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Abstract

Blind face restoration focuses on restoring high-fidelity
details from images subjected to complex and unknown
degradations, while preserving identity information. In
this paper, we present a Prior-based Latent Transforma-
tion approach (PLTrans), which is specifically designed to
learn a degradation-unaware representation, thereby al-
lowing the restoration network to effectively generalize to
real-world degradation. Toward this end, PLTrans learns
a degradation-unaware query via a latent diffusion-based
regularization module. Furthermore, conditioned on the
features of a degraded face image, a latent dictionary that
captures the priors of HQ face images is leveraged to re-
fine the features by mapping the top-d nearest elements.
The refined version will be used to build key and value for
the cross-attention computation, which is tailored to each
degraded image and exhibits reduced sensitivity to differ-
ent degradation factors. Conditioned on the resulting rep-
resentation, we train a decoding network that synthesizes
face images with authentic details and identity preservation.
Through extensive experiments, we verify the effectiveness
of the design elements and demonstrate the generalization
ability of our proposed approach for both synthetic and un-
known degradations. We finally demonstrate the applicabil-
ity of PLTrans in other vision tasks.

1. Introduction
Blind Face Restoration (BFR) aims to restore facial de-

tails while preserving the identity in degraded images that
have been subjected to varying and unidentified degra-
dations. Many CNN-based and Transformer-based BFR
frameworks have been previously designed to enhance

Figure 1. An example to illustrate that a better query empowers a
generic model to generate HQ images, and vice versa. Enhancing
the quality of key and value yields relatively slight effect. The
restored image quality can be sorted as: (b)>(c)>(d)>(a)

restoration performance, leading to significant advance-
ments in the field. However, it is impractical to gather suf-
ficient pairs of degraded-clean training data in real-world
situations. In the pursuit of synthesizing clear and real-
istic face images from degraded ones, recent BFR meth-
ods have incorporated various face priors, including high-
quality(HQ) exemplars with the same identity or geomet-
ric information. These methods often rely on capturing
the correlation between degraded and clean images, mak-
ing them susceptible to significant performance drops when
handling unseen degradations. Additionally, there have
been attempts to apply generative priors to BFR. Genera-
tive Adversarial Networks (GAN) [12] that are well-trained
on face images represent strong priors due to their ability
to generate high-fidelity samples, while GAN-based mod-
els are typically trained on specific datasets, thus limiting
their generalization performance.

The generic transformer-based model takes a high/low-
quality (HQ/LQ) image as input and generates a set of cor-
responding HQ/LQ query, key and value in each block. The
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result shown in Figure 1 suggests that improving query and
key-value leads to varying improvements for face restora-
tion. Inspired by this observation, we propose a Prior-based
Latent Transformation approach for BFR, which we refer
to as PLTrans. The core idea behind PLTrans is to trans-
form the preliminary features of degraded images to be-
come degradation-unaware query, while at the same time to
refine the preliminary feature to build key and value which
are used in cross-attention computation. To achieve this, we
incorporate a latent diffusion module to remove degradation
from the features, in which various types of degradations
become indistinguishable as Gaussian noise is added. In
order to maintain the semantic similarity of the restored im-
age to the degraded one, the features at each transition step
is also combined with the input’s low-frequency informa-
tion obtained through a 2D discrete wavelet transform [49]
during the reverse diffusion process. The resulting features
are subsequently decoded into a query. Additionally, by in-
corporating a latent dictionary encoding rich details from
the features of HQ face images via vector quantization [36],
We learns a global mapping over the retrieved priors based
on the top-d elements that are nearest neighbors of the input
features to build key and value. The cross-attention compu-
tation is performed over the obtained query, key and value
for restoring the features of clean face. Extensive experi-
ments are performed to demonstrate the effectiveness of the
design elements and the improvement in generalization per-
formance on real-world images with unknown degradation.
We summarize the main contributions of this work as fol-
lows:

• We address BFR from a new perspective of performing
prior-based transformations on query, key and value
for the attention computation in a latent transformer.

• By incorporating the wavelet-based low-frequency
components of the degraded features as supplementary
information into the intermediate stages, we can effec-
tively guide the reverse diffusion process to synthesize
the degradation-unaware features, while preserving es-
sential semantics from the input.

