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Abstract

Existing methods for asymmetric image retrieval employ
a rigid pairwise similarity constraint between the query
network and the larger gallery network. However, these one-
to-one constraint approaches often fail to maintain retrieval
order consistency, especially when the query network has
limited representational capacity. To overcome this prob-
lem, we introduce the Decoupled Differential Distillation
(D3still) framework. This framework shifts from absolute
one-to-one supervision to optimizing the relational differ-
ences in pairwise similarities produced by the query and
gallery networks, thereby preserving a consistent retrieval
order across both networks. Our method involves computing
a pairwise similarity differential matrix within the gallery do-
main, which is then decomposed into three components: fea-
ture representation knowledge, inconsistent pairwise similar-
ity differential knowledge, and consistent pairwise similarity
differential knowledge. This strategic decomposition aligns
the retrieval ranking of the query network with the gallery
network effectively. Extensive experiments on various bench-
mark datasets reveal that D3still surpasses state-of-the-art
methods in asymmetric image retrieval. Code is available at
https://github.com/SCY-X/D3still.

1. Introduction
The predominant image retrieval methods [1, 32, 34] based
on deep learning, typically involve mapping both query and
gallery images into a shared feature space that is highly
discriminative. Within this space, gallery images are then
ranked according to their relevance to the query image. How-
ever, this feature mapping process often relies on large neural
networks, which pose practical challenges for deployment on
edge devices in real-world scenarios. Consequently, this ne-
cessitates uploading query images to cloud-based platforms
for feature extraction, resulting in dependencies on network
connectivity and additional computational overhead.

Asymmetric image retrieval [2, 33, 40, 41], has emerged
as a compelling alternative, striking an effective balance be-
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Figure 1. Illustration of existing methods and our pairwise dif-
ferential distillation (D3still) framework. (a) Existing methods
one-by-one optimize similarity pairs to produce inconsistent rank-
ing results. (b) Our method optimizes the relational difference
between pairwise similarities and independently transfers various
knowledge to generate consistent ranking results.

tween performance and efficiency. This method first utilizes
a lightweight network deployed on edge devices [10], such
as mobile phones, to extract features from query images.
Subsequently, these query features are uploaded to the cloud
platform, where they are compared for similarity with gallery
features extracted offline from gallery images using a large
network. Asymmetric image retrieval eliminates the need to
upload query images and the dependence on online model
inference in cloud platforms, thereby enhancing efficiency.
Moreover, to further alleviate the computational load on the
query network, recent research [33] advocates for the use of
low-resolution images for feature extraction on edge devices.
In this setup, while the query features are extracted from low-
resolution images using a lightweight network, the gallery
features are still derived from high-resolution images using
a more robust, heavier network. This contrast in resolution
and network capacity enables efficient processing on edge
devices while maintaining the quality of feature extraction.

In asymmetric image retrieval, the primary challenge is to
synchronize the embedding spaces of the query and gallery
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networks. Addressing this, AML [2] pioneered the use of
knowledge distillation (KD) alongside contrastive learning
to transfer feature knowledge from the gallery network to
the query network. This method is instrumental in aligning
their respective feature representation spaces. Further devel-
opments in this area [33, 39] have enhanced this approach
by not only transferring feature knowledge but also integrat-
ing pairwise similarity knowledge. This integration aims
to enforce consistent neighbor structures across networks.
As depicted in Fig. 1 (a), the process involves optimizing
the distance between each pairwise similarity in the stu-
dent (query) network and its corresponding similarity in the
teacher (gallery) network. However, a significant issue arises
due to the inherently limited representation capacity of the
lightweight query network. This limitation hampers its abil-
ity to accurately replicate the pairwise similarity knowledge
from the gallery network. Consequently, there is often a mis-
match in the retrieval orders between the query and gallery
networks, as the query network struggles to maintain fidelity
to the more complex gallery network’s similarity structures.

Our analysis suggests that enforcing strict feature rep-
resentations on two networks with differing capacities in-
evitably encounters a notable upper limit. In the realm of
image retrieval, the focus should shift from the intricacies
of image features or similarity scores to the order in which
images are returned. Therefore, we propose a novel dis-
tillation objective centered on the differential relationship
between pairwise similarities. This approach allows us to
focus less on the exact representations and more on main-
taining consistent retrieval orders across the two networks.
The underlying rationale is that instead of aiming for feature
similarity between the networks, we should prioritize pre-
serving a consistent ranking order of samples within their
respective spaces. By doing so, we align more closely with
the practical requirements of image retrieval, where the rela-
tive order of results often holds greater significance than the
absolute similarity scores or features.

