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Abstract

Visual Instruction Tuning represents a novel learning
paradigm involving the fine-tuning of pre-trained language
models using task-specific instructions. This paradigm
shows promising zero-shot results in various natural lan-
guage processing tasks but is still unexplored in vision emo-
tion understanding. In this work, we focus on enhancing the
model’s proficiency in understanding and adhering to in-
structions related to emotional contexts. Initially, we iden-
tify key visual clues critical to visual emotion recognition.
Subsequently, we introduce a novel GPT-assisted pipeline
for generating emotion visual instruction data, effectively
addressing the scarcity of annotated instruction data in
this domain. Expanding on the groundwork established by
InstructBLIP, our proposed EmoVIT architecture incorpo-
rates emotion-specific instruction data, leveraging the pow-
erful capabilities of Large Language Models to enhance
performance. Through extensive experiments, our model
showcases its proficiency in emotion classification, adept-
ness in affective reasoning, and competence in comprehend-
ing humor. The comparative analysis provides a robust
benchmark for Emotion Visual Instruction Tuning in the era
of LLMs, providing valuable insights and opening avenues
for future exploration in this domain. Our code is available
at https://github.com/aimmemotion/EmoVIT.

1. Introduction

Visual emotion recognition, a key area within artificial in-
telligence and computer vision, aims to predict human emo-
tions based on visual cues such as facial expressions and
body language. This technology is essential in bridging
the gap between human affective states and machine under-
standing. Its diverse applications [19, 20, 23, 24], spanning

Figure 1. Illustration of the importance of instruction-following abil-
ity in visual emotion understanding.

from improving human-computer interaction to aiding in
mental health assessment, underscore its significance. Ac-
curate emotion recognition is vital for enhancing user expe-
rience and ensuring information security, as it helps prevent
emotional manipulation and misinformation [13]. Develop-
ing robust emotion recognition models is not only a techni-
cal challenge but also a step towards more empathetic and
intuitive AI systems, paving the way for more efficient and
natural human-computer interactions.

The AI community has recently shown a growing
interest in developing foundational vision models, e.g.,
Flamingo [1], LLaVA [8], BLIP2 [5]. These models ex-
cel in open-world visual understanding, tackling several vi-
sion tasks such as classification, detection, segmentation,
and captioning. In contrast, current large-scale multimodal
models are still in its infancy when it comes to emotion per-
ception [7]. As illustrated in Fig. 1, when directly query
the GPT-4 [11] about the emotional category of an image,
the model tends to provide incorrect responses. However,
the model delivers accurate responses when provided with
revised instructions. To fully leverage the potential of ex-
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isting vision-based large models, our approach is based on
the concept of Instruction Tuning. This effective strategy
is aimed at teaching language models to follow natural lan-
guage instructions, a technique proven to enhance their gen-
eralization performance across unseen tasks [2, 8, 18].

In this work, we focus on developing the model’s profi-
ciency in understanding and following instructions related
to emotional contexts. This approach highlights the impor-
tance of fine-tuning the model’s instruction-following ca-
pabilities, enabling it to interpret and respond to emotional
content effectively. This is achieved by leveraging its pre-
existing knowledge base, thereby eliminating the necessity
for an emotion-specific architectural framework.

To address the notable challenges encountered in In-
struction Tuning for visual emotion recognition, especially
the lack of specific instruction data, we introduce a novel
self-generation pipeline explicitly crafted for visual emo-
tion recognition by using GPT-4 [11]. This innovative
pipeline excels in generating a diverse array of (image, in-
struction, output) instances, thereby notably enhancing the
dataset with a more extensive and task-oriented variety of
examples. This approach not only overcomes the challenge
of limited data availability but also reduces the dependence
on human labor. Therefore, it streamlines the process, en-
abling more efficient and effective emotion recognition.

Additionally, Instruction Tuning has been criticized for
its emphasis on surface-level features like output patterns
and styles, rather than achieving a profound comprehen-
sion and assimilation of tasks [26]. To tackle this issue
and enhance the diversity and creativity of instruction data,
our dataset includes instructions that demand complex rea-
soning, going beyond basic question-and-answer formats.
This is further enriched by incorporating visual cues such
as brightness, colorfulness, scene type, object class, facial
expressions, and human actions. These aspects are pivotal
in fostering a nuanced comprehension of visual emotions,
thus allowing the model to generate more precise and con-
textually appropriate interpretations [24].

