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Abstract

Existing Siamese or transformer trackers commonly pose
visual object tracking as a one-shot detection problem, i.e.,
locating the target object in a single forward evaluation
scheme. Despite the demonstrated success, these trackers
may easily drift towards distractors with similar appear-
ance due to the single forward evaluation scheme lacking
self-correction. To address this issue, we cast visual track-
ing as a point set based denoising diffusion process and
propose a novel generative learning based tracker, dubbed
DiffusionTrack. Our DiffusionTrack possesses two appeal-
ing properties: 1) It follows a novel noise-to-target track-
ing paradigm that leverages multiple denoising diffusion
steps to localize the target in a dynamic searching man-
ner per frame. 2) It models the diffusion process using a
point set representation, which can better handle appear-
ance variations for more precise localization. One side
benefit is that DiffusionTrack greatly simplifies the post-
processing, e.g. removing window penalty scheme. Without
bells and whistles, our DiffusionTrack achieves leading per-
formance over the state-of-the-art trackers and runs in real-
time. The code is in https://github.com/VISION-
SJTU/DiffusionTrack.

1. Introduction

Visual Object Tracking (VOT) is one of the most fundamen-

tal computer vision problems with numerous applications.

Recent prevalent Siamese [5, 31, 51, 105, 117] and trans-

former [14, 17, 25, 106, 113] based tracking approaches

typically formulate visual tracking as a one-shot detection

problem with a single forward evaluation scheme, i.e., these

trackers first perform template-matching, and then predict

the location and size changes of the target in a single for-

ward pass. Despite the demonstrated success, regarding

tracking as one-shot detection raises two critical issues: 1)

Detectors emphasize the category-level difference to detect
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Figure 1. Compared to detection-based trackers with a single

forward evaluation scheme (a), e.g. SiamRPN [51], TransT [14],

OStrack [113], our proposed DiffusionTrack (c) localizes the tar-

get in a progressive diffusion manner. Furthermore, we tailor a

point set representation to model the target object for the track-

ing task, instead of adopting existing representations such as noise

maps for segmentation [13, 42] and random boxes for object de-

tection [11].Better viewed with zoomed in.

all potential objects from the background, while trackers fo-

cus on the instance-level difference to distinguish the target

from distractors with a similar appearance. 2) It is diffi-

cult for trackers to localize targets undergoing large appear-

ance variations and in complex scenarios in a single forward

pass. Even humans can be easily confused by similar dis-

tractor objects at first glance.

To address these issues, we reformulate the tracking

problem as a Noise-to-Target (N2T) process shown in

Fig. 1, which explicitly mimics the coarse-to-fine search-

ing mechanism of human vision. Our intuition is that we

should empower a tracker with the ability of self-correction,

by which it can progressively differentiate the target and

fully exploit the rich contexts from the background and dis-

tractors. Such a progressive searching manner is intuitively

superior to predicting the target size and location changes

in merely one forward pass. To this end, we construct a

denoising diffusion process, originally proposed for gen-

erative image tasks [20, 73, 79], to infer the target from

random hypotheses on the entire frame step by step (see

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.

19113



Fig. 1 (c)). In contrast to single forward detection based

trackers [14, 51, 113], our prediction stage progressively re-

fines the target hypotheses described by point sets through

multiple diffusion denoising steps, taking advantage of self-

correction to facilitate better differentiation of the target

from distractors.

In this work, we propose a novel tracking framework

dubbed DiffusionTrack. DiffusionTrack has an encoder-

decoder architecture, where the encoder extracts target-

aware features and the decoder predicts the target in a de-

noising diffusion process. Our decoder is a stack of multi-

ple diffusion layers which can refine target estimations se-

quentially. The detailed structure of the diffusion layer is

presented in Sec. 3.2. DiffusionTrack tackles the VOT task

with a diffusion model by casting object tracking as a gen-

erative task over the space of point sets in the search re-

gion. We decouple the training and inference stages: 1) At

the training stage, Gaussian noise is added to the ground

truths to obtain noisy point-set estimations. Then decoder

is trained to predict the ground truth without noise. 2) At

the inference stage, DiffusionTrack estimates the target by

reversing the learned diffusion process, which refines ran-

dom point sets to focus on the target. Notably, our Dif-

fusionTrack has two appealing merits: it uses an arbitrary

number of points to represent the target and arbitrary steps

to filter out background clutter in each frame. Thus, Diffu-

sionTrack can handle challenging scenarios and achieve a

dynamic trade-off between efficiency and effectiveness.