To this end, we introduce the Decoupled Differential Dis-
tillation (D3still) framework, as illustrated in Fig. 1 (b). Our
approach begins with a thorough analysis of the optimiza-
tion objectives in asymmetric image retrieval, leading to the
conclusion that focusing on the differential between pairwise
similarities in the gallery representation space is key to en-
suring a consistent retrieval order between the lightweight
query network and the larger gallery network. Based on this
foundation, we develop a pairwise differential distillation
loss function specifically designed to optimize the ranking
order of pairwise similarities within the gallery domain. This
involves computing pairwise similarities using features from
both query and gallery images in the gallery representation
space, followed by calculating the differentials between these
similarities to form a pairwise similarity differential matrix.
This matrix is then refined through knowledge transfer, en-

hancing the query network’s retrieval performance.
A critical aspect of asymmetric retrieval, as highlighted

in previous studies [2, 39], is the compatibility between the
query and gallery networks. Consequently, we emphasize
the transfer of feature representation knowledge as a dom-
inant factor in the optimization process. To this end, we
decouple the pairwise similarity differential matrix, separat-
ing feature representation knowledge from pairwise similar-
ity differential knowledge. Additionally, we further divide
the remaining matrix to distinguish between inconsistent
and consistent pairwise similarity differential knowledge for
distillation. This distinction enables the query network to
concentrate on optimizing “hard samples”, which are those
whose rankings vary significantly from the gallery network,
thereby improving overall retrieval accuracy.

The main contributions of this paper are threefold:
• We design a pairwise differential distillation loss function

to ensure consistent retrieval order between the lightweight
query network and the large gallery network.

• We propose a decoupled differential distillation (D3still)
framework for asymmetric image retrieval, which transfers
feature representation knowledge, inconsistent pairwise
similarity differential knowledge, and consistent pairwise
similarity differential knowledge to the query network.

• Extensive experiments demonstrate that our method is
superior to state-of-the-art approaches.

2. Related Works
2.1. Knowledge Distillation
Knowledge distillation (KD) [9, 11, 28, 29] improves the
accuracy performance of lightweight student networks by
transferring knowledge from larger teacher networks. KD
can be broadly categorized into two research streams: feature
distillation [31, 45] and relationship distillation [25, 35].
Feature Distillation. Feature distillation methods [7, 12,
13, 31, 45] typically minimize the distance between the out-
put features of the student network and the teacher network
to guide the student network to generate similar features
to those of the teacher network. For example, FitNet [31]
minimizes the distance between the intermediate features of
the student and teacher networks to achieve feature space
alignment. Since feature knowledge can align the feature
representation space between two networks, KD based asym-
metric image retrieval methods [33, 39, 40] usually transfer
feature representation knowledge to the query network.
Relationship Distillation. Relationship distillation meth-
ods [24, 25, 35] enforce the correlation generated by inter-
mediate features of the student network consistent be the
teacher network. For example, SPKD [35] first calculates a
cosine similarity matrix between features and itself. Then,
SPKD minimizes the distance between the cosine similar-
ity matrix of the student network and the teacher network
to transfer pairwise similarity knowledge. However, since
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the transferring of relationship knowledge can’t align the
feature representation space between two networks, relation-
ship knowledge is usually transferred together with feature
knowledge in asymmetric image retrieval.

2.2. Asymmetric Image Retrieval
Ensuring embedding compatibility between gallery and
query features is crucial in asymmetric image retrieval,
where different networks process gallery and query exam-
ples. To address this challenge, AML [2] introduces a
knowledge distillation approach to align the representation
space between query and gallery networks. AML treats the
lightweight query network and the large gallery network as
student and teacher networks, respectively. Building upon
AML’s framework, subsequent works [33, 39, 40] have fo-
cused on designing distillation methods. For instance, CSD
[39] minimizes the probability distribution between a con-
textual similarity matrix of the query and gallery networks
to transfer pairwise similarity knowledge. However, due to a
significant capacity gap between query and gallery networks,
the query network struggles to faithfully preserve pairwise
similarity knowledge from the gallery network, causing in-
consistent retrieval orders between them. Moreover, ROP
[40] uses the sigmoid function to replace the Heaviside step
function [1] to acquire a binary smooth retrieval ranking.
Then, ROP minimizes the probability distribution between
the smooth retrieval ranking of the query and gallery net-
works. However, the binary ranking matrix may encounter
the vanishing gradient problem when the predictions are
close to 0 or 1. In contrast, we overcome this problem with
the proposed pairwise similarity differential matrix, which
can more accurately measure the retrieval ranking order.