After generating the emotion visual instruction data,
we propose an Emotion Visual Instruction Tuning
(EmoVIT) framework, leveraging the foundation of In-
structBLIP [2]. This framework incorporates an emotion-
centric, instruction-aware module that proficiently guides
Large Language Models (LLMs) in assimilating the nu-
ances of emotion instructions. Our work signifies a
paradigm shift, presenting a new era of instruction-based
learning for visual emotion understanding that relies less
on explicit training data. Remarkably, as shown in Fig. 2,
our approach requires almost 50% of the training data typi-
cally needed yet exceeds the performance of previous visual
emotion recognition methods and popular Visual Instruc-
tion Tuning methods.

Our contributions can be summarized as follows:
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Figure 2. Performance comparison on EmoSet test set [24] (Accu-
racy %).

• We explore the potential of the Visual Instruction Tuning
paradigm for emotion comprehension and introduce the
concept of Emotion Visual Instruction Tuning.

• After thoroughly considering the unique characteristics
of visual emotion recognition, we develop a novel GPT-
assisted pipeline for generating emotion visual instruc-
tion data. This approach effectively bridges the gap in
available annotated instruction data within this specific
domain.

• Building upon the foundation of InstructBLIP, our
EmoVIT architecture integrates emotion domain-specific
instruction data, harnessing the robust capabilities of
LLMs to boost performance. The extensive experiments
demonstrate our model’s proficiency in emotion classi-
fication, affective reasoning, and comprehension of hu-
mour.

2. Related Work
2.1. Visual Emotion Recognition

A key challenge in visual emotion recognition is bridging
the gap between an image’s visual cues and the emotions
it portrays [12, 21, 25]. While traditional efforts, e.g., Xu
et al.’s multi-level dependent attention network [21], fo-
cus on visual models for emotional feature learning, recent
advancements like EmoSet [24] offer rich emotion-laden
datasets with 3.3 million images. The rise of multimodal
models, such as the GPT series [11], has further propelled
Vision-Language Recognition. However, fully leveraging
these models in emotion recognition is an area ripe for ex-
ploration. Our work leads the way in utilizing large-scale
models for Emotion Visual Instruction Tuning.
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Figure 3. The comparison of different visual tuning paradigms.

2.2. Visual Instruction Tuning

Current Large Language Models (LLMs) have extensive
knowledge bases, but their effectiveness depends on accu-
rately interpreting human instructions due to a mismatch
between training goals and user expectations. LLMs are
trained to minimize prediction errors, whereas users expect
helpful and safe instruction-following. Instruction Tuning
addresses this by teaching models to follow natural lan-
guage instructions, enhancing generalization to new tasks.
FLAN [18] demonstrated that training a large model on
instruction-based datasets improves zero-shot performance.
This approach has extended to vision-language tasks, with
BLIP2 [5] and LLaVA [8] adapting instruction-tuned LLMs
for visual inputs. InstructBLIP [2] introduces instruction-
aware visual feature extraction and the Q-Former, enabling
more flexible, instruction-driven feature extraction.

As a novel area, visual emotion instruction tuning lacks
benchmarks or guidelines for creating emotion instruction
data. Our work pioneers the use of large-scale models to
develop an emotion instruction data pipeline, overcoming
the limitations of manual annotation.

3. Method
3.1. Preliminary of Visual Instruction Tuning

In the deep learning era, visual tuning has experienced sig-
nificant paradigm shifts, as depicted in Fig. 3.

In Fig. 3(a), conventional tuning methodologies en-
compass Full fine-tuning, Head-oriented, and Backbone-
oriented techniques, capitalizing on large-scale pre-trained
models. Predominantly, thoroughly fine-tuning these mod-
els for specific tasks, conducted end-to-end, is recognized as
a highly effective strategy. However, this method requires
maintaining separate copies of the backbone parameters for
each distinct task, posing challenges in storage and deploy-

ment.
Alternatively, Visual Prompt Tuning (VPT) [3], presents

an efficient substitute for full fine-tuning within large-scale
vision Transformer models. It achieves this by employing a
minimal fraction of trainable parameters in the input space
while maintaining a frozen backbone model. The objective
function for Visual Prompt Tuning is given by:

min
θP

L(f(X,P ; θP), Y ) (1)

where minθP is the minimization over the prompt parame-
ters P , L is the loss function, f represents the model func-
tion with input image X , prompt parameters P , and learn-
able model parameters θP as input, and Y is the target out-
put.

