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Abstract

Gradient sparsification and quantization offer a promis-
ing prospect to alleviate the communication overhead prob-
lem in distributed learning. However, direct combination
of the two results in suboptimal solutions, due to the fact
that sparsification and quantization haven’t been learned
together. In this paper, we propose Joint Sparsification-
Quantization (JointSQ) inspired by the discovery that spar-
sification can be treated as 0-bit quantization, regardless
of architectures. Specifically, we mathematically formu-
late JointSQ as a mixed-precision quantization problem, ex-
panding the solution space. It can be solved by the designed
MCKP-Greedy algorithm. Theoretical analysis demon-
strates the minimal compression noise of JointSQ, and ex-
tensive experiments on various network architectures, in-
cluding CNN, RNN, and Transformer, also validate this
point. Under the introduction of computation overhead con-
sistent with or even lower than previous methods, JointSQ
achieves a compression ratio of 1000× on different models
while maintaining near-lossless accuracy and brings 1.4×
to 2.9× speedup over existing methods.

1. Introduction

The assistance of multi-clients distributed learning to
gain deep insights onto the huge data closest to the data
source has further fuelled embeded applications and edge
devices [8, 9, 24, 40]. In such tiny artificial intelligence sys-
tem, a large number of distributed devices are typically con-
nected via wireless and long-distance connection, so band-
width is severely limited [20, 36].

So far, gradient compression has indeed paved way for
reducing the amount of communication exchanged between
workers. Sparsification [12, 21, 29, 35] and quantization
[4, 6, 13, 14, 26] are two of the most mainstream gradi-
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Figure 1. Existing Co-compression methods and our JointSQ
framework. Existing Co-compression methods typically apply
sparsification and quantization step by step. Our framework con-
siders sparsification as 0-bit quantization and thus the two-stage
process is transformed into a unified learning framework.

ent compression techniques for efficient distributed learn-
ing and communication. Combining the two is often done
in practice [5, 23, 37]. A direct way is to perform a two-
stage sequential scheme which we called Co-compression:
first sparsifying with a sparsification ratio set manually [5]
or adaptively [23, 37] and then quantizing the retained gra-
dients with a uniform bit-width. Such a two-stage sequen-
tial scheme is inadequate due to the limited solution space
it brings, thus resulting in suboptimal solutions. On the
one hand, the two stages (sparsification and quantization)
have not been learned together to maximize their respec-
tive strengths through cooperation. On the other hand, the
two-stage sequential scheme varies greatly across differ-
ent models, making architecture specific compressors non-
generalizable to new architectures. Our subsequent experi-
mental results also validate this point.

In this paper, we propose adaptive Joint Sparsification-
Quantization (JointSQ) to address the suboptimal solution
bottleneck for communication-efficient distributed learning.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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The conceptual framework of our approach can be seen in
Figure 1. The key idea is to treat sparsification as 0-bit
quantization thus the sparsification can indeed be unified
with quantization fundamentally. Specifically, JointSQ is
first formulated as a mixed-bit precision quantization (i.e.,
0-bit, 2-bit, 4-bit and 8-bit) with sparsification to 0-bit for
end-to-end Co-compression only once. Notably, to en-
sure adaptive bit-width assignment in such joint optimiza-
tion space, a Multiple-Choice Knapsack Problem (MCKP)
[3, 18, 38] is special designed per-layer and we have ad-
dressed this problem with the lowest computational cost.
Theoretically, we prove that our JointSQ possesses the min-
imum compression noise and validate our theoretical anal-
ysis through extensive deep learning experiments, includ-
ing image classification tasks on ImageNet [10], CIFAR-
10 [19], and CIFAR-100 [19], as well as language modeling
tasks on PTB [22]. We demonstrate that (i) JointSQ ahieves
only a small loss of 1% in Top-1 accuracy under an extreme
compression ratio as 1000×; (ii) JointSQ achieves no accu-
racy drop at 32× compression ratio; (iii) JointSQ achieves
SOTA over various network architectures with 1.4× to 1.9×
speedup compared to existing methods. Our contributions
can be summarized as follows:

• We propose JointSQ, a novel adaptive joint
sparsification-quantization framework to address the subop-
timal solution bottleneck for communication-efficient dis-
tributed learning. To our best knowledge, our framework
is the first work to treat sparsification as 0-bit quantization,
and thus the two-stage indeed is transformed into a unified
learning framework, i.e., mixed-bit precision quantization.