3. Method
3.1. Formulation and Background
Assume that θq(·) denotes a lightweight query network,
which converts a low-resolution query image into a normal-
ized d-dimensional vector. Correspondingly, θg(·) denotes
a large gallery network, which converts a high-resolution
gallery image into a normalized d-dimensional vector. Given
a batch of n samples X = [x1, x2, ..., xn], we resize X to
obtain a low-resolution sample set X l = [xl

1, x
l
2, ..., x

l
n] and

a high-resolution sample set X h = [xh
1 , x

h
2 , ..., x

h
n], respec-

tively. Then, we utilize query and gallery networks to extract
query features Vq

i and gallery features Vg
i as follows:

Vq
i = θq(X l

i ), Vg
i = θg(X h

i ), i = 1, 2, ..., n. (1)
For ranking-oriented asymmetric retrieval, the query net-

work needs to learn ranking knowledge from the gallery
network to maintain consistent retrieval orders. To accom-
plish this, a strict ranking distillation loss function Lrank

can be formulated as follows:

Lrank=
1

n

n∑
i=1

n∑
j=1
l=1

(
H(Sq

i,j−Sq
i,l)−H(Sg

i,j−Sg
i,l)
)2

, (2)

where Sq
i,j denote the cosine similarity between Vq

i and Vg
j ;

Sg
i,j denote the cosine similarity between Vg

i and Vg
j ; H(·)

represents a Heaviside step function [1]. However, Eq. (2) is
infeasible for gradient-based optimization [1] due to the non-
differentiability of the Heaviside step function. Therefore,
approximating the optimization of Eq. (2) is a key challenge
in enhancing asymmetric retrieval performance.

In what follows, we analyze the limitations of pairwise
similarity knowledge when it is used to approximate Lrank.
Then, we design a pairwise differential distillation loss func-
tion Lpd to approximate Lrank more appropriately. Finally,
we show a complete distillation framework, which can inde-
pendently transfer various knowledge to the query network.

3.2. Pairwise Similarity Knowledge Analysis
Recent asymmetric retrieval works [33, 39] design a pairwise
similarity distillation loss function Lpair to transfer pairwise
similarity knowledge to query networks as follows:

Lpair =
1

n

n∑
i=1

( n∑
j=1

(
Sq
i,j − Sg

i,j

)2) 1
2

. (3)

However, the pairwise similarity distillation loss function
could not ensure consistent retrieval rankings between a
lightweight query network and a gallery network due to
the inconsistency in the capabilities between the query and
gallery networks. More details are discussed as follows.

In Eq. (2), the retrieval ranking is determined by the sign
of the difference between two pairwise cosine similarities
(i.e., for any two pairwise cosine similarities Si,j and Si,l,
H(Si,j −Si,l) = 1 if and only if Si,j −Si,l > 0). Therefore,
to maintain consistency in the retrieval ranking of query and
gallery networks, we should promise that: (1) Sq

i,j−Sq
i,l > 0

when Sg
i,j−Sg

i,l > 0; (2) Sq
i,j−Sq

i,l < 0 when Sg
i,j−Sg

i,l < 0;
These two solutions can be unified into Eq. (4), as follows:

Sq
i,j − Sq

i,l

Sg
i,j − Sg

i,l

> 0. (4)

Obviously, Eq. (4) involves the relationship between two
sample pairs (i.e., i and j, i and l). As shown in Eq. (3), there
are n2 pairs to be optimized, but each pair is independent,
which could not take into account the relationship between
the two pairs. To make matters worse, since the representa-
tion capacity of the query network is much lower than the
gallery network, there is a significant semantic difference
between query and gallery features. Thus, it is extremely
difficult for a lightweight query network to generate the same
similarity score as a well-trained teacher network for each
pair, resulting in significant disparities in the optimization of
different pairs. As a result, optimizing the pairwise similarity
distillation loss function proves inadequate to ensure Eq. (4)
holds, limiting the lightweight query network’s performance.

3.3. Pairwise Similarity Differential Knowledge
In this work, we focus on the difference between each pair-
wise similarity to transfer pairwise similarity differential
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knowledge to ensure the retrieval ranking consistency be-
tween the query and the gallery. In what follows, we intro-
duce pairwise similarity differential knowledge.