Extensive experiments on large-scale VOT benchmarks

show that our proposed DiffusionTrack outperforms recent

state-of-the-art trackers. For instance, under fair condi-

tions, DiffusionTrack-B256 obtains a 75.2% AO score on

the GOT-10k [39] dataset, surpassing OSTrack-256 [113]

by 4.2% and SeqTrack-B256 [15] by 1.0%. In summary,

the contributions of this work are as follows:

• We reformulate the tracking problem as a Noise-to-

Target process and are the first to adopt the diffusion

model to progressively predict the target per frame.

• We make the first attempt at introducing point-set repre-

sentation into the denoising diffusion model, which can

better handle appearance deformation and occlusions in

complex tracking scenarios.

• Our proposed DiffusionTrack method achieves state-of-

the-art results on four large-scale VOT benchmarks.

2. Related Work

Diffusion model. Diffusion models have recently demon-

strated remarkable results in fields including computer vi-

sion [3, 24, 30, 32, 38, 69, 73, 77, 78, 81, 110, 116],

nature language processing [2, 28, 55], audio process-

ing [40, 45, 50, 72, 89, 102, 109] and graph-related top-

ics [41]. In light of the great achievements of generative

models, recent works [11, 42] demonstrate the potential of

diffusion models for discriminative perception tasks. Some

pioneering works attempt to adopt the diffusion model for

image segmentation [1, 4, 7, 13, 29, 43, 99]. For example,

[13] adopts the Bit Diffusion model [12] for panoptic seg-

mentation [46]. DDP [42] concatenates a noise map with

a feature map, then input them into the decoder to predict

masks for semantic segmentation using the diffusion pro-

cess. DiffusionDet [42] successfully applies the diffusion

model to object detection by predicting bounding boxes

from noisy boxes. Inspired by the success of diffusion mod-

els, in this work, we develop a point set based diffusion

model to facilitate visual object tracking.

Visual object tracking. Siamese-based [16, 51, 52, 105,

117] and transformer-based [14, 17, 25, 56, 106, 113] track-

ers, which have attained great attention for their dominant

performance and speed, share a bunch of similarities with

object detection methods [9, 74, 75, 90]. The pioneer-

ing tracker SiamRPN [51] and its follow-up works [14,

16, 17, 25, 52, 56, 105, 106, 113, 117, 118] formulate vi-

sual tracking as a one-shot detection problem with a sin-

gle forward pass evaluation scheme. Advanced by mod-

ern visual foundation models [21, 33, 49, 58, 88, 97], pre-

diction design [35, 54, 75, 90, 120] and transformer mod-

els [21, 58, 70, 91, 97, 100], one-shot detection trackers

have achieved great success, but they may easily drift to-

wards distractors due to the single forward pass evalua-

tion scheme lacking self-correction. To address this, a

larger number of trackers explicitly exploit dynamically

optimized modules to handle challenging factors. Repre-

sentative tracking methods include Discriminative Correla-

tion Filter [6, 18, 19, 36, 60, 65], template update mecha-

nism [26, 103, 106, 111, 115], model fine-tuning [53, 67,

94], cascade structure [22, 93, 107] and the recent autore-

gressive decoder [15, 104]. In contrast to these dynami-

cally optimized modules, we reformulate visual tracking as

a Noise-to-Target process and resort to diffusion models on

point set to localize the target per frame progressively.

Point set object representation. Traditional detectors or

tracking methods [51, 74, 75, 90, 105, 120] primarily rep-

resent objects using axis-aligned bounding boxes, which

are convenient to annotate with little ambiguity. How-

ever, these methods may encounter difficulties detecting

targets undergoing appearance deformation and severe ob-

ject occlusions. The RPT [62] tracker is the pioneering

work to model the target state with a set of representa-

tive points, which borrows the prediction head consisting

of two-stage convolutional layers from the Reppoints de-

tector [112]. Inspired by point set based approaches in vi-

sion tasks [62, 63, 112, 120], we adopt point set to model

the denoising diffusion process, which can better handle

challenging scenarios. The difference is that previous point

set based detectors or trackers empirically design reference
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Figure 2. Architecture of DiffusionTrack. It has an encoder-decoder structure. The encoder extracts target-aware features and feeds search

features into the decoder. The decoder, comprising of a stack of diffusion layers, refines the point set groups to localize the target.

points [112] in a per-pixel manner, while our point sets are

arranged to sample the entire image region to discriminate

the instance-level differences explicitly. To the best of our

knowledge, no prior art has adopted point set to represent

objects for diffusion models.

3. Method
In this section, we first introduce the preliminaries on vi-

sual tracking and diffusion model. Then, we present the

proposed Noise-to-Target tracking paradigm and the model

architecture of DiffusionTrack. Finally, we depict the train-

ing and inference details of DiffusionTrack.