• To adaptively find the optimal bit-width assignment,
we heuristically model JointSQ as a MCKP that can be
solved by the greedy search algorithm. We theoretically
justify the superiority of JointSQ over the two-stage Co-
compression.

• We empirically evaluate JointSQ on multiple deep
learning tasks, including image classification tasks on Im-
ageNet, CIFAR-10 and CIFAR-100, as well as language
modeling tasks on PTB. JointSQ shows impressive im-
provement over previous methods while achieving the
fastest training acceleration.

2. Related Work
Gradient Quantization. The main idea is to use lower

precision of gradient, reducing the number of transmit-
ted bits. Focusing on existing gradient quantization ap-
proaches, 1-bit SGD [26] and signSGD [6] quantized gra-
dients to 1-bit, while TernGrad [36] quantized gradients
to 2-bit. QSGD [4] proposed compression schemes with
several bit-width levels (2, 4, and 8 bits). MemSGD [39]
maintained accumulated errors in memory to achieve simi-
lar convergence rates as 32-bit SGD. Ef-signSGD [17] im-
proved convergence by introducing error feedback in the

next optimization step. Besides, some methods adaptively
adjust the level of quantization during the training process.
AQSGD [13] learned and adjusted the parameters for gradi-
ent compression in real-time to reduce the variance between
gradients on individual worker nodes and accelerate train-
ing. Similarly, AdaQS [14] aimed to reduce the variance
of quantized gradients by using a lower level of quantiza-
tion in the early stages and a higher level of quantization in
the later stages. However, gradient quantization only pro-
vides limited compression before accuracy degradation due
to the requirement of transmitting at least one bit per entry.
In contrast, sparsification can provide order-of-magnitude
compression improvements.

Gradient Sparsification. The main idea is to commu-
nicate partial components of the local gradient. Pioneering
work included Top-k [2, 5, 21] sparsifier which selected the
largest k elements for communication. In the same period,
Rand-k [30,35] sparsifier was introduced to randomly select
k components. Most methods are based on the aforemen-
tioned two ideas to sparsify gradient. For example, Strom
[31] and Aji [2] significantly compacted sub-gradients by
considering only gradient elements whose absolute values
exceed a threshold. DGC [21] employed several training
tricks to achieve high compression ratio while maintaining
performance. Song et al. [29] not only focused on gradients
with larger absolute values but also gradually increased the
sampling of small gradients as the sampling frequency in-
creases. To maintain baseline’s performance under orders of
magnitude, sparsification usually leads to additional costs in
terms of maintaining error correction and hyper-parameter
tuning.

Combination of Sparsification and Quantization. The
challenge in Co-compression methods lies in determining
the optimal sparsification ratio and quantization levels for
the model. Manual setting of these parameters often re-
quires extensive empirical tuning based on prior experi-
ence [5, 16]. Therefore, adaptive methods have been de-
veloped to dynamically adjust the compression strategy
[23, 37]. These approaches can effectively combine spar-
sification and quantization, however, lead to a suboptimal
solution, because the sparsification and quantization are still
two-stage and they have not been learned together to max-
imize their respective strengths through cooperation. Com-
pared to the previous work, our framework achieves further
performance improvements, while introducing minimal al-
gorithmic complexity, by merging the two-stage operations
into a single step. Moreover, our framework is compatible
with all the aforementioned quantization schemes.

3. Joint Sparsification-Quantization
In this section, we firstly introduce a general formula-

tion of Co-compressor and its unbiasedness and bounded
variance. Secondly, we introduce the formula representa-
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tion of JointSQ with its unbiasedness and bounded vari-
ance. We validate that JointSQ exhibits superior perfor-
mance. Lastly, as our framework involves the allocation
of mixed-precision quantization bit-width, we show that it
can be formed as variant Knapsack problems and introduce
efficient algorithms to solve them.