Essentially, Eq. (4) can be rewritten as:
Sq
i,j − Sq

i,l

Sg
i,j − Sg

i,l

= 1 +
(Sq

i,j − Sq
i,l)− (Sg

i,j − Sg
i,l)

Sg
i,j − Sg

i,l

. (5)

From Eq. (5), we observe that the retrieval ranking of the
query network aligns with that of the gallery network when
the second term of Eq. (5) exceeds −1, i.e., Eq. (5) exceeds
0. However, given the high level of indeterminacy associated
with such an objective, it poses challenges in ensuring the
validity of the inequality. To address this, we opt to relax
the inequality, setting Eq. (5) to be as close to 1 as possible.
This is done by ensuring consistency in retrieval rankings
between the query and gallery networks via optimizing the
second term of Eq. (5) towards 0. Notably, this relaxation
is reasonable as it not only maintains the consistency of
retrieval rankings in both networks but also enforces that
the query network generates a similar pairwise similarity
difference relationship as the gallery network. Based on the
above analysis, we design a pairwise differential distillation
loss function Lpd to approximate optimize the second terms
of Eq. (5) toward 0 as follows:

Lpd=
1

n

n∑
i=1

(
n∑

j=1
l=1

( (Sq
i,j−Sq

i,l)−(Sg
i,j−Sg

i,l)

m+ |Sg
i,j − Sg

i,l|

)2) 1
2

, (6)

where m is a constant set to 0.1 to avoid a small denominator.
From Eq. (6), our method involves the relationship be-

tween two sample pairs and simultaneously optimizes two
sample pairs, i.e., (Sq

i,j − Sq
i,l) and (Sg

i,j − Sg
i,l). Thus, our

method can greatly reduce mismatched signs between two
sample pairs to constrain the order of pairwise similarities
between two networks to be consistent. Moreover, different
from pairwise similarity knowledge that one-by-one strict
constraints pairwise similarity between two networks, our
method loosely constrains the relational difference of pair-
wise similarities between two networks to be consistent. This
is because even if the query network with low capacity can-
not strictly constrain the relational difference between the
pairwise similarities of the two networks to be consistent, the
retrieval ranking of the query network is still consistent with
that of the gallery network. Consequently, in asymmetric re-
trieval, our pairwise similarity differential knowledge would
ensure a consistent retrieval ranking between the query and
gallery networks better than pairwise similarity knowledge.

3.4. Decouple Similarity Differential Knowledge
With further analysis of Eq. (6), it becomes evident that min-

imizing Lpd is equivalent to minimizing
(Sq

i,i−1)+(Sg
i,l−Sq

i,l)

m+|1−Sg
i,l|

when i = j. It is worth noting that minimizing (Sq
i,i − 1)

is equivalent to narrowing the gap of the output feature be-

Table 1. Ablation study on the decoupling of feature representation
knowledge and pairwise similarity differential knowledge.

METHOD In-Shop SOP
mAP (%) R1 (%) mAP (%) R1 (%)

Lpd 0.85 0.58 25.73 35.61
Lf 61.55 75.37 49.46 66.55

Lf + Lrpd 63.88 78.92 51.00 68.65

tween the query network and the gallery network. In other
words, Lpd both transfers feature representation knowledge
and pairwise similarity differential knowledge. Since a cru-
cial requirement of asymmetric retrieval is that the query
and gallery networks should be compatible [4], we should
independently transfer feature representation knowledge to
ensure its dominance, rather than coupling it with relation-
ship knowledge, as done in previous studies. [39, 40]. Thus,
we decouple the pairwise differential distillation loss func-
tion Lpd to form a feature distillation loss function Lf and
a pure pairwise differential distillation loss function Lrpd.
The formula for Lf is as follows:

Lf =
1

n

( n∑
i=1

(
Sq
i,i − 1

)2) 1
2

. (7)

As shown in Table 1, we conduct an ablation study of
the decoupling of feature knowledge and pairwise similar-
ity differential knowledge on In-Shop Clothes Retrieval (In-
Shop) [19] and Stanford Online Products (SOP) [22] datasets.
From Table 1, we can find that Lpd cannot improve the re-
trieval performance of the query network because feature
representation knowledge in Lpd does not dominate, caus-
ing the feature representation space of the query network to
be misaligned with the gallery network. Moreover, as the
loss function Lpd is decoupled, the retrieval performance of
the query network is significantly improved. These results
demonstrate the necessity of decoupling feature representa-
tion knowledge and relationship knowledge.

Furthermore, the query network must decide whether to
focus on learning pairwise similarity differential knowledge
from hard or simple samples due to the limitation of rep-
resentation capacity. To evaluate the sample difficulty, we
calculate the ranking consistency between samples as the
indicator. Thus, the pairwise relationship distillation loss
function Lrpd can be decoupled as follows:

Lrpd = Lirpd + Lcrpd, (8)
where Lirpd is an inconsistent pairwise differential distilla-
tion loss function as follows:

Lirpd =
1

n

n∑
i=1

(
n∑

j=1,j ̸=i
l=1

H
(
−

Sq
i,j − Sq

i,l

Sg
i,j − Sg

i,l

)
( (Sq

i,j − Sq
i,l)− (Sg

i,j − Sg
i,l)

m+ |Sg
i,j − Sg

i,l|

)2) 1
2

.