3.1. Preliminaries

Visual tracking. Given state bz of a target in template im-

age z, the objective of visual tracking is to localize target b
from the continuous input image x, where b denotes an axis-

aligned bounding box. The mainstream tracking paradigm

aims to learn a deep tracking model f such that:

b = f(z, x, bz), (1)

where the learned model f can predict the location and size

changes of the target in a single forward evaluation, given

an image pair (template z and search image x) as input at

both the training and inference stages.

Diffusion model. Diffusion models [37, 82, 84, 85] are

generative likelihood-based models inspired by nonequi-

librium thermodynamics [85, 86]. These models define a

Markovian chain of diffusion forward process by gradually

adding noise Ns to sample data i. The forward noise pro-

cess is defined as:

q(it|i0) = N (it|
√
ᾱti0, (1− ᾱt)Ns). (2)

The forward process transforms data sample i0 into a latent

noisy sample it, t ∈ {0, 1, ..., T}, by adding noise to i0.

ᾱt :=
∏t

s=0 αs =
∏t

s=0(1−βs) and βs represents the noise

variance schedule [37]. During training, a model fθ(it, t)

is trained to predict the true data sample i0 given a noisy

sample it at diffusion step t by minimizing the �2 loss [37]:

Ltrain =
1

2
||fθ(it, t)− i0||2. (3)

At the inference stage, data sample i0 is predicted from

noise iT with model fθ in an iterative manner [37, 84], i.e.,

iT → iT−Δ → ... → i0, where Δ can be dynamically

determined. More details can be found in the appendix.

3.2. DiffusionTrack framework

We first depict our Noise-to-Target scheme and then in-

troduce the model architecture. The overall framework

of DiffusionTrack is presented in Fig. 2. It consists of a

transformer-based encoder and a diffusion-based decoder.

The target state is described by point sets.

Noise-to-target tracking paradigm. We describe how

the visual tracking problem is posed as a diffusion pro-

cess. In the tracking process, we adopt a group of point

sets GN to estimate the target state b (location and size),

where GN = {p1,p2, ...,pN} and p is a group of point

sets {(xk, yk)}mk=1. Each point set p extracts target pro-

posal from search region. The goal of the Noise-to-Target

paradigm is to learn a tracking model f which can gradually

refine the target estimation through a total of T diffusion

steps with an interval of ΔT :

GT
N

f−→ GT−ΔT
N

f−→ ...
f−→ G0

N , (4)

where diffusion step T → 0 depicts the target estimation

changes from an absolute random state to the highest cer-

tainty. Thus, the tracking process based on diffusion model

f can be formulated as:

ΔGt
N , Ct

N = f(z, x, t, Gt−Δt
N ),

Gt
N = Gt−Δt

N ⊕ΔGt
N ,

(5)

where model f refines the current estimation by knowing

the diffusion step index t and the previous-step estimation
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Figure 3. Details of a diffusion layer. It consists of three components: 1) Global instance layer: it produces target proposals in a generative

style and models the instance-level relationship. 2) Dynamic conv layer: it performs dynamic convolution with instance features. 3)

Refinement layer: it refines the point sets and estimates corresponding confidence scores.

Gt−Δt
N ; ⊕ is element-wise summation. Ct

N is the corre-

sponding confidence score for Gt
N . Then, the final target

state b as tracking output can be obtained by:

BN = Γ(Gt
N ),

b = Bî, s.t.̂i = argmax{Ci}Ni=1,
(6)

where Γ is a differentiable function that transforms point

sets into box format. We adopt Min-Max [112] for the func-

tion Γ in this work. Please refer to the appendix for details.

Encoder. We adopt a plain vision transformer (ViT) [21]

as the encoder and encode the search and template images

jointly [15, 113]. The encoder extracts the features of the

search and template images jointly and learns feature-level

correspondence. We first split the template and search im-

ages into patches {zNz, xNx}, before projecting them into

feature tokens:

[fz, fx] = [Ex1, . . . ,ExNx
,Ez1, . . . ,EzNz

], (7)

where E is a linear projection layer. The features {fz, fx}
are encoded in a joint style:

f i
zx = Concat(f i

z, f
i
x), i ∈ {0}

f i
zx = BLKi(f i−1

zx ), i ∈ {1, l} (8)

where {fz, fx} are first concatenated at the beginning

and jointly encoded in the multiple transformer blocks

{BLKi, 1 ≤ i ≤ l}. Only the features of the search im-

age fx are fed into the decoder. Here, we omit position

encoding for simplicity.