3.1. General Co-compression Formulation

Previous research has provided analysis for the Co-
compressor with gradient amplification and we extend it to
the general form of the Co-compressor.

Lemma 3.1 (Unbiasness and Bounded Variance of Co-
Compressor [7, 32, 37]): For gradient vector g ∈ Rd , if
the number of quantization bits is b, the sparsification size
is k, then the compressed vector ĝ = Qb [Sk(g)] satisfies:

E[ĝ] = g, (1)

E
[
∥ĝ∥2

]
≤ ∥g∥2 + k

4b
∥g∥2, (2)

where Qb[·] and Sk[·] are the quantizer with b quantiza-
tion bits and the sparsifier with k sparsification size, respec-
tively [4, 30, 35]. Here d represents the length of the gradi-
ent tensor. Eq. (1) means that the compressed gradient ĝ is
the unbiased estimate of g. Eq. (2) provides the bounded
variance of the Co-compressor. We focus on Eq. (2), that
implies the noise added on the uncompressed gradient, de-
fined as:

h ≜
k

4b
. (3)

3.2. JointSQ Formulation

JointSQ treats sparsification as 0-bit quantization and in-
troduces mixed-precision quantization with n levels [33]. It
also achieves unbiasedness and convergence, which can be
reformulated as follows:

E′[ĝ] = g, (4)

E′ [∥ĝ∥2] ≤ ∥g∥2 +
n∑

i=1

ki
4bi

∥gi∥2 . (5)

We demonstrate the proof in the appendix. Let gi rep-
resent the subgradient quantized using the i − th available
bit-width bi, and g =

∑n
i=1 gi. For example, assuming the

gradient vector is {0.1, 0.2, 0.3, 0.4}, it can be divided into
subgradients as {0.1, 0.2} and {0.3, 0.4}. For ease of anal-
ysis, we set the remaining positions of the subgradients to 0
to match the length of the original gradient vector. Here ki
denote the length of gi, and ∥g∥ is the l2 norm of g. Thus,

the noise introduced on the uncompressed gradient can be
defined as:

h′ ≜
n∑

i=1

ki
4bi

∥gi∥2

∥g∥2
. (6)

When n = 1, Eq. (5) is equivalent to Eq. (2), indicat-
ing that the general form of the Co-compressor is a special
case of JointSQ. This implies that the solution space of the
Co-compressor design is a subset of the solution space of
JointSQ, and it holds that:

minh′ ≤ minh. (7)

Assuming that the gradients are quantized by the Co-
compressor to a uniform bit-width of b, we consider the sce-
nario where there are n1 gradient elements with respective
bit width increments x1, x2, ..., xn1

, and n2 gradient ele-
ments with respective bit width decrements y1, y2, ..., yn2

,
such that x1+x2+...+xn1 = y1+y2+...+yn2 . According
to Eq. (6), the variation of compressed noise is:

∆h′ =

n1∑
i=1

(
1

4b+xi
− 1

4b

)
|gi|2

∥g∥2
+

n2∑
j=1

(
1

4b−yj
− 1

4b

)
|gj |2

∥g∥2
.

(8)
By solving the inequality ∆h′ < 0, we obtain the fol-

lowing result:

n1∑
i=1

4xi − 1

4xi
|gi|2 >

n2∑
j=1

(4yj − 1) |gj |2 . (9)

The detailed proof is provided in the appendix. This
provides the fundamental condition for the faster conver-
gence of JointSQ compared to the general Co-compressor.
We observe that JointSQ expands the solution space of the
Co-compressor and mitigates the issue of suboptimal solu-
tions, primarily due to the introduction of lower compres-
sion noise by JointSQ.

