sate. inst./plane ✗

HoliCity [61] 6.3 k 20 km2 street sem./plane ✓
UrbanScene3D [35] 6.1 k 3 km2 drone inst. ✓
GoogleEarth 24 k 25 km2 drone inst./sem. ✓

4. CityGen Datasets

The OSM Dataset. The OSM dataset, sourced from Open-
StreetMap [1], is composed of the rasterized semantic maps
and height fields of 80 cities worldwide, spanning an area
of more than 6,000 km2. During the rasterization process,
vectorized geometry information is converted into images
by translating longitude and latitude into the EPSG:3857
coordinate system at zoom level 18, approximately 0.597
meters per pixel. As shown in Figure 3(a), the segmenta-
tion maps use red, yellow, green, cyan, and blue colors to
denote the positions of roads, buildings, green lands, con-
struction sites, and water areas, respectively. The height
fields primarily represent the height of buildings, with their
values derived from OpenStreetMap. For roads, the height
values are set to 4, while for water areas, they are set to 0.
Additionally, the height values for trees are sampled from
perlin noise [44], ranging from 8 to 16.
The GoogleEarth Dataset. The GoogleEarth dataset is
collected from Google Earth Studio [2], including 400 or-
bit trajectories in Manhattan and Brooklyn. Each trajec-
tory consists of 60 images, with orbit radiuses ranging from
125 to 813 meters and altitudes varying from 112 to 884
meters. In addition to the images, Google Earth Studio
provides camera intrinsic and extrinsic parameters, mak-
ing it possible to create automated annotations for semantic
and building instance segmentation. Specifically, for build-
ing instance segmentation, we initially perform connected
components detection on the semantic maps to identify in-
dividual building instances. Then, the city layout is cre-
ated following Equation 1, as demonstrated in Figure 3(b).
Finally, the annotations are generated by projecting the
city layout onto the images, using the camera parameters,
as shown in Figure 3(c). Table 1 presents a comparative
overview between GoogleEarth and other datasets related
to urban environments. Among datasets that offer 3D mod-
els, GoogleEarth stands out for its extensive coverage of
real-world images, encompassing the largest area, and pro-
viding annotations for both semantic and instance segmen-
tation. Figure 3(d) offers an analysis of viewpoint altitudes

9670



and elevations in the GoogleEarth dataset, highlighting its
diverse camera viewpoints. This diversity enhances neu-
ral networks’ ability to generate cities from a broader range
of perspectives. Additionally, leveraging Google Earth and
OpenStreetMap data allows us to effortlessly expand our
dataset to encompass more cities worldwide.

5. Experiments
5.1. Evaluation Protocols

During evaluation, we use the Unbounded Layout Gener-
ator to generate 1024 distinct city layouts. For each scene,
we sample 20 different styles by randomizing the style code
z. Each sample is transformed into a fly-through video con-
sisting of 40 frames, each with a resolution of 960×540
pixels and any possible camera trajectory. Subsequently,
we randomly select frames from these video sequences for
evaluation. The evaluation metrics are as follows:
FID and KID. Fréchet Inception Distance (FID) [23] and
Kernel Inception Distance (KID) [4] are metrics for the
quality of generated images. We compute FID and KID
between a set of 15,000 generated frames and an evaluation
set comprising 15,000 images randomly sampled from the
GoogleEarth dataset.
Depth Error. We employ depth error (DE) to assess the 3D
geometry, following a similar approach to EG3D [8]. Using
a pre-trained model [46], we generate pseudo ground truth
depth maps for generated frames by accumulating density
σ. Both the “ground truth” depth and the predicted depth
are normalized to zero mean and unit variance to eliminate
scale ambiguity. DE is computed as the L2 distance be-
tween the two normalized depth maps. We assess this depth
error on 100 frames for each evaluated method.
Camera Error. Following SceneDreamer [11], we intro-
duce camera error (CE) to assess multi-view consistency.
CE quantifies the difference between the inference cam-
era trajectory and the estimated camera trajectory from
COLMAP [48]. It is calculated as the scale-invariant nor-
malized L2 distance between the reconstructed and gener-
ated camera poses.

5.2. Implementation Details

Hyperparameters:
Unbounded Layout Generator. The codebook size K is set
to 512, and each code’s dimension D is set to 512. The
height field and semantic map patches are cropped to a size
of 512×512, and compressed by a factor of 16. The loss
weights, λR, λS, and λE, are 10, 10, 1, respectively.
City Background Generator. The local window resolution
NH

G , NW
G , and ND

G are set to 1536, 1536, and 640, respec-
tively. The dimension of the scene-level features dG is 2.
For the generative hash grid, we use NL

H = 16, T = 219,
and NC

G = 8. The unique prime numbers in Equation 4

Table 2. Quantitative comparison. The best values are high-
lighted in bold. Note that the results of InfiniCity are not included
in this comparison as it is not open-sourced.