(9)

And Lcrpd is a consistent pairwise differential distillation
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Figure 2. An overview of our decoupled differential distillation (D3still) framework. Our framework can independently transfer feature
representation knowledge, inconsistent pairwise similarity differential knowledge, and consistent pairwise similarity differential knowledge.

Table 2. Ablation study about different distillation loss functions.

METHOD In-Shop SOP
mAP (%) R1 (%) mAP (%) R1 (%)

Lf + Lirpd 63.38 78.01 50.57 68.04
Lf + Lcrpd 63.46 78.33 50.89 68.63
Lf + Lrpd 63.88 78.92 51.00 68.65
Lf + Ldrpd 64.31 79.60 51.33 69.18

loss function as follows:

Lcrpd =
1

n

n∑
i=1

(
n∑

j=1,j ̸=i
l=1

H
(Sq

i,j − Sq
i,l

Sg
i,j − Sg

i,l

)
( (Sq

i,j − Sq
i,l)− (Sg

i,j − Sg
i,l)

m+ |Sg
i,j − Sg

i,l|

)2) 1
2

.

(10)

The reformulation of the above Eq. (8) inspires us to investi-
gate the individual effects of Liprd and Lcprd. More details
are discussed as follows.

Table 2 presents a detailed comparison experiment utiliz-
ing different loss functions on In-shop [19] and SOP [22]. In
Table 2, the retrieval performance of Lrpd outperforms that
of Lcrpd and Lirpd, suggesting that integrating knowledge
from both consistent and inconsistent samples enhances the
performance of the query network. However, the limited
capacity of the query network increases the likelihood of get-
ting trapped in sub-optimal solutions dictated by the training
data distribution. Furthermore, previous studies [8, 15] have
indicated that emphasizing hard samples during training mit-
igates the risk of the model overfitting to simpler samples
and improves its generalization. Thus, to further enhance
the generalization ability of the query network, we propose
amplifying the loss of inconsistent samples by decoupling
the pairwise relationship distillation loss function Lrpd to

obtain the decoupled pairwise differential distillation loss
function Ldrpd as follows:

Ldrpd = βLirpd + γLcrpd, (11)
where β and γ are hyper-parameters to balance Lirpd and
Lcrpd, whose default values are 0.2 and 0.1, respectively.

3.5. Decoupled Differential Distillation Framework
As shown in Fig. 2, we construct a decoupled pairwise
similarity differential distillation (D3still) framework for
asymmetric retrieval, which transfers feature representation
knowledge and pairwise similarity differential knowledge
from the gallery to query networks. Specifically, we first
calculate two cosine similarity matrices Gq and Gg in the
representation space of the gallery network as follows:

Gq = VqVg ∈ Rn×n, Gg = VgVg ∈ Rn×n. (12)

Second, since image retrieval usually returns top-k gallery
images relevant to the query images, we further construct two
top-k retrieval similarity matrices Cq and Cg. We acquire
a retrieval result top-k index R based on Gg because the
gallery network has been well-trained, as follows:

R = argsort(Gg,dim = 2) ∈ Rn×k, (13)
where argsort(·) is a function that returns the top-k index
corresponding to the descending order of the cosine similar-
ity value according to the second dimension.

Then, two top-k retrieval similarity matrices Cq ∈ Rn×k

and Cg ∈ Rn×k are constructed as follows:
Cq = sort(Gq, index = R),

Cg = sort(Gg, index = R),
(14)

where sort(·) represents a sort function that sorts the cosine
similarity matrix according to the top-k index.

For feature representation knowledge, based on the top-k
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retrieval similarity matrices, we design a feature distillation
loss function Lf to align the representation space between
query and gallery networks as follows:

Lf =
1

n

( n∑
i=1

(
Cq

i,1 − Cg
i,1

)2) 1
2

. (15)

For pairwise similarity differential knowledge, based
on the top-k retrieval similarity matrices, we first con-
struct two pairwise similarity difference matrices Mq ∈
Rn×(k−1)×(k−1) and Mg ∈ Rn×(k−1)×(k−1) as follows:

Mq
i,j,l = Cq

i,j+1 − Cq
i,l+1, 1 ≤ j, l ≤ k − 1.