Decoder. The decoder of DiffusionTrack is a stack of

diffusion layers. As shown in Fig. 3, each diffusion layer

consists of three components: global instance interaction, a

dynamic convolutional layer, and a refinement layer. Each

diffusion layer takes a total of N point sets Gt−Δt
N from

previous diffusion step t − Δt to crop instance features

F ins
N = {f ins

0 , f ins
1 , ..., f ins

N } through RoI pooling [34, 75], af-

ter which the global relationships are modeled by a Simpli-

fied Self-Attention (SSA) layer:

F ins
N = RoI[fx,Γ(G

t−Δt
N )],

F ins
N := SSA(F ins

N ),
(9)

where F ins
N includes N instance-level embeddings, and the

self-attention layer removes the linear projection layer in the

original Multi-head Attention layer [21, 91]. In the refine-

ment layer, we embed the diffusion step information into

the instance embedding and predict the target state through

the dynamic convolutional layer:

F ins
N := DyConv[GAP(F ins

N ), F
ins]
N ,

F ins
N := F ins

N ⊕ ToEmbed(t),
(10)

where GAP and ⊕ denote global average pooling and

element-wise summation, respectively; ToEmbed is an em-

bedding network that transforms a step index t from scalar

into a feature vector; DyConv[A,B] denotes convolution

between input B and convolution kernel A. Eventually, we

predict the refinement and confidence scores of point-sets:

ΔGt
N = φreg(F

ins
N ), Ct

N = φcls(F
ins
N ) (11)

where {φreg, φcls} are two light-weight convolutional net-

works; ΔGt
N denotes the relative offsets to refine Gt

N and

Ct
N is the confidence score. The outputs can be used for the

next layer or iterative evaluation. Gt
N is transformed to box

format for training supervision.

The difference between our decoder and that of Diffu-

sionDet [11] is as follows: 1) DiffusionDet [11] predicts the

category label for object detection, while our decoder only

needs to perform binary classification. 2) DiffusionDet [11]

has fixed layers to formulate the decoder, while our decoder

can exit at early layers for speed-up (see Sec. 3.4). 3) Our

decoder refines the point sets to gradually localize the tar-

get, while DiffusionDet [11] predicts the bounding boxes

and category labels of objects in the image.

3.3. Training

In this section, we describe the process of training that train

the tracking model f to predict the ground truth of target

state b from random noisy conditions. The training proce-

dure for DiffusionTrack is shown in Algorithm 1. During

training, the tracking model f is trained to predict ground

truth b0 given its noisy version bt sampled from a diffusion

process q(b0|bt) at diffusion step t. Each noisy version bt
at diffusion step t models the tracking estimation under dy-

namic tracking scenarios.
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Algorithm 1 Training algorithm

Input: image pair {z, x}, GT box b.

Output: training loss

1: Extract search features fx ( Eq. 7 and Eq. 8).

2: Initialize the target estimations: (N − 1) point sets sampled

from random distribution. GNe
N−1 ← Rand(N − 1)

3: Combine noisy target estimations with GT box b. GNe
N ←

Concat(Box2Point(b), GNe
N−1

4: Construct noise signal and choose step index t. t ←
Randint(0, T ), Ne ← Randn(mean = 0, std = 1)

5: Signal scaling. GNe
N ← Norm(GNe

N )
6: Corrupt target estimation GNe

N input with noise and step index

t. GN t
N ← Schedule(t)×GNe

N + (1− Schedule(t))×Ne
7: Predict results bpred using decoder ( Eq. 5 and Eq. 6).

8: Obtain the training loss L (Eq. 12).

Point sets with random noise. We combine noisy point

sets Ne and the ground truth b together to construct the

input GN t
N for the training stage. The noise scale for

each time step t is controlled by a pre-defined monoton-

ically decreasing schedule proposed in [12, 68]. Another

hyper-parameter is the scale ratio between ground truth and

noise ( Signal-to-Noise Ratio). We empirically find that the

Gaussian noise and setting larger SNR (= 1) work best for

diffusion-based tracking. More discussions can be found in

Sec. 4.3 and the appendix.

Training loss. The diffusion decoder takes noisy point sets

Gt
N as input, and predicts N confidence scores as well as

relative movement of corresponding points. We apply the

set prediction loss on the set of N predictions and assign

multiple predictions to ground truth by selecting the top K
(= 5) predictions according to the IoU [114] scores. The

overall loss function of DiffusionTrack is as follows:

L =

L∑

i=1

(Li
cls + λiouL

i
iou + λL1

Li
1). (12)

where Lcls is the weighted focal loss [54] for classifica-

tion, L1 and generalized IoU loss [76] Liou are employed

for box regression, λiou and λL1
are the weighting values.

We adopt intermediate supervision [11] for total L diffusion

layers.

3.4. Inference

The inference procedure of DiffusionTrack is a denoising

sampling process from noise to target. Starting from ran-

dom point set estimations, the tracking model progressively

refines point sets to focus on the target, as shown in Algo-

rithm 2. We slightly abuse of notations for clarity.