• To restore the features of clean face, we further lever-
age a latent dictionary to refine the features of the
degraded image, based on which we learn key and
value to perform cross-attention computation with the
degradation-unaware features as query.

2. Related Work
2.1. Blind Face Restoration

Significant progress has been achieved in face image
restoration recent years [8, 18, 20, 26]. A typical strategy
is to regard the restoration as a domain translation task

[10, 34, 45]. Considering facial structures, there have been
many attempts to incorporate a variety of priors in the gen-
eration process. In [4, 16, 29], landmark estimation were
used to recover clear face images from low-resolution ones
based on facial geometry priors in the form of facial parsing
maps. Given a HQ reference image of the same identity,
a warping network was learnt to correct pose and expres-
sion for better recovery of fine details [7, 24, 25]. How-
ever, the reference-guided methods were only applicable
in limited scenes. To effectively obtain the priors asso-
ciated with the degraded images, a dictionary of semantic
facial components was learnt in the feature space of a pre-
trained VGG [22], which was designed for face recognition.
In addition, 3D morphable models explicitly modeled face
attributes and can thus be applied to regularize the facial
structures and identity information [15, 51].

Another research line is to exploit the priors encapsu-
lated in the pre-trained generative models. The generative
prior-based methods typically projected the degraded image
back to the latent space of StyleGAN [19], and the resulting
latent codes are transformed and decoded into a HQ face
image [30]. To improve the efficiency of GAN inversion,
a dedicated encoder was trained for latent code prediction,
conditioned on the input image [31]. However, the restora-
tion performance was limited by low dimensionality and
poor spatial expression capability of the latent space. To ad-
dress this issue, facial structural information was utilized by
injecting the external features extracted from the degraded
image into the generator of GFP-GAN [41], GPEN [48] and
GLEAN [2]. Another effective approach is to perform pro-
gressive latent space extension across multiple intermedi-
ate layers of StyleGAN [32]. Based on a pre-trained De-
noising Diffusion Probabilistic Model (DDPM) [14], dif-
ferent attempts were made to control the generation pro-
cess. Choi et al. [5] proposed an Iterative Latent Variable
Refinement (ILVR) method to condition the generative pro-
cess on a given reference image. Further, Wang et al. [44]
applied ILVR to BFR, and the proposed model is referred
to as DR2, in which a degraded image was corrupted by
Gaussian noise, and the corresponding HQ image could be
recovered from its noisy version via an iterative denoising
process.

There are fundamental differences between the proposed
PLTrans and the above methods. DDPM was designed for
generic image synthesis, which differs from our restoration
task. DR2 [44] utilized a pre-trained DDPM to perform
sampling in the data space, while we learn a task-specific
latent diffusion module to generate a degradation-unaware
representation. Although RestoreFormer [43] captures clear
face priors in the form of a latent dictionary, our model uses
a dictionary to quantize the features of degraded images.
We further learn a global mapping over the top-d nearest
elements to enhance the expressiveness of the resulting fea-
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tures.

2.2. Vision Transformer

Transformers have emerged as powerful deep learning
architectures for natural language processing [6,38]. Due to
their excellent capability in capturing long-range dependen-
cies between elements, the transformer-based models have
been applied in a variety of vision tasks, including image
classification [9], semantic segmentation [40], object detec-
tion [1, 52], and so on. Vision Transformers (ViTs) typi-
cally learnt to represent an image as a sequence of patches
and estimate their underlying relationships [9, 35]. To deal
with high-resolution images and visual objects with large
variations in scale, SwinTransformer [27] adopted a shifted
window strategy to enhance the modeling power of ViT and
yield a hierarchical representation. By performing vector
quantization in the latent space, a transformer was applied
to high-resolution image generation by predicting the se-
quence of codebook indices [11]. In [50], a computationally
efficient transformer was designed to perform multi-scale
local-global representation learning for image restoration.
On the other hand, a large-scale pre-trained transformer was
also applied for multiple image processing tasks [3]. In this
work, we apply a transformer architecture to BFR by mod-
ifying the intermediate feature as the query through a de-
noising diffusion process and learning the prior-based key
and value for cross attention computation.