Mg
i,j,l = Cg

i,j+1 − Cg
i,l+1, 1 ≤ j, l ≤ k − 1.

(16)

Then, the inconsistent pairwise differential distillation
loss function Liprd and the consistent pairwise differential
distillation loss function Lcprd is calculated as follows:

Lirpd =
1

n

n∑
i=1

( k−1∑
j=1
l=1

H(−
Mq

i,j,l

Mg
i,j,l

)
(Mq

i,j,l −Mg
i,j,l

m+ |Mg
i,j,l|

)2) 1
2

.

Lcrpd =
1

n

n∑
i=1

( k−1∑
j=1
l=1

H(
Mq

i,j,l

Mg
i,j,l

)
(Mq

i,j,l −Mg
i,j,l

m+ |Mg
i,j,l|

)2) 1
2

.

(17)
Finally, in the training phase, the total loss function

Lstudent for the query network is as follows:
Lstudent = αLf + βLirpd + γLcrpd, (18)

where α is a hyper-parameter and used to control the contri-
bution of Lf . The default value of α is set to 100.

4. Experiments
In this section, we present the implementation details and ex-
perimental results of our method on three publicly available
image retrieval datasets: In-Shop Clothes Retrieval (In-shop)
[19], Stanford Online Products (SOP) [22] and MSMT17
[37]. We first provide a brief introduction to the datasets
and performance metrics. Then, we conduct ablation ex-
periments to evaluate the effectiveness of our method and
compare our method with state-of-the-art methods. Finally,
we analyze the impact of hyper-parameters on performance.

4.1. Datasets and Performance Metric
In-Shop Clothes Retrieval (In-Shop) [19] is a clothes re-
trieval database with 72,712 images across 7,986 categories.
The training set includes 3,997 classes with 25,882 images.
The query set comprises 14,218 images of 3,985 classes.
The gallery set has 3,985 classes with 12,612 images.
Stanford Online Products (SOP) [22] is a widely used prod-
uct recognition dataset, including an extensive collection of
120,053 product images across 22,634 classes. The training
set includes 59,551 training images of 11,318 classes, and
the test set includes 60,502 images of 11,316 classes.
MSMT17 [37] is a widely recognized pedestrian retrieval

Table 3. Ablation study on In-shop [19] and SOP [22].

METHOD FLOPs (G) In-Shop SOP
mAP (%) R1 (%) mAP (%) R1 (%)

Gallery 12.99 81.96 95.42 72.06 86.92
Lf 0.25 61.55 75.37 49.46 66.55

Lf + Lpair 0.25 62.71 76.94 49.96 66.94
Lf + Ldprd 0.25 64.31 79.60 51.33 69.18

database, including 126,441 images of 4,101 pedestrian iden-
tities captured by a total of 15 cameras (3 indoor and 12 out-
door). The training set includes 32,621 images with 1,041
unique pedestrian identities. The test set consists of 11,659
query images and a staggering 82,161 gallery images, which
showcase 3,060 distinct pedestrian identities.

The Cosine distance between features as the retrieval
algorithm, i.e., the more similar the gallery image, the higher
the ranking. The mean average precision (mAP) [23, 30, 33]
and rank-1 identification rate (R1) [16, 33, 38] are both
applied to evaluate the retrieval accuracy performance. The
floating-point of operations (FLOPs) is used to measure the
models’ computational complexity.

4.2. Implementation Details
The software tools are Pytorch 2.0.1 [26], CUDA 11.8. The
hardware device is one GeForce RTX 4090 GPU 24G. The
network training configurations are as follows. (1) We use
ImageNet pre-trained ResNet101 [6] and ResNet18 [6] as
the gallery network and the query network, respectively.
Besides, the last stride of ResNet is set to 1, as done in
[42, 44]. (2) The input image resolutions for the query
network and the gallery network are 64× 64 and 256× 256,
respectively. (3) The data augmentation includes z-score
normalization, random cropping, random erasing [36, 49],
and random horizontal flip operations, as done in [3, 43]. The
probabilities of horizontal flip and random erasing operations
are both set to 0.5. (4) We use the mini-batch stochastic
gradient descent method [14] as an optimizer. The mini-
batch size is set to 512. (5) We set weight decays [46–48] as
5×10−4 while momentums as 0.9. (6) The cosine annealing
strategy [17, 18, 21] and linearly warmed strategy [5] are
applied to adjust learning rates. Specifically, the learning
rates are initialized to 1× 10−3, then linearly warmed up to
1× 10−2 in the first 10 epochs. The drop point for learning
rates is the 40-th epoch and the total training epoch is 120.
(7) The hyper-parameter k in Eq. (13) is set to 10.