Visual Prompt Tuning focuses on optimizing LLMs us-
ing a small set of parameters, whereas Visual Instruction
Tuning (VIT) aims to improve the model’s comprehen-
sion of instructions, thereby addressing the model’s short-
comings in specific domains. This type of method aims
to enhance the model’s proficiency in following instruc-
tions, leveraging the capabilities of the latest foundation
models, e.g., Llama [17], and BLIP2 [5]. Instructions
serve as guiding constraints, shaping the model’s outputs
to conform to specific response characteristics and domain-
relevant knowledge. This approach enables human moni-
toring of the model’s behavior, thereby assuring alignment
with the desired outcomes. Moreover, Instruction Tuning is
computationally efficient, allowing LLMs to swiftly adapt
to particular domains without extensive retraining or archi-
tectural alterations.

The objective function for Visual Instruction Tuning is
given by:

min
θtunable

L(g(X, I, C; θtunable), Y ) (2)
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where minθtunable denotes the minimization over the tunable
parameters θtunable in the Instruction Tuning Module, L is
the loss function, g is the model function with instruction I ,
image X , other contexts C, and tunable parameters θtunable,
and Y denotes the target output. The optional context C
is not just raw data; it encompasses descriptive or directive
information guiding the model on how to process input or
which task to execute, e.g., image caption. It’s integral to
the model’s understanding and execution of tasks based on
specific instructions or guidelines.

3.2. GPT-assisted Emotion Visual Instruction Data
Generation

Previous methodologies commonly employed a consistent
template-based set of instructions for every image within
a dataset across various specific tasks [2]. For instance, a
standard instruction such as “Briefly describe the content of
the image” was employed uniformly across all images for
Image Captioning. In this way, the model may not be able
to adequately capture the unique characteristics of each im-
age. Moreover, this one-size-fits-all approach often leads to
suboptimal performance in emotion recognition tasks that
require nuanced perception and differentiation of ambigu-
ous emotion classes.

Since the topic of Emotion Visual Instruction Tuning
is still in its infancy, no benchmarks or guidelines have
been proposed so far for constructing emotion instruction
data. Based on the recent successes of machine-generated
instructions demonstrated in LLaVA [8], our work pio-
neers the use of existing LLMs to create a pipeline for

self-generating emotion instructions. Different from previ-
ous template-based and one-size-fits-all instruction data, we
propose an instance-wise and LLM-assisted visual emotion
instruction data pipeline. This methodology transcends the
constraints of manual annotation by employing GPT-4 [11]
to generate instance-wise, tailored instruction data that dy-
namically corresponds to visual content.

Prior to the development of instructional data for the vi-
sual emotion recognition task, it is imperative to confront a
fundamental academic problem: What types of visual clues
are pivotal in identifying emotions? This necessitates a
careful consideration of the unique characteristics inherent
to the task, along with a comprehensive understanding of
the potential visual cues associated with human emotions.
In this work, we propose a novel visual instruction data
mechanism to remove the inherent subjectivity and ambi-
guity in emotional interpretation. Specifically, we integrate
a broad spectrum of emotion attributes across multiple lev-
els: low-level attributes (e.g., brightness, colorfulness), mid-
level attributes (e.g., scene type and object class), and high-
level attributes (e.g., facial expressions and human actions),
building upon insights from previous work [24]. This com-
prehensive strategy not only aligns with the intricate nature
of emotions but also significantly enhances the model’s ca-
pability to interpret and understand visual emotional cues
more accurately and holistically.

The overall pipeline of our proposed emotion visual in-
struction data is shown in Fig. 4 (a). For an image Ximg,
three types of image-related contexts are essential for GPT-
4 to generate emotion instruction data: (i) a caption Xc, (ii)
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an emotion attribute list Xattr, which includes emotion class,
brightness, colorfulness, scene type, object class, facial ex-
pression, and human action, and (iii) the system prompt,
designed to enable GPT-4 to comprehend the specific task
requirement1.

We first manually design a few examples which are used
as seed examples for in-context learning to query GPT-4.
This operation leverages the model’s ability to extrapolate
from given examples, enhancing its understanding and re-
sponse accuracy based on the principles of few-shot learn-
ing [8]. Our generated emotion instruction data includes
three types: Categorical, Conversation, and Reasoning.
Building upon previous research [8], our generated instruc-
tion data adheres to the dialogue format, exemplified in
Fig. 5.

Our strategy for generating emotion instruction data
adopts a progressive approach from simple to complex. Ini-
tially, for the Categorical data, we transform the associated
emotion class of the image into a structured format. This
process serves as the foundational component of our emo-
tion instruction data.