The optimal design of JointSQ can be achieved by mini-
mizing h′ (bi,gi) while satisfying the bit constraint c.

min h′

s.t.

n∑
i=1

ki ∗ bi = c.
(10)

The design of JointSQ relies on the mixed-precision
quantization strategy. However, due to the vast solution
space of this optimization problem, directly solving it incurs
prohibitively high computational costs. In the next section,
we will discuss how to obtain an approximate optimal solu-
tion with minimal computational overhead.

3.3. Mixed-precision Quantization

In the quantization strategy generation phase, our goal is
to determine the optimal bidwidth assignment. A bitwidth
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Figure 2. Overview of JointSQ. JointSQ aims to find a mixed precision quantization strategy for each layer, considering the communication
budget requirements. Initially, Greedy Allocation approach is used, which can be viewed as solving the Multiple-Choice Knapsack Problem
(MCKP). This approach provides an initial allocation strategy based on gradient magnitudes. Subsequently, Reallocation is performed to
refine the strategy, with the number of Reallocation iterations determined by the adaptive learning parameter R. The final mixed-precision
quantization strategy is obtained by combining the Greedy Allocation and Reallocation.

candidate set B = {0, 2, 4, 8} is introduced for limiting the
searching space based on two considerations: On the one
hand, only power-of-two bitwidths are often efficiently im-
plemented and supported in typical digital hardware [34].
On the other hand, as [4] mentioned, 4-bit or 8-bit gradient
quantization is sufficient to recover or even slightly improve
full accuracy.

In this section, building upon the theory presented in
Section 3.1, we derive a conclusion: Larger gradient ele-
ments should be assigned larger bit-width. Based on this
conclusion, we propose the following algorithm to solve the
optimal bitwidth assignment problem: “Greedy Allocation”
and “Reallocation”, which can be observed in Figure 2.

3.3.1 Greedy Allocation

To further constrain the searching space, we discuss Eq. (6).
For a single gradient element, when the quantization preci-
sion is increased from b bits to b + x bits, the variation of
the compressed noise is as follows:

∆h′ =
1

4b
g2

∥g∥2
− 1

4b+x

g2

∥g∥2
=

4x − 1

4x4b
g2

∥g∥2
. (11)

It is evident that when the quantization precision increases,
larger components introduce more reduction in noise com-
pared to smaller components. Thus, the optimal solu-
tion to Eq. (10) must satisfy assigning higher quantiza-
tion precision to the larger components. This inference
also aligns with the concept of Top-k compression meth-
ods [2,5,21]. In order to conduct a quantitative analysis, we
introduce a special variant of the Knapsack problem called
Multiple-Choice Knapsack Problem (MCKP) [18, 38].

Definition 3.1 Multiple-Choice Knapsack Problem
(MCKP). There are L mutually disjoint groups G1, . . . , GL

which contain n1, . . . , nL items respectively. The j − th
item from the i− th group has a “profit” pij , and “weight”
wij , ∀i = 1, . . . , L, j ∈ 1, . . . , ni. MCKP formulates how
to select exactly one item from each group to maximize the
sum of profits and keep the sum of weights under a given
budge β, i.e.,

max
x is binary

L∑
i=1

ni∑
j=1

pijxij ,

s.t.
ni∑
j=1

xij = 1, ∀i = 1, . . . , L;

L∑
i=1

ni∑
j=1

ωijxij ≤ β. (12)

Our quantization strategy can be obtained by solving
the MCKP. Given a gradient vector g, which consists of
d gradient elements denoted as gi, each group, denoted
as Gi, is determined by each gi and has a fixed size of
|B| = 4. Thus, i represents the i − th group, where
i ∈ {1, 2, . . . , d}. j denotes the j − th item within each
group, with j ∈ {1, 2, 3, 4}. Each choice of the quantiza-
tion bit-width is considered as an MCKP item. Then, the
Knapsack budget β is c, and xij indicates selecting which
bit-width. We consider the bit-width as the weight of an
item, denoted as wij . We take 0-bit quantization as the
baseline, and consider the reduction in quantization noise
for each bit-width option as the value of the item based on
Eq. (11). It can be formulated as:

pij =
4wij − 1

4wij

g2i
∥g∥2

,

wij = bj , bj ∈ {0, 2, 4, 8} .
(13)
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Based on the aforementioned definition, we have success-
fully reformulated the problem into MCKP as shown in the
Figure 3.