4.3. Ablation Experiments
As shown in Table 3, we conduct ablation experiments on In-
shop [19] and SOP [22] datasets. “Gallery” denotes that we
directly evaluate the retrieval performance of ResNet101 [6].
“Lf” represents that the query network learns feature repre-
sentation knowledge from the gallery network. “Lf +Lpair”
means that the query network learns feature representation
knowledge and pairwise similarity knowledge. “Lf +Ldprd”
denotes that we transfer feature representation knowledge,
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Table 4. Performance (%) comparison across various network structures structures on three datasets.

METHOD
QUERY

NET
QUERY
INPUT

GALLERY
NET

GALLERY
INPUT

In-Shop SOP MSMT17
mAP (%) R1 (%) mAP (%) R1 (%) mAP (%) R1 (%)

(A) Training without the gallery network
ResNet101 ResNet101 256× 256 ResNet101 256× 256 81.96 95.42 72.06 86.92 59.81 81.91

SwinV2 SwinV2-T 256× 256 SwinV2-T 256× 256 80.28 94.55 74.22 88.00 56.14 78.76
ResNet18 ResNet18 64× 64 ResNet18 64× 64 60.16 80.23 41.84 65.76 13.85 30.17
MobileV2 MobileNetV2 64× 64 MobileNetV2 64× 64 62.53 82.64 44.94 68.39 12.13 26.70

(B) Training with ResNet101 as the gallery netowrk
RKD [24]

ResNet18 64× 64 ResNet101 256× 256

0.15 0.10 0.03 0.01 0.07 0.06
PKT [25] 0.14 0.06 0.04 0.01 0.07 0.06

FitNet [31] 62.84 77.21 49.66 66.44 14.40 21.65
CCKD [27] 62.42 76.54 49.18 65.97 16.58 24.79
CSD [39] 26.00 29.83 39.28 54.85 6.19 9.04

RAML [33] 63.35 77.06 49.41 66.21 16.87 24.92
ROP [40] 35.16 39.38 28.79 37.71 7.65 11.60

D3still (Ours) 64.31 79.60 51.33 69.18 18.64 28.79
(C) Training with ResNet101 as the gallery netowrk

FitNet [31]

MobileNetV2 64× 64 ResNet101 256× 256

66.52 81.09 50.91 67.57 15.38 22.45
CCKD [27] 63.74 77.63 49.88 66.63 14.71 20.67
CSD [39] 37.07 45.37 42.71 59.09 8.35 12.37

RAML [33] 62.85 75.98 50.72 67.38 14.69 20.33
ROP [40] 45.00 52.59 35.28 47.11 8.46 13.00

D3still (Ours) 67.40 83.39 53.19 71.00 19.45 29.34
(D) Training with SwinTransformerV2 as the gallery netowrk

FitNet [31]

ResNet18 64× 64 SwinV2-T 256× 256

54.60 67.32 44.27 59.96 16.87 26.08
CCKD [27] 45.11 77.63 39.22 53.32 14.78 22.73
CSD [39] 17.36 18.80 32.81 46.45 4.80 7.11

RAML [33] 52.13 63.73 44.93 60.89 16.64 25.65
ROP [40] 22.38 22.99 23.47 30.01 7.95 12.24

D3still (Ours) 56.08 70.03 46.77 64.22 18.29 28.78

inconsistent pairwise similarity differential knowledge, and
consistent pairwise similarity differential knowledge.

From Table 3, it is evident that the asymmetric image
retrieval method significantly decreases the computational
burden of the query network compared to symmetric im-
age retrieval. Specifically, the asymmetric image retrieval
method reduces the inference consumption of the query net-
work from 12.99G FLOPs to 0.25G FLOPs, making it feasi-
ble to deploy the query network on edge devices.

Moreover, we observe that pairwise similarity knowledge
slightly improves the query network’s retrieval performance
because pairwise similarity knowledge partially maintains
retrieval ranking consistency between the query and gallery
networks. For example, on the SOP dataset [22], “Lf +
Lpair” outperforms “Lf” by 0.50% mAP and 0.39% R1.

Finally, the retrieval performance of the query network
has been significantly improved when decoupled pairwise
similarity differential knowledge is transferred from the
gallery network to the query network. For example, on
the SOP dataset [22], “Lf + Ldprd” outperforms “Lf” by a
large margin, i.e., 1.87% mAP and 2.63% R1. These results
demonstrate the effectiveness of our decoupled pairwise sim-
ilarity differential knowledge in asymmetric image retrieval.