3. Proposed Method
3.1. Overview

Our proposed PLTrans is built on an encoder-
transformer-decoder architecture. As depicted in Figure 2,
an encoder E processes a degraded face image x to extract
preliminary features q = E(x). A Latent Diffusion-based
Feature Regularization Module takes q as input and returns
the degradation-irrelevant feature q̂ which is encouraged to
be as consistent as possible with the corresponding ground
truth. To recover rich face details, we utilize a pre-trained
latent dictionary V , learned from HQ face images, to quan-
tize z. The resulting features q are further refined and used
to build the key and value vectors. A cross-attention-based
transformer block takes the obtained query, key and value as
input and returns the features to be decoded into a clear face
image, which is encouraged to be as consistent as possible
with the corresponding ground truth.

3.2. Latent Diffusion-based Feature Regularization

The structural information of an image with heavy degra-
dation is typically disordered, and thus the preliminary fea-
tures extracted by a generic encoder are potentially inade-
quate for capturing accurate semantics. Naively decoding
the preliminary features may result in artifacts within the

synthesized image or undesired divergence from the orig-
inal content. To address this issue, we propose to regu-
larize the preliminary features via a latent diffusion mod-
ule. Specifically, a mapping network EQ is adopted to
take the feature q as input and produces a latent variable
ulq or uhq . Our objective is to construct a Markov Chain
that incrementally approximates the HQ data distribution
starting from a Gaussian prior. The regularization pro-
cess attempts to restore the features from its noisy version
while simultaneously preserving the low-frequency content
inherent in the preliminary features. To attain this objec-
tive, we perform n-step perturbations to obtain probabil-
ity pπ(u

lq
n |ulq), subsequently compute the transition proba-

bility pθ(u
hq
t−1|u

hq
t ), and finally obtain pθ(u

hq
s |ulq

n ), where
ulq
n ≈ uhq

n and s < t ≤ n. Finally, we can get ûhq
0 by com-

puting probability pθ(û
hq
0 |uhq

s ) directly. On the other hand,
auxiliary information in the form of the low-frequency sig-
nals from ulq

t are injected at multiple intermediate stages of
the reverse diffusion process. We combine the multi-scale
high-frequency signals from uhq

t and the low-frequency sig-
nals from ulq

t using Discrete Wavelet Transform (DWT) as
follows:

uhq
t ← ϕ

′
(ϕlf (ulq

t ), ϕ
hf (uhq

t )), (1)

where ϕlf/hf (·) represents the DWT function that extracts
the low/high-frequency information, and ϕ

′
(·) denotes the

Inverse Discrete Wavelet Transform (IDWT). As will be
demonstrated in the experiments, ûhq

0 is less sensitive to
degradation and can retain the primary semantics from ulq.
Conditioned on the regularized variable, a mapping network
DQ is responsible for yielding degradation-irrelevant fea-
tures q̂ in the same space of q. Considering that a latent
space with excessively high variance could affect the train-
ing stability and the quality of sample generation in both
the diffusion and reverse processes, we impose a Kullback-
Leibler (KL) divergence-based penalty on the latent vari-
able u to promote adherence to a standard normal distribu-
tion as follows:

LKL = KL(pu||pg), (2)

where pu and pg denote a u’s distribution and a Gaussian
distribution. Conditioned on u, DQ is trained to recover q
as accurately as possible for reconstruction, and the consis-
tency loss is defined as follows:

Lq
cons = Eq

[
|q̂ − q|1

]
, (3)

where q̂ = DQ(u) denotes the prediction. Given the train-
ing data in the form of HQ face image features uhq , our
latent diffusion module is optimized by a standard mean-
squared error loss as follows:

Ldif = Eϵ

[
|ϵ− ϵθ(

√
ātu

hq
t +

√
1− ātϵ, t)|22

]
, (4)
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Figure 2. Overview of the proposed PLTrans framework. An encoder E extracts the preliminary feature q from a degraded face image x.
A latent diffusion-based regularization module is applied to q to obtain its degradation-irrelevant version q̂ as query. On the other hand, a
prior-based key-value module quantizes and transforms q to learn key k and value v. We perform cross-attention computation over q̂, k
and v in each transformer block, and feed the resulting feature into a generator G to synthesize a HQ face image.

where ϵθ(u
hq
t , t) is a U-net model used to predict the noise

from uhq
t at step t, ϵ ∼ N (0, I) and ᾱt =

∏t
m=1(1− βm),

in which {β1, β2, ..., βt} is the variance schedule used to
control the degree of noise addition.