0bit 2bit 4bit 8bit

… …

Selection PoolGradient

0bit 2bit 4bit 8bit

0bit 2bit 4bit 8bit

…

2bit

4bit

8bit

Mask

Figure 3. Illustration of the MCKP problem. Each gradient ele-
ment corresponds to a group, and each choice of bit width repre-
sents an item. The selected items are represented by a mask, which
is the quantization mask we aim to obtain.

The MCKP is NP-hard [18]. However, prior studies [54]
transform the MCKP to the fractional knapsack problem
and use a greedy algorithm to solve it. Based on this idea,
we can get a feasible MCKP solution. “Incremental Profit
Density” is a metric that measures the additional profit gen-
erated by a unit increase. It can be calculated using the
following approach:

Iij =
pij − pi,j−1

wij − wi,j−1
. (14)

Each time we make a selection, we prioritize the item with
the highest Incremental Profit Density. After selecting an
item, we remove all items in the current group from the se-
lection pool. This process is repeated multiple times until
the maximum capacity of the backpack is reached.

The aforementioned algorithm efficiently discovers a
feasible solution for the MCKP and we designate it as
“Greedy Allocation”. The algorithm exhibits a time com-
plexity of O(dlog(k)), where k is the sum of the lengths of
the 2, 4, and 8-bit subgradients. We finally obtain a quanti-
zation mask, denoted as xij .

3.3.2 Reallocation

After performing Greedy Allocation, we obtain an approx-
imately optimal solution for Eq. (10). In the later stages
of training, we can further improve performance by incor-
porating some fine-tuning operations after Greedy Alloca-
tion. We first define the sum of the lengths 2, 4, and 8-bit
subgradients as k = k2 + k3 + k4. Then, we introduce
a learnable parameter R to dynamically adjust k with the
constraint k̄ = Rc/8, where c/8 represents the minimum k.

In each fine-tuning iteration, we attempt and select the
direction that reduces compression noise. During fine-
tuning, we still follow the principle of using larger bit-
widths for larger gradients. For example, when k < k̄, we

first attempt to decrease the minimum 8-bit gradient ele-
ment to 4-bit, while increasing the maximum 2-bit gradient
element to 4-bit, and elevating the maximum 0-bit gradient
element to 2-bit. If noise reduction is observed, we adopt
this updating strategy. If noise increases, we attempt to de-
crease the minimum 4-bit gradient element to 2-bit while el-
evating the maximum 0-bit gradient element to 2-bit. These
adjustments ensure that the communication constraint c is
still satisfied and the sum of lengths k = k + 1. There-
fore, we perform fine-tuning

∣∣k − k̄
∣∣ times. Conversely,

if k > k̄, we perform the inverse process. By employing
these guidelines and iteratively selecting noise-reducing di-
rections, our compression approach gradually aligns with
the optimal solution. This process is referred to as “Re-
allocation”. By exclusively calculating the noise variation
induced by the restricted number of modified gradient el-
ements in each fine-tuning iteration, rather than evaluating
the compression noise for the entire gradient tensor, the time
complexity is reduced to O(1).

3.3.3 Adaptive Strategy For Reallocation

Different layers in deep learning often have varying sen-
sitivities to compression, requiring different compression
strategies. We dynamically adjust the value of R for each
layer based on the noise reduction achieved in each round
of Reallocation. The initial value of R is determined by
the results of Greedy Allocation. Given the number of up-
date iterations T for R, our step size is the difference in
compressed noise between the current Reallocation and the
previous Reallocation, denoted as:

∆h′ = h′
i − h′

i−1, (15)

where i ∈ {1, 2, ..., T}. We determine the learning rate δh′

based on the magnitude of gradients for each layer. There-
fore, our update rule is as follows:

Ri = Ri−1 + δh′∆h′ . (16)

Through our proposed Greedy Allocation and Realloca-
tion algorithm, we adaptively determine the compression
strategy for each layer that minimizes compression noise.
JointSQ provides a Sparsification-Quantization allocation
strategy, offering flexibility for specific quantization encod-
ing methods. In our experiments, we employ the widely-
used random uniform quantization method. Due to the
efficient utilization of parallel computing on GPUs, both
the Greedy Allocation and Reallocation processes have low
computational overhead. The details of our algorithm are
provided in the appendix.