4.4. Comparison with State-of-the-art Methods
In this section, we conduct a comparative experiment be-
tween the D3still framework and state-of-the-art methods to
assess the advantages of our proposed approach for asym-
metric image retrieval. To ensure a fair comparison, we
re-implement seven previous KD techniques for asymmetric
image retrieval, as they exhibit varying training configura-
tions. The detailed comparison analyses are presented below.

From Table 4, we can find that pure relationship dis-
tillation methods (i.e., RKD [24] and PKT [25]) that per-
form well in symmetric image retrieval cannot improve the
performance of the query network in asymmetric image
retrieval. This limitation arises from these methods only
transferring relationship knowledge while neglecting feature
knowledge, resulting in a misalignment of feature represen-
tation spaces between the two networks. For example, when
using ResNet18 as query networks and ResNet101 as gallery
networks, on the SOP dataset [22], RKD [24] only acquires
a very poor performance, i.e., 0.03% mAP and 0.01% R1.

Moreover, theoretically, a distillation method that simul-
taneously transfers feature representation knowledge and re-
lationship knowledge outperforms a pure feature distillation
method. However, CSD [39] and ROP [40] are significantly
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Figure 3. The influence of β value on mAP (%) performance.

worse than pure feature distillation methods (i.e., FitNet
[31]). For example, when using ResNet18 as query networks
and ResNet101 as gallery networks, on the SOP dataset [22],
CSD [39] is 12.05% mAP and 14.33% R1 lower than Fit-
Net [31]. This is because CSD [39] and ROP [40] fail to
decouple feature representation knowledge and relationship
knowledge, leading to feature representation knowledge tak-
ing a secondary role in the knowledge transfer process. Con-
sequently, they struggle to align the feature representation
space between the query network and the gallery network.
These results show that it is necessary to decouple feature
representation knowledge and relationship knowledge.

Finally, D3still significantly outperforms these distilla-
tion works (i.e., CSD [39] and RAML [33]) that transfer
pairwise similarity knowledge. For example, when using
ResNet18 as query networks and ResNet101 as gallery net-
works, on the MSMT17 dataset [37], D3still outperforms
RAML [33] by 1.82% mAP and 4.20% R1. Besides, our
method is superior to the best previous distillation method
by 0.96% mAP on In-shop [19], 1.67% mAP on SOP [22],
and 1.46% mAP on MSMT17 [37]. Even when widening
the semantic gap between the query network and the gallery
network, our method consistently achieves superior perfor-
mance. For example, when using ResNet18 as query net-
works and SwinTransformerV2-Tiny (SwinV2-T) [20] as
gallery networks, D3still exceeds RAML [33] by 1.84%
mAP and 3.33% R1 on the SOP dataset [22]. These exper-
iment results can demonstrate that our D3still framework
achieves state-of-the-art performances across all various net-
work structures on three benchmark datasets.

4.5. Hyper-parameter Analysis
The inconsistent pairwise differential knowledge weight
(i.e., β in Eq. (11)). The hyper-parameter β crucially regu-
lates inconsistent pairwise differential knowledge contribu-
tions in the distillation process. From Fig. 3, we observe a
slight impact on retrieval performance due to β.
The consistent pairwise differential knowledge weight
(i.e., γ in Eq. (11)). The hyper-parameter γ crucially reg-
ulates consistent pairwise differential knowledge contribu-
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Figure 4. The influence of γ value on mAP (%) performance.

tions in the distillation process. From Fig. 4, we observe that
γ does not significantly impact the retrieval performance.

5. Conclusion
In this paper, we introduce the Decoupled Differential Distil-
lation (D3still) framework to alleviate the problem of con-
ventional knowledge transfer with one-to-one pairwise simi-
larity, which improves the performance of the query network
suffering limited representation capacity. We decouple the
pairwise similarity differential matrix in the gallery domain
into three components, which focus on dealing with feature
information, consistent ranking information, and inconsis-
tent ranking information, respectively. With the more per-
tinent and relaxed learning objectives, our method reduces
the representational capability requirements of the query
network, leading to a significant improvement in accuracy.

Limitation. One notable limitation of our study is its
specific focus on ranking properties within the context of im-
age retrieval tasks, as well as the assumption of a significant
representational capacity gap between the teacher network
and the student network. Consequently, the applicability of
our method to other tasks, such as object detection or image
classification, may be limited.

Broader Impact. Our method highlights the effective-
ness of relative knowledge in the context of asymmetric
image retrieval, particularly when the query network has
limited representation capacity. This insight may inspire
further exploration of relative knowledge techniques tailored
to specific tasks within the research community.
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