For the Conversation data, our framework is designed to
create dialogues in which the GPT assistant interacts with
an inquirer, focusing on the emotion attributes of the image.
In this setup, the assistant’s responses are tailored to inter-
pret and describe the image as though it were within its own
visual field, thereby providing insights from an observa-
tional viewpoint. The scope of questions posed is compre-
hensive, encompassing the types of objects depicted, their
actions, and the dynamics of their interrelationships. The
dialogues we generate fall into two categories: (i) Basic
Interaction, focusing on the provided emotion attribute list
with simple, direct characteristics, and (ii) Advanced Inter-
action, which builds on the first type to reach greater con-
versational complexity and sophistication.

For the Reasoning data, our approach extends beyond
mere visual content, prompting the model to generate in-
depth reasoning questions. To enhance the dialogue’s cred-
ibility and structure, detailed examples are incorporated
alongside logical reasoning steps, ensuring that the dis-
course convincingly captures the intricacies of the visual
content.

3.3. Emotion Visual Instruction Tuning

After acquiring the emotion visual instruction data as de-
tailed in Sec. 3.2, our goal is to employ this data in en-
hancing the existing Visual Instruction Tuning model. This
enhancement aims to align the LLMs’ existing knowledge
with the emotion understanding domain.

As shown in Fig. 4 b, we have developed an Emotion
Visual Instruction Tuning (EmoVIT) architecture based on

1A detailed description of the system prompt is provided in the supple-
mentary materials.

Figure 5. The sample of our generated visual emotion instruction
data.

InstructBLIP [2]. This architecture specifically leverages its
Instruction-aware Q-Former Module, as depicted in Fig. 4
c, for emotion-centric instructional tasks.

Specifically, the Instruction-aware Q-Former Module
takes in the emotion instruction tokens, queries, and im-
age embeddings as input. The image embeddings are ex-
tracted by a frozen image encoder. The learnable queries
are initially produced by the pre-trained Q-Former of In-
structBLIP. During training, the Instruction-aware module
enhances task-specific feature extraction. It does this by in-
tegrating emotion instruction and query embeddings within
self-attention layers, aligning visual information with the
LLM’s instruction-following requirements. Our approach
adopts cross-entropy loss, tailoring it to the intricacies of
visual emotion recognition tasks, thus ensuring precise and
contextually relevant model training outcomes.

We note that the data generated by our approach is not
confined to a single model but can also be applied to other
Visual Instruction Tuning models, such as LLaVA [17]. No-
tably, when LLaVA is fine-tuned with our data, it exhibits
a significant enhancement in emotion recognition capabil-
ities, as detailed in Sec. 4.2. In this way, we demonstrate
not only the effectiveness but also the transferability of our
generated data, showing its broad applicability and impact.
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4. Experimental Results
4.1. Implemental Details

Our implementation is based on the LAVIS library [4]. Our
EmoVIT starts with a pre-trained InstructBLIP baseline and
proceeds to fine-tune exclusively the Q-Former module,
whilst keeping both the image encoder and the language
model frozen. The parameters for our training adhere to
the default settings established by InstructBLIP.
Datasets. We evaluate our framework on ten benchmark
datasets annotated under different scenarios and class num-
ber, namely EmoSet [24], WEBEmo [12], Emotion6 [14],
the Flickr and Instagram (FI) [25], Artphoto [9], IAPS [10],
Abstract [9], EmotionROI [15], UnbiasedEmo [12], and
OxfordTVG-HIC [6].
Held-in Pretraining. Following previous work [2], we di-
vide our dataset into two categories: held-in for pretrain-
ing and held-out for evaluation 2. Considering the EmoSet
dataset’s comprehensive inclusion of emotion attributes for
each image, it has been chosen as the primary resource for
our held-in pretraining phase. Simultaneously, for a broader
assessment, we perform held-out evaluations using the test
sets from various other datasets.

For the generation of emotion visual instruction data, we
initially employ the BLIP2 model for image captioning, fol-
lowed by leveraging the GPT-4 API to generate emotion in-
struction data. In total, our collection comprises Categori-
cal, Conversation, and Reasoning instruction data, derived
from 51,200 unique images. This represents less than 50%
of the entire EmoSet.