Methods FID ↓ KID ↓ DE ↓ CE ↓
SGAM [49] 277.64 0.358 0.575 239.291
PersistentNature [7] 123.83 0.109 0.326 86.371
SceneDreamer [11] 213.56 0.216 0.152 0.186
CityDreamer 97.38 0.096 0.147 0.060

are set to π1 = 1, π2 = 2654435761, π3 = 805459861,
π4 = 3674653429, and π5 = 2097192037. The loss func-
tion weights, λL1, λP, and λG, are 10, 10, 0.5, respectively.
Building Instance Generator. The local window resolution
NH

B , NW
B , and ND

B are set to 672, 672, and 640, respec-
tively. The number of channels NC

B of the pixel-level fea-
tures is 63. The dimension NL

P is set to 10.
Training Details:
Unbounded Layout Generator. The VQVAE is trained with
a batch size of 16 using an Adam optimizer with β = (0.5,
0.9) and a learning rate of 7.2 × 10−5 for 1,250,000 itera-
tions. The autoregressive transformer is trained with a batch
size of 80 using an Adam optimizer with β = (0.9, 0.999)
and a learning rate of 2× 10−4 for 250,000 iterations.
City Background and Building Instance Generators. Both
generators are trained using an Adam optimizer with β =
(0, 0.999) and a learning rate of 10−4. The discriminators
are optimized using an Adam optimizer with β = (0, 0.999)
and a learning rate of 10−5. The training lasts for 298,500
iterations with a batch size of 8. The images are randomly
cropped to a size of 192×192.

5.3. Main Results

Comparison Methods. We compare CityDreamer against
four state-of-the-art methods: SGAM [49], PersistentNa-
ture [7], SceneDreamer [11], and InfiniCity [34]. With the
exception of InfiniCity, whose code is not available, the re-
maining methods are retrained using the released code on
the GoogleEarth dataset to ensure a fair comparison. Scene-
Dreamer initially uses simplex noise for layout generation,
which is not ideal for cities, so it is replaced with the un-
bounded layout generator from CityDreamer.
Qualitative Comparison. Figure 4 provides qualitative
comparisons against baselines. SGAM struggles to produce
realistic results and maintain good 3D consistency because
extrapolating views for complex 3D cities can be extremely
challenging. PersistentNature employs tri-plane represen-
tation, but it encounters challenges in generating realistic
renderings. SceneDreamer and InfiniCity both utilize voxel
grids as their representation, but they still suffer from se-
vere structural distortions in buildings because all buildings
are given the same semantic label. In comparison, the pro-
posed CityDreamer generates more realistic and diverse re-
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Figure 4. Qualitative comparison. The proposed CityDreamer produces more realistic and diverse results compared to all baselines. Note
that the visual results of InfiniCity [34] are provided by the authors and zoomed for optimal viewing.

sults compared to all the baselines.

Quantitative Comparison. Table 2 presents the quanti-
tative metrics of the proposed approach compared to the
baselines. CityDreamer exhibits significant improvements
in FID and KID, which is consistent with the visual com-
parisons. Moreover, CityDreamer demonstrates the capa-
bility to maintain accurate 3D geometry and view consis-
tency while generating photorealistic images, as evident by
the lowest DE and CE errors compared to the baselines.

User Study. To better assess the 3D consistency and quality
of the unbounded 3D city generation, we conduct an output
evaluation [6] as the user study. In this survey, we ask 20
volunteers to rate each generated camera trajectory based
on three aspects: 1) the perceptual quality of the imagery,
2) the level of 3D realism, and 3) the 3D view consistency.
The scores are on a scale of 1 to 5, with 5 representing the
best rating. The results are presented in Figure 5, show-
ing that the proposed method significantly outperforms the
baselines by a large margin.