4. Experiments
Dataset and Network. The experiments are con-

ducted on several benchmarks, including the CIFAR-10
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Compression
approach

ResNet-20 ResNet-110 SimpleViT VGG-16

Acc(%). Comp. Acc. Comp. Acc. Comp. Acc. Comp.
SGD(baseline) 91.75 1× 93.55 1 84.11 1× 91.02 1×

QSGD [4] 91.56 8× 93.54 8× 84.04 8× 91.41 8×
QLSGD [5] 91.26 20× 93.37 20× 76.82 20× 90.09 20×

AC-SGD [37] 89.88 20× 91.96 20× 78.73 20× 91.04 20×
JointSQ 91.74 20× 93.62 20× 84.42 20× 91.42 20×

DGC [21] 91.32 1000× 92.45 1000× - 1000× 88.12 1000×
QLSGD 91.21 1000× 93.17 1000× - 1000× 90.14 1000×
AC-SGD 89.61 1000× 91.88 1000× - 1000× 90.33 1000×
JointSQ 91.55 1000× 93.46 1000× - 1000× 90.78 1000×

Table 1. Comparison of multiple networks compression results on CIFAR-10.

dataset [19], CIFAR-100 dataset [19], ImageNet dataset
[10] and PTB dataset [22]. We evaluate ResNet-18 [15]
on the CIFAR-100 dataset, ResNet-101 on the ImageNet
dataset and 2-LSTM [27] on the Penn Treebank (PTB)
dataset. Specifically, we evaluate multiple networks, in-
cluding ResNet, Vision Transformer (ViT) [11], and VGG
[28], on the CIFAR-10 dataset to validate the generalizabil-
ity of our framework across different network architectures.

Baselines and Metric. We set the baseline experiment to
full-precision SGD [25] and compare our framework with
current state-of-the-art gradient compression methods re-
lated to ours, as well as some classical methods. These
methods include: sparsification method DGC [21], quanti-
zation method QSGD [4], as well as Joint methods QLSGD
[5], AC-SGD [37], and MCGQ [23]. For our framework,
we employ a stochastic uniform quantization similar to
QSGD to perform our mixed allocation strategy, and we uti-
lize the gradient accumulation compensation method used
in [21] and [23]. For the DGC method, to ensure fairness,
we retained only the momentum correction and gradient ac-
cumulation. As for the QSGD method, we uniformly ap-
plied 4-bit quantization.

Experimental Setup. Our evaluation uses 4 NVIDIA
A100 GPUs with 80GB VRAM on ImageNet and 4
NVIDIA RTX3090 GPUs with 24GB VRAM on other
datasets. In addition to conducting comparative training
for the aforementioned tasks, we also compared the train-
ing time of JointSQ with existing Co-compression meth-
ods through a multi-node setup. Furthermore, we tested
the impact of different parameters of JointSQ on the experi-
ments. All our experiments use the original training recipes,
without any hyperparameter tuning to account for gradient-
compressed training.

https : / / github . com / synxlin / deep - gradient -
compression
https://github.com/YANGuangfeng/AC-SGD

4.1. Image Classification

4.1.1 CIFAR-10

We conducted comparative experiments on CIFAR-10 at
compression ratio of 20× and 1000×, respectively to
demonstrate the superiority of JointSQ under different com-
pression strategies. Furthermore, we evaluated our frame-
work across multiple network architectures, including the
ViT architecture that has not been deployed in existing joint
compression schemes. In our experiments, we utilized a
SimpleViT network with 6 encoder layers, 256 hidden di-
mensions, and 8 attention heads. To ensure fairness, we
employed the same experimental setup for all methods, in-
cluding a learning rate of 0.1 and a batch size of 128. Table
1 presents results on the CIFAR-10 dataset and Figure 4
demonstrates the learning curve of SimpleViT.