4.2. Held-out Evaluation

As shown in Tab. 1, our proposed methodology exhibits a
marked superiority in performance relative to the burgeon-
ing Visual Instruction Tuning Methods. Since they have
been pre-trained on dozens of large-scale datasets, it is ev-
ident that our generated emotion visual instruction data is
particularly effective for emotional understanding Our re-
sults signify a paradigm shift, heralding a new era of model
training that relies less on explicit supervision and more on
the robustness of emotion instruction-driven learning.

The Effectiveness of Our Proposed Emotion Visual
Instruction Data. As the first to introduce the concept of
emotion visual instruction data, our study seeks to evaluate
the generalizability of this newly generated instruction data.
Our goal is to test its efficacy not only with InstructBLIP but
also across other Visual Instruction Tuning model, to un-
derstand its broader applicability. As depicted in Fig. 6, we
employ two Visual Instruction Tuning models, LLaVA and
InstructBLIP, which were fine-tuned on our specially gen-

2Unlike the setup in InstructBLIP, our dataset exclusively comprises
emotion-related content. Consequently, our held-out evaluation does not
constitute a strict zero-shot evaluation in the conventional sense.

Figure 6. The improvement of our proposed emotion visual instruc-
tion tuning data tuning on LLaVA [8] and InstructBLIP [2].

erated emotion visual instruction data. Subsequent testing
across five distinct datasets reveals notable improvements
in both models, substantiating the efficacy of our generated
data. Notably, InstructBLIP demonstrated a more substan-
tial overall enhancement compared to LLaVA. This can be
attributed to InstructBLIP’s specialized Instruction-aware
Q-Former Module, which adeptly extracts the salient fea-
tures of our emotion instructions and synergizes them ef-
fectively with the corresponding images, thereby yielding
improved performance.

4.3. Effectiveness of Different Instruction Data

4.3.1 Ablation Study of Different Instruction Data

The ablation study outlined in Tab. 2 provides a compre-
hensive analysis of the impact that different instructional
data types have on model performance, specifically con-
cerning accuracy metrics on the EmoSet test set. Initially,
the model, referred to as InstructBLIP [2], operates without
the integration of the three types of instructional data and
attains a baseline accuracy of 42.20%. This foundational
performance is significantly enhanced with the inclusion of
Categorical data, which alone contributes to a substantial
increase in accuracy. The introduction of Conversation data
further amplifies this effect, underscoring the value of con-
versational context in improving the model’s predictive ca-
pabilities. The addition of Reasoning data notably boosts
performance, achieving a peak accuracy of 83.36%. This
indicates that the model significantly benefits from the nu-
anced cues in reasoning, aiding in understanding complex
emotional instructions. The gradual improvements with
each data type support the idea that a diverse approach to
instructional data markedly enhances model comprehension
and performance.
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Method WebEmo FI Emotion6 Abstract ArtPhoto IAPSa EmotionROI EmoSet
Number of Classes 25 8 6 8 8 8 6 8

Flanmingo [1] 9.36 14.91 21.67 3.57 17.5 10.13 21.72 29.59
LLaVA [8] 12.55 56.04 49.44 19.54 36.25 42.43 46.46 44.03
BLIP2 [5] 20.10 57.72 50.00 28.57 36.25 39.24 50.51 46.79
InstructBLIP [2] 12.80 37.97 46.11 21.42 26.25 34.18 46.13 42.20

Ours* 21.12 68.09 57.81 32.34 44.90 44.13 53.87 83.36

Table 1. Held-out performance comparison on visual emotion datasets (%).

Categorical Conversation Reasoning Accuracy (%)
- - - 42.20
✓ - - 80.90 (+38.70)
✓ ✓ - 81.95 (+39.75)
✓ ✓ ✓ 83.36 (+41.16)

Table 2. Ablation study of three types of instruction data. Accu-
racy (%) on EmoSet test set.

4.3.2 Instruction Sensitivity

This work is dedicated to the creation of a varied corpus of
visual emotion instruction data, alongside the development
of a robust instruction-based model. Our objective is for the
model to demonstrate stability, producing consistent results
in the face of minor variations in instruction phrasing, pro-
vided the core objective of the task persists unchanged. To
this end, we employ the Sensitivity evaluation metric, as in-
troduced by [22], to assess the model’s fidelity in generating
uniform outcomes irrespective of instructional nuances.