5.4. Ablation Study

Effectiveness of Unbounded Layout Generator. The Un-
bounded Layout Generator plays a critical role in generat-
ing “unbounded” city layouts. We compare it with Infini-
tyGAN [33] used in InfiniCity and a rule-based city layout
generation method, IPSM [10], as shown in Table 4. Fol-
lowing InfiniCity [34], we use FID and KID to evaluate the
quality of the generated layouts. Compared to IPSM and
InfinityGAN, Unbounded Layout Generator achieves better
results in terms of all metrics. The qualitative results shown
in Figure I in the supplementary material also demonstrate
the effectiveness of the proposed method.
Effectiveness of Building Instance Generator. We em-
phasize the crucial role of the building instance generator in
the success of unbounded 3D city generation. To demon-
strate its effectiveness, we conducted an ablation study on
the building instance generator. We compared two optional
designs: (1) Removing the building instance generator from
CityDreamer, i.e., the model falling back to SceneDreamer.
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Figure 5. User study on unbounded 3D city generation. All
scores are in the range of 5, with 5 indicating the best. Note that
“Pers.Nature” denotes “PersistentNature” [7].

(2) All buildings are generated at once by the building in-
stance generator, without providing any instance labels. The
quantitative results presented in Table 4 demonstrate the ef-
fectiveness of both the instance labels and the building in-
stance generator. Refer to Figure II in the supplementary
material for more qualitative comparisons.
Effectiveness of Scene Parameterization. Scene param-
eterization directly impacts the quality of 3D city gener-
ation. The city background generator utilizes HashGrid
with patch-wise features from the global encoder, while the
building instance generator uses vanilla SinCos positional
encoding with pixel-wise features from the local encoder.
We compare different scene parameterizations in both the
city background generator and the building instance gen-
erator. Table 5 shows that using local encoders in back-
ground generation or using global encoders in building gen-
eration leads to considerable degradation in image quality,
indicated by poor metrics. According to Equation 4, the
output of HashGrid is determined by the scene-level fea-
tures and 3D position. While HashGrid enhances the multi-
view consistency of the generated background, it also in-
troduces challenges in building generation, leading to less
structurally reasonable buildings. In contrast, the inher-
ent periodicity of SinCos makes it easier for the network
to learn the periodicity of building façades, leading to im-
proved results in building generation. Refer to Sec. A.2 in
the supplementary material for a detailed discussion.

5.5. Further Discussions

Applications. This research primarily benefits applications
that require efficient content creation, with notable exam-
ples being the entertainment industry. There is a strong de-
mand to generate content for computer games and movies
within this field.
Limitations. 1) The generation of the city layout involves
raising voxels to a specific height, which means that con-
cave geometries like caves and tunnels cannot be modeled
and generated. 2) During the inference process, the build-
ings are generated individually, resulting in a slightly higher

Table 3. Effectiveness of Ubounded Layout Generator. The best
values are highlighted in bold. The images are centrally cropped
to a size of 4096×4096.

Methods FID ↓ KID ↓
IPSM [10] 321.47 0.502
InfinityGAN [33] 183.14 0.288
Ours 124.45 0.123

Table 4. Effectiveness of Building Instance Generator. The best
values are highlighted in bold. Note that “w/o BIG.” indicates the
removal of Building Instance Generator from CityDreamer. “w/o
Ins.” denotes the absence of building instance labels in the build-
ing instance generator.

Methods FID ↓ KID ↓ DE ↓ CE ↓
w/o BIG. 213.56 0.216 0.152 0.186
w/o Ins. 117.75 0.124 0.148 0.098
Ours 97.38 0.096 0.147 0.060

Table 5. Effectiveness of different generative scene parameter-
ization. The best values are highlighted in bold. Note that “CBG.”
and “BIG.” denote City Background Generator and Building In-
stance Generator, respectively. “Enc.” and “P.E.” represent “En-
coder” and “Positional Encoding”, respectively.

CBG. BIG. FID ↓ KID ↓ DE ↓ CE ↓Enc. P.E. Enc. P.E.

Local SinCos Global Hash 219.30 0.233 0.154 0.452
Local SinCos Local SinCos 107.63 0.125 0.149 0.078
Global Hash Global Hash 213.56 0.216 0.153 0.186
Global Hash Local SinCos 97.38 0.096 0.147 0.060

computation cost. Exploring ways to reduce the inference
cost would be beneficial for future work.

6. Conclusion
In this paper, we propose CityDreamer, a compositional
generative model designed specifically for unbounded 3D
cities. Compared to existing methods that treat buildings
as a single class of objects, CityDreamer separates the gen-
eration of building instances from background stuff, allow-
ing for better handling of the diverse appearances of build-
ings. Additionally, we create a suite of CityGen Datasets,
including OSM and GoogleEarth, providing more realistic
city layouts and appearances, and easily scalable to include
other cities worldwide. CityDreamer achieves state-of-the-
art performance not only in generating realistic 3D cities but
also in localized editing within the generated cities.
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