(a) CIFAR-10 (b) CIFAR-10

Figure 4. Learning curve of SimpleViT on CIFAR-10. (a) Top-1
accuracy of SimpleViT on CIFAR-10. (b) Loss of SimpleViT on
CIFAR-10.

Our experimental results demonstrate that JointSQ out-
performs other methods in terms of accuracy preservation at
both low and high compression ratios. For instance, in the
case of the compression-sensitive ViT network, at a com-
pression ratio of 20×, JointSQ achieves a complete recov-
ery and even surpasses the full-precision SGD by approxi-
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ResNet-18 on CIFAR-100 ResNet-101 on ImageNet

Method Acc.(%) ∆acc.(%) Comp. Method Acc.(%) ∆acc.(%) Comp.
SGD(baseline) 73.94 0.00 1× SGD(baseline) 74.9 0.00 1×
signSGD [6] 71.18 -2.76 32× DGC 74.46 -0.44 1000×
MCGQ [23] 74.25 0.31 32× MCGQ 74.54 -0.36 1000×

JointSQ 75.04 1.10 32× JointSQ 74.72 -0.18 1000×

Table 2. Performance comparison of JointSQ and existing methods on image classification tasks.

mately 0.3% in accuracy, while other joint schemes exhibit
poor performance in handling highly sensitive networks.
At a high compression ratio such as 1000×, as observed
in ResNet-20, JointSQ exhibits only a 0.2% accuracy loss,
outperforming DGC, which has a 0.43% loss. Additionally,
the results highlight the strong generalization capability of
JointSQ across multiple network architectures. In con-
trast, other methods show limited generalization. For exam-
ple, the QLSGD method, which performs well on ResNet,
shows subpar performance on ViT and VGG architectures.

4.1.2 CIFAR-100 and ImageNet

In our CIFAR-100 experiments, we used a batch size of
128 and an initial learning rate of 5.6e-2 [17, 23], which
is the same as [6]. We compared our framework with full-
precision SGD, signSGD, and MCGQ (with a sampling rate
of K= 0.5) at a compression ratio of 32×. For our ImageNet
experiments, we employed a batch size of 128 and an initial
learning rate of 0.1. We compared our method with full-
precision SGD, DGC, and MCGQ (with a sampling rate of
K= 0.5) at a compression ratio of 1000×. The results of our
experiments can be found in Table 2. Figure 5 illustrates
Top-1 accuracy and the loss throughout training. As shown
in Table 2, on the CIFAR-100 dataset, JointSQ achieves a
1.10% accuracy improvement compared to full-precision
SGD, demonstrating a significant advantage over all com-
pared compression methods. On the ImageNet dataset with
an extremely high compression ratio of 1000×, JointSQ
only incurs a minor accuracy loss of 0.18%, outperform-
ing both MCGQ and DGC methods which are 0.36% and
0.44% respectively. From Figure 5, it can be observed that
JointSQ exhibits the fastest convergence speed compared to
other methods. These results validate the outstanding per-
formance of JointSQ in image classification tasks, which
can be attributed to its joint sparsification and quantization
advantages.

4.2. Language Modeling

In our language modeling task on the PTB dataset, we
followed a similar model and training setup as DGC. Specif-
ically, we utilized a 2-layer LSTM with 1500 hidden neu-

(a) CIFAR-100 (b) CIFAR-100

(c) ImageNet (d) ImageNet

Figure 5. Learning curves of our framework and the compar-
ison methods on image classification tasks. (a) Top-1 accuracy
of ResNet-18 on CIFAR-100. (b) Loss of ResNet-18 on CIFAR-
100. (c) Top-1 accuracy of ResNet-101 on ImageNet. (d) Loss of
ResNet-101 on ImageNet.

rons and trained the model using vanilla SGD with gradient
clipping. The initial learning rate was set to 22, and we
trained the model for 40 epochs with a batch size of 20.