We employ two semantically similar instructions as in-
put prompts for the model, testing their impact on the Sen-
sitivity score across three visual emotion datasets for differ-
ent Visual Instruction Tuning models. The first instruction
is: “From the given options: cls 1, cls 2, cls 3, etc.,
identify the emotion that most accurately reflects the image.
Ensure your selection is confined to the listed options. Re-
spond in the format: Predicted emotion:” The second one
states: “Please choose the emotion that best corresponds
to the image from the following options: cls 1, cls 2,
cls 3, etc. (Do not provide answers beyond the provided
candidates.) Please reply in the following format: Predict
emotion:”

As illustrated in Fig. 7, our approach, along with BLIP2,
exhibited exceptionally low Sensitivity values, demonstrat-
ing robustness in understanding the instructions. Con-
versely, Flamingo and InstructBLIP displayed a higher de-
gree of sensitivity, indicating a relative susceptibility to
variations in instruction wording.

4.4. Robustness

Given that current emotion recognition datasets often ex-
hibit category imbalances and labeling biases, our aim is

Figure 7. The sensitivity score comparison (the lower the better).

to evaluate the generalization ability of various learning
strategies more impartially. Hence, we selected the Un-
BiasedEmo test set [12], which is uniquely suited for rec-
ognizing intricate emotions, such as those associated with
identical objects or scenes, e.g., landscapes, crowds, fami-
lies, babies, and animals, where the emotional undertones
can be particularly subtle and complex.

As depicted in Tab. 3, our proposed methodology
demonstrates superior performance when benchmarked
against conventional supervised emotion recognition tech-
niques, thereby underscoring the efficacy of our approach
in more accurately discerning complex emotional contexts.

Method Accuracy (%)

Direct Learning [12] 71.64
Self-Directed Learning [12] 72.45
Joint Learning [12] 71.64
Curriculum Learning [12] 74.27
Ours* 74.72

Table 3. Performance comparison on UnbiasedEmo dataset.
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Figure 8. The sample of our generated explanation.

4.4.1 Affective Reasoning

In the domain of visual emotion recognition, where ambi-
guity and subjectivity are pervasive, the advent of an in-
terpretable model is of considerable value. Such a model
elucidates its cognitive processes, enhancing its trustworthi-
ness and practicality in scenarios requiring a delicate grasp
of emotional subtleties.

Leveraging Visual Instruction Tuning, our model tran-
scends mere categorization of emotions; it articulates the
underlying rationale for its classifications. The executing
commands for identifying emotions and elucidating the de-
cision basis is illustrated below:

Predicted emotion: [emotion].
Reason: [explanation].

Our model delineates the visual features influencing its
determinations, thereby addressing the complexities inher-
ent in discerning and explaining emotion-related nuances.

The explanations provide us with visual clues contained
within the images, as exemplified in Fig. 8. It provides inter-
pretable visual indicators that inform the model’s outputs,
as demonstrated in our example, by disambiguating the of-
ten abstract emotional categories.

4.5. Scaling Law

Pretraining data. As demonstrated in Tab. 4, there is a
clear correlation between the size of the pre-training dataset
and improved performance. Consequently, we anticipate
that an increase in training data in the future could enhance
the effectiveness of Emotion Visual Instruction Tuning.

4.6. Humour Caption Generation

The comprehension of humor is intricately linked to the un-
derstanding of emotions. Leveraging our generative lan-
guage model, we conduct a caption generation task without

5% 10% 30% 50%
79.00 81.00 79.34 83.36

Table 4. Ablation study of different portion of pre-training data.
Accuracy (%) on EmoSet test set.

Figure 9. The sample of our generated humour caption vs human
writing humour caption from OxfordTVG-HIC.

modifying the model’s architecture, specifically testing the
model’s proficiency in generating humorous captions. For
this purpose, we select 50 images from the OxfordTVG-
HIC dataset [6] and generate corresponding captions us-
ing our model. Subsequently, the captions produced by our
model are compared with manually annotated captions from
the dataset in a user study. Thirty participants were asked to
vote on which captions were more humorous. Our model-
generated captions receive 60% of the votes, demonstrating
its effective humor generation capabilities. One sample is
visualized in Fig. 9.

5. Conclusion
In our study, drawing upon the distinctive visual cues key
to visual emotion recognition, we present a GPT-assisted
pipeline specifically designed for generating emotion vi-
sual instruction data. The developed EmoVIT model incor-
porates emotion-specific instructions, leveraging LLMs for
enhanced performance. Our comprehensive experiments
validate its effectiveness in emotion classification, affec-
tive reasoning, and humor understanding. This comparative
analysis sets a benchmark for Emotion Visual Instruction
Tuning with LLMs, providing valuable insights and direc-
tions for future research in this field.
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