Dynamic inference. We introduce two dynamic settings

of DiffusionTrack during inference: the first is the arbitrary

number of target estimations N , and the second is the num-

ber of iterations τ . In contrast, previous detection-based

Algorithm 2 Inference algorithm (decoder only)

Input: target-aware search features fx, decoder with L diffusion

layers DecoderL, evaluation step τ , total diffusion steps T .

Output: final prediction result bτ

1: Initialize target estimation G
1|1
N from random distribution.

2: for i = 1, 2, ..., τ do
3: Obtain diffusion step index t for current evaluation (

Eq. 4). t ← i ∗Δτ,Δτ ← T/τ
4: if i > 1 then
5: Replace current estimations with previous high-

scoring point sets. G
t|i
N ← Renew(G

t|i
N , G

(t−Δt)|(i−Δτ)
N )

6: end if
7: Predict results from all L diffusion layers (Eq. 5).

{Gt|i
N , C

t|i)
N }Ll=1 ← DecoderL(fx, i, Gt|i

N )
8: Vote results. bi ← Point2Box(Vote({Gt

N , Ct
N}Ll=1))

9: Refine target estimation via DDIM for the next evaluation.

G
(t+Δt)|(i+1)
N ← DDIM(G

t|i
N , t,Δt)

10: end for

trackers only predict the target in a single forward evalu-

ation. For each evaluation step, previous target prediction

G
t|(τ−1)
N is sent to DDIM [83] for producing the noisy ver-

sion G
t|τ
N input for the next step. It is feasible to send the

predicted boxes G
t|(τ−1)
N without DDIM [83] to the next

step. But doing so neglects multiple diffusion step training,

leading to sub-optimal results.

Ensemble prediction. During the inference of each de-

coder layer and every evaluation step, the predicted boxes

can be coarsely categorized into two types: predictions with

high confidence scores and those with low scores. The high-

scoring predictions are properly localized at the correspond-

ing target, while the low-scoring ones mostly focus on the

background. Motivated by these observations, we adopt the

renewal strategy to replace these low-scoring estimations

with random point sets and revive the high-scoring predic-

tions, thus promoting the prediction in the next layer/step.

Moreover, for multiple high-scoring estimations, we use the

voting strategy to filter out the distractor objects so that the

target can be localized more precisely.

Early exit. As each layer of the proposed decoder can gen-

erate predictions independently, the model inference of Dif-

fusionTrack can exit at an early stage for speed-up. A sim-

ple threshold strategy can be applied to stop the inference

when the maximum confidence score is larger than a pre-

defined threshold value. More details are in Sec. 4.3.

4. Experiments
In this section, we first describe the implementation details.

We then present extensive ablation studies of our method

and compare it with SOTA trackers. Besides, we also show-

case qualitative results and discuss the limitations of the

proposed method.
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Table 1. State-of-the-art comparisons on four large-scale benchmarks. We add a symbol * over GOT-10k to indicate that the corresponding

models are only trained with the GOT-10k training set. Otherwise, the models follow the full-dataset training presented in Sec. 4.1. N2T

denotes our Noise-to-Target tracking framework. (1)&(2) denotes the number of iterative evaluation. The top three results are highlighted

with red, blue and green fonts, respectively.

Method
LaSOT [23] TNL2K [98] TrackingNet [66] GOT-10k* [39]

AUC PNorm P AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

N
2

T

DiffusionTrack-B256 (1) 70.8 79.8 76.7 56.4 72.5 57.3 83.8 88.2 82.1 74.8 85.4 72.0

DiffusionTrack-B256 (2) 70.7 80.0 77.3 56.5 72.6 57.3 83.6 88.1 82.0 75.2 85.9 72.0

DiffusionTrack-L256 (1) 72.3 81.8 79.1 56.8 72.8 57.7 85.2 89.6 84.8 74.7 85.6 71.8