Task Language Modeling on PTB

Method Perplexity ∆ppl Comp.
SGD(baseline) 77.84 0 1×

DGC 76.85 -0.99 1000×
MCGQ 77.67 -0.17 1000×
JointSQ 76.38 -1.46 1000×

Table 3. Compression results on PTB.

Previous research, including DGC and MCGQ, has al-
ready explored the application of models on the PTB
dataset. To provide a comprehensive comparison, we eval-
uated our results against theirs at a compression ratio of

https://github.com/wabluy/ptb_lstm_pytorch
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1000×, as presented in Table 3. Notably, our method out-
performs full-precision SGD with a perplexity reduction of
1.46, surpassing DGC by 0.47 and MCGQ by 1.29. Fig-
ure 6 provide a visualization of the perplexity of JointSQ
compared to the baseline methods.

(a) PTB (b) PTB

Figure 6. Learning curves of our framework and the comparison
methods on language modeling tasks. (a) Valid perplexity of 2-
LSTM on PTB. (b) Loss of 2-LSTM on PTB.

4.3. Computational Overhead

In real-world scenarios, there is a high demand for gra-
dient compression algorithms to have manageable compu-
tational overhead, meaning that they should provide tangi-
ble acceleration in multi-client distributed training within
an acceptable range of computational costs [1, 21]. Our
framework, under the same communication overhead, not
only achieves performance improvements compared to ex-
isting joint methods but also does so without introducing
any additional computational overhead. To assess the effi-

(a) ResNet-20 (b) SimpleViT (c) 2-LSTM

Figure 7. The speed up of JointSQ and existing Co-commpression
methods: (a) ResNet-20 on CIFAR-10. (b) SimpleViT on CIFAR-
10. (c) 2-LSTM on PTB.

cacy of our framework, we vary the number of nodes from
2 to 64 and compare the speedup of JointSQ (with SGD set
as 1), as depicted in the Figure 7. As the number of nodes
increases, indicating an increased communication demand,
JointSQ demonstrates approximately 1.4× to 2.9× acceler-
ation compared to existing Co-compression methods. This
acceleration is consistently observed across different node
settings, emphasizing the robustness of JointSQ in achiev-
ing significant speedups. The efficient computation demon-
strated by JointSQ validates its feasibility in real distributed
scenarios, where computational costs are a critical factor.

4.4. Further Research

In order to achieve better performance, we attempted to
dynamically vary the compression ratio during the training
process. A comparative experiment was conducted on a
classification task using ViT with a compression ratio set
at 100×. In the early stages of training, we employed a
lower compression ratio and linearly increased it as training
progressed while ensuring the overall communication bud-
get remained consistent with the unified compression ratio.
The experimental results are shown in Figure 8.

Figure 8. Extended experiments on ViT. We initially employed
a lower compression ratio and linearly increased the compression
ratio during training.

We observed that using a lower compression ratio in the
early stages significantly improved the initial convergence
rate. This provides us with insight into the potential combi-
nation of JointSQ with periodic variable compression ratios
to further meet practical communication demands. It also
serves as one of the focal points for our future research ex-
ploration.

5. Conclusion

In this paper, we propose an adaptive Joint
Sparsification-Quantization (JointSQ) framework that
thoroughly unifies sparsification and quantization by
treating sparsity as 0-bit. We introduce Greedy Allocation
and Reallocation based on the MCKP problem to solve
JointSQ. The framework addresses the issue of existing
Co-compression approaches falling into suboptimal so-
lutions, thereby further improving the performance of
distributed learning. We conduct extensive experiments on
various networks and datasets. The experimental results
demonstrate that JointSQ achieves higher compression
ratios compared to conventional Co-compression methods
while maintaining SOTA performance with minimal com-
putational overhead. Specifically, at a compression ratio
of 32×, JointSQ achieves faster convergence speed and
1.1% accuracy improvement compared to existing optimal
methods while achieving a compression ratio of 1000× on
CIFAR-10 and ImageNet with near-lossless performance.
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