D
et

ec
ti

o
n

-B
as

ed

GRM-256 [27] 69.9 79.3 75.8 - - - 84.0 88.7 83.3 73.4 82.9 70.4

ROMTrack-B256 [8] 69.3 78.8 75.6 - - - 83.6 88.4 82.7 72.9 82.9 70.2

OSTrack-B256 [113] 69.1 78.7 75.2 55.9 - - 83.1 87.8 82.0 71.0 80.4 68.2

SimTrack-B224 [10] 69.3 78.5 - 55.6 - - 82.3 86.5 - 68.6 78.9 62.4

Mixformer-22k [17] 69.2 78.7 74.7 - - - 83.1 88.1 81.6 70.7 80.0 67.8

AiATrack 69.0 79.4 73.8 - - - 82.7 87.8 80.4 69.6 63.2 80.0

UTT [61] 64.6 - 67.2 - - - 79.7 - 77.0 67.2 76.3 60.5

CSWinTT [87] 66.2 75.2 70.9 - - - 81.9 86.7 79.5 69.4 78.9 65.4

STARK [106] 67.1 77.0 - - - - 82.0 86.9 - 68.8 78.1 64.1

SwinTrack-224 [56] 67.2 - 70.8 - - - 81.1 - 78.4 71.3 81.9 64.5

RTS [71] 69.7 76.2 73.7 - - - 81.6 86.0 79.4 - - -

Unicorn [108] 68.5 - - - - - 83.0 86.4 82.2 - - -

SLT [44] 66.8 75.5 - - - - 82.8 87.5 81.4 67.5 76.5 60.3

SBT [25] 66.7 - 71.1 - - - - - - 70.4 80.8 64.7

TransT [14] 64.9 73.8 69.0 50.7 - - 81.4 86.7 80.3 67.1 76.8 60.9

SiamAttn [96] 56.0 64.8 - - - - 75.2 81.7 - - - -

SiamBAN [16] 51.4 59.8 - 40.0 - 41.7 - - - - - -

SiamRPN++ [52] 49.6 56.9 49.1 41.3 - 41.2 73.3 80.0 69.4 51.7 61.6 32.5

D
y

n
am

ic
al

ly
O

p
ti

m
iz

ed

SeqTrack-B256 [15] 69.9 79.7 76.3 54.9 - - 83.3 88.3 82.2 74.7 84.7 71.8

KeepTrack [64] 67.1 77.2 70.2 - - - - - - - - -

AutoMatch [119] 58.3 - 59.9 - - - 76.0 - 72.6 65.2 76.6 54.3

TrDiMP [95] 63.9 - 61.4 - - - 78.4 83.3 73.1 68.8 80.5 59.7

ToMP [65] 68.5 79.2 73.5 - - - 81.5 86.4 78.9 - - -

DSTrpn [80] 43.4 54.4 - - - - 64.9 - 58.9 - - -

Ocean [118] 56.0 65.1 56.6 38.4 - - - - - 61.1 72.1 47.3

SiamR-CNN [92] 64.8 72.2 - - - - 81.2 85.4 80.0 64.9 72.8 59.7

DiMP [6] 56.9 65.0 56.7 - - - 74.0 80.1 68.7 61.1 71.7 49.2

ATOM [19] 51.5 57.6 50.5 40.1 - 39.2 70.3 77.1 64.8 55.6 63.4 40.2

4.1. Implementation Details

Network architecture and training. Our DiffusionTrack

adopts a ViT-Base [21] as the encoder with pretrained

weights from DropTrack [101]. More details about the en-

coder are in the appendix. We use COCO [57], LaSOT [23],

GOT-10k [39] and TrackingNet [66] as the training datasets.

The total batch size for training on 4 NVIDIA A800 GPUs

is set to 64. The template and search image are both cropped

as 256×256. The total number of diffusion steps and target

estimations are set to 1000 and 50, respectively. We train

the model with AdamW [59] optimizer, set the initial learn-

ing rate for the backbone to 4× 10−5 and other parameters

to 4 × 10−4. The total number of training epochs is set to

300 with 60k image pairs per epoch. The learning rate is

decreased by a factor of 10 after 240 epochs. Other settings

follow [15], and more details are in the appendix.

Online inference. During inference, each diffusion layer

produces a 5D vector Ti = (c, x1, y1, x2, y2) for each tar-

get estimation gli, where c represents the confidence score of

target classification, and (x1, y1, x2, y2) denotes the point

set. Afterward, we use NMS [75] processing to filter out

aggregated prediction results from all layers and choose the

target estimation with maximum confidence score.

4.2. Comparison to state-of-the-arts

We compare our proposed DiffusionTrack with SOTA

trackers on four large-scale VOT benchmarks and one chal-

lenging VOT dataset. More results are provided in the ap-

pendix.

GOT-10k. GOT-10k [39] is a recent large-scale dataset

containing over 10k videos for training and 180 for test-

ing. GOT-10k has a zero overlap of object classes between

the training and testing subsets. We strictly follow the offi-

cial protocol, which forbids external datasets for training. In

Tab. 1, under similar conditions, our base model with two it-

erative steps obtains a 75.2% AO score, outperforming exit-

ing SOTA trackers which belong to the other two categories

by a significant margin. DiffusionTrack also ranks first on

the other two metrics: 85.9% in SR0.5 and 72.0% in SR0.75.

LaSOT. LaSOT [23] is a large-scale dataset with high-

quality box annotations, and its testing subset has

280 videos with an average video length of 2448

frames. As shown in Tab. 1, DiffusionTrack-L256

achieves the top-rank AUC score (72.3%) and Preci-

sion score (79.1%), surpassing the SOTA trackers Se-

qTrack [15]/GRM [27]/ROMTrack [8] by 2.4/2.4/3.0
points in terms of AUC score. Under fair conditions,
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Number AO SR75 SR50

2 74.4 85.4 71.6
3 74.2 85.1 71.2

5 73.4 83.9 70.9

7 73.7 84.6 70.8

(a) Point set group. Set-

ting 2 points works best.

Scale AO SR75 SR50

0.1 68.5 78.8 63.9

1.0 74.4 85.4 71.6
2.0 72.8 82.9 70.2

3.0 71.9 81.7 68.1

(b) Scaling factor. The

best scaling factor is 1.

Scale AO SR75 SR50

Uniform 72.6 83.5 69.8

Gaussian 73.9 84.5 70.9
Origin 71.0 82.1 68.3

(c) Noise schedule. Gaus-

sian noise works best.

Depth AO SR75 SR50 Speed

1 71.0 81.1 66.8 45

2 72.2 82.3 69.8 42

4 73.0 83.3 70.1 38

6 74.3 85.8 72.1 31
12 71.4 81.7 67.8 25

(d) Decoder depth L. Six lay-

ers work best.

Thres. AO SR75 SR50 Speed

0.5 72.3 84.0 69.5 38

0.6 71.7 83.0 68.9 37

0.7 73.0 84.1 70.3 36

0.8 73.7 84.3 70.5 35
0.9 72.9 83.6 70.3 33

default 74.1 84.6 71.3 30

(e) Early exit. Threshold =
0.8 achieves the best AO.

Table 2. Ablation experiments with DiffusionTrack on GOT-10k [39] test set. We report the performance with 1 iteration step in (a), (b),

(c), (d), and (e). If not specified, the default settings are: the number of points per group is 2; the scaling factor is set to 1; the noise

schedule is Gaussian noise; the decoder has a depth of 6; training and test settings follow the official GOT-10k [39] protocol.

Figure 4. VOT2022 [48] results of our DiffusionTrack-B256(1)

with Alpha-Refine [107] and SAM [47] model.

DiffusionTrack-B256 (2) also achieves a better AUC score

(70.7%) than OStrack [113] and SimTrack [10].

TrackingNet. TrackingNet [66] is a recent large-scale

tracking benchmark consisting of 511 sequences for test-

ing. The evaluation is performed on the online server. Tab. 1

shows that, compared with SOTA models, DiffusionTrack-

L256 ranks first with an AUC score of 85.2% and a normal-

ized precision of 89.6%.

TNL2k. TNL2k [98] is a recently released large-scale

dataset with 700 challenging video sequences. The test sub-

set of TNL2k contains 1598 video tests which can exten-

sively evaluate the trackers. The results in Tab. 1 show that

our DiffusionTrack-L256 surpasses all other trackers by a

large margin and achieves the top-ranked performance of

56.8% AUC, outperforming Seqtrack by 1.9%. Our base

model DiffusionTrack-B256 (1) also outperforms previous

trackers by a notable margin on all three metrics under fair

comparisons, i.e. equal image resolution and model size.

VOT2022. VOT2022 [48] is a challenging benchmark,

which presents new video sequences yearly. When

equipped with Alpha-Refine and SAM model, our method

achieves competitive results as shown in Tab. 4.

4.3. Ablation Studies
We conduct detailed ablation studies with an extensive anal-

ysis of the effectiveness of our DiffusionTrack.

Point set group. Point sets are vital to generating target es-

timations to localize the target. We first investigate the im-

pact of different numbers of points per group n. In Tab. 2a,

n = 2 has almost the same performance (74.4 vs.74.2)

as n = 3 , and further increases in the number of points

(n = {3, 5, 7}) leads to degraded performance. We infer

that the degeneration may be caused by a lack of effective

Figure 5. Ablations on the evaluation steps and the target proposals

between training and testing. [Ntrain, Ntest] refer to the number

of proposals for the two stages. Green bins denote speed.

supervision for an excessive amount of points during train-

ing. Thus, we adopt n = 2 for a trade-off between effi-

ciency and effectiveness.

Signal scale. The signal scaling factor controls the ratio

between random noisy estimations and ground truths in the

diffusion process. In Tab. 2b, we identify one as the optimal

scaling factor. When the scaling factor is too small, i.e., 0.1,

we observe a significant performance drop (74.4 to 68.5),

indicating that the ground truth is easily overwhelmed by

a large magnitude of noise. However, further raising the

scaling factor does not bring continuous performance gains.

We argue that an excessive magnitude of the ground truth

signal may encourage the model to learn a shortcut during

training, thereby undermining its generalization ability.

Noise schedule. We compare the effectiveness of differ-

ent noise schedules for DiffusionTrack in Tab. 2c. Com-

pared to Uniform and Origin noise cases, the model using

the Gaussian random noise schedule achieves notably better

performance (73.9 vs. 72.6 vs. 71.0). This is attributed to

Gaussian noise’s mechanism of simulating the distribution

of the target location in realistic scenarios, which prompts

the tracking model to learn stronger denoising capabilities.

More details can be found in the appendix.

Decoder depth. We study the effect of decoder depth in

Tab. 2d and observe that a proper depth value is essential to

the performance. The model performance improves as the

depth increases within a reasonable range. Thus, we finally

adopt a decoder with 6 layers.

Early exit. As each layer of the decoder can generate pre-

dictions independently, we show that DiffusionTrack can

achieve a dynamic trade-off between accuracy and effi-

ciency in Tab. 2e. We adopt a simple threshold strategy that
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Figure 6. Ablations on the ensemble prediction strategy. “E” de-

notes estimations from all decoder layers that vote to the final re-

sult. “R” denotes high-scoring estimations from the previous layer,

which replace the random target estimation for the next layer. The

Baseline setting adopts two strategies. To prevent overfitting, we

use the model checkpoint from the 50th epoch for evaluation.

suspends the inference process when the maximum confi-

dence score of the target estimation exceeds a pre-defined

threshold value. DiffusionTrack can be 16.7% faster while

only sacrificing 0.4% AO score. It enlightens us that a

dynamic network architecture can exit early for speed-up

when handling easy cases.

Multiple iterative evaluations. We further investigate the

impact of varying numbers of evaluation steps, and corre-

sponding results are illustrated in Fig. 5 and Fig. 6. Our

findings indicate that DiffusionTrack exhibits consistent

performance improvements as the number of iterations in-

creases from 1 to 2. However, the performance gains al-

most saturate when the the number of evaluation steps is

increased further. We suspect that the model is overfitting

since the AO performance has already achieved 74%. Thus,

in Fig. 6, we adopt a weak model which stops its train-

ing at an earlier stage. Substantial gains are observed even

when the number of steps is increased to 6, e.g., the Base-

line case has its AO raised from 61.1% to 64.1% . These

results validate the superiority of our progressive tracking

paradigm, comparing to non-iterative detection based track-

ers. In Fig. 5, we also search for the optimal target estima-

tion number (= 50) and find that the tracking model per-

forms better when the estimation numbers {Ntrain, Ntest}
in training and testing are consistent.

Ensemble prediction. We study the effects of the two

proposed ensemble strategies, i.e., voting and renewal, on

boosting tracking performance. In Fig. 6, the model case

deprived of both two strategies suffers from a dramatic per-

formance drop (61.1 % to 25.1%), revealing that the model

loses the ability to perform multiple evaluations. On the

contrary, using either of the two strategies alone leads to

consistent performance gains as the number of iteration

steps increases. Moreover, both strategies complement each

other and, when used jointly, result in improved perfor-

mance compared to when used individually.

4.4. Qualitative Analysis
In Fig. 7, we visualize the learned point sets and the cor-

responding prediction results of several representative lay-

ers (1th, 2th, 6th). It can be observed that learned point

sets tend to be located at extreme points of objects progres-

Figure 7. Visualization of some representative diffusion layers.

We select easy, medium, and hard cases to see the results of each

layer. The target estimations whose confidence scores are under

0.1 are filtered out. Better viewed with zoomed in.

Model Arch. Threshold AO(%) Speed(FPS)

(E1 +D1)× 1 0.8 74.1 30

(E 1
3
+D 1

3
)× 3 0.8 72.3 45

Table 3. Early exit in various model architecture. AO Performance

is evaluated on GOT-10k [39] benchmark.

sively. On the easy and medium cases, point sets can easily

localize target precisely in the early layers. However, in the

hard case, the early diffusion layers (1th, 2th) still generate

ambiguous points that may lead to erroneous results. Af-

terward, the latter layer (6th) refines the ambiguous points

to focus on the target. The visualizations verify the effec-

tiveness of point set diffusion and its flexibility in handling

complex scenarios.

4.5. Limitation
The speed-up in Tab. 2e is relatively small. Thus, we

construct an interleaved encoder-decoder structure ((E 1
3
+

D 1
3
)×3), which stacks 4 encoder layer and 2 decoder layer

as repetitive unit. u In Tab. 3, though model (E4+D2)×3
can raise speed notably (30 to 45 FPS), the performance

drop is still not satisfying. The architectural dynamics for

better trader-off is worth investigating in future work.

5. Conclusion
In this work, we are the first to utilize diffusion-based mod-

els for VOT, by reformulating visual tracking as a Noise-

to-Target process. DiffusionTrack enjoys several dynamic

properties and can gradually localize the target from the

background. We further apply point sets into the diffusion

process, which can effectively handle complex tracking sce-

narios. Our DiffusionTrack achieves SOTA results and may

attract others to develop a generative tracking paradigm.
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