3.3. Prior-based Key-Value

In addition to regularizing the preliminary features as
query, we also learn key and value within our transforma-
tion by integrating HQ face priors via a latent dictionary V .
The elements in V are expected to offer a wealth of clear
face details. Initially, we utilize the preliminary feature q
to compute z through convolution and self-attention oper-
ations. Then, z is quantized by retrieving the d nearest
elements from V , which serve as the respective priors, as
follows:

{e(1), . . . , e(d)}(i,j) = argmin
e∈V
∥e− z(i,j)∥22, (5)

where z(i,j) denotes the feature vector at the spatial loca-
tion (i, j). Rather than replacing z with the most similar
element, the retrieved top-d priors contain more richer in-
formation. Note that V may not generalize well to the re-
construction of degraded data. A global mapping over the
top-d priors is performed as follows:

z̃(i,j) =

d∑
l=1

rle
(l), (6)

where r = [r1, . . . , rd] denotes a learnable combination co-
efficient vector e(l) ∈ {e(1), . . . , e(d)}(i,j). Different from
generic dictionary-based representation for data reconstruc-
tion, the global mapping is optimized for our restoration

task and thus its expressiveness of the retreived elements
can be enhanced. Building upon the priors z̃, we learn k, v
by utilizing a lightweight transformer module which can be
formulated as:

{k, v} = Φ(z̃, z) + z̃, (7)

where Φ(·) denotes the standard transformer operations. We
compute the estimated features of the corresponding clear
face image by performing cross-attention between q̂ and
k, v to promote adherence as follows:

ẑ = Conv

(
softmax

(QKT

√
N

)
V

)
+ k, (8)

where Conv represents the convolutional operation, N de-
notes the number of feature channels, and

Q = q̂WQ + bQ,

K = kWK + bK ,

V = vWV + bV ,

(9)

and WQ/K/V and bQ/K/V are learnable parameters. We
then restore the clear face image ŷ by feeding ẑ into a de-
coder G.

3.4. Model Training

Let ŷ denote the restored clear face image from a de-
graded input x. We first adopt the widely used pixel-level
loss to assess the consistency to the ground truth, and the
corresponding function is defined as follows:

Lcons = E(x,y)

[
|ŷ − y|1 + ∥φ(ŷ)− φ(y)∥22

]
, (10)
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where y denotes the ground-truth clear image with respect
to x, and φ(·) represents the feature maps extracted by a
pre-trained VGG [33]. We also adopt an adversarial training
strategy to improve the visual quality of restored images,
and the loss function is defined as follows:

Lreal
adv = Ey

[
logD(y)

]
,

Lsync
adv = Ex

[
log(1−D(ŷ))

]
,

(11)

where D(·) denotes the predicted probability of an input
face image being real. By integrating the above train-
ing losses, we formulate the optimization problem of our
restoration model as follows:

min
R
Lq
cons + λLKL + Ldif ,

min
E,P,G

Lcons + Lsync
adv ,

max
D
Lreal
adv + Lsync

adv ,

(12)

where λ denotes a weighting factor that controls the rela-
tive importance of the KL Divergence-based regularization
term. Note that the latent dictionary V is learnt by perform-
ing vector quantization [36] in a clear face image recon-
struction process.

4. Experiments

In this section, extensive experiments are performed to
evaluate the proposed PLTrans on a variety of face restora-
tion tasks. We first introduce the experimental settings in-
cluding the training and test datasets, implementation de-
tails and evaluation protocol. Next, we show how the latent
transformations benefit face restoration, followed by quanti-
tative and qualitative comparison with state-of-the-art meth-
ods. Finally, we demonstrate the applicability of PLTrans to
multiple vision tasks.

4.1. Experimental Settings

4.1.1 Training Data

PLTrans was trained on FFHQ [19], which contains 70,000
HQ face images. To construct LQ training images, we fol-
low [48] to degrade the FFHQ images as follows:

ILQ = ((IHQ ⊗Kρ)↓b
+ nσ)JPEGw

. (13)

Each HQ image is first convoluted with the Gaussian blur
kernel which has a standard deviation ρ ∈ {0 : 0.1 : 5}.
Afterwards, it is downsampled b ∈ {0.8 : 32} times, and is
corrupted by Gaussian noise with intensity parameter σ ∈
{0 : 10}. Furthermore, the JPEG compression with quality
factor w ∈ {50 : 100} is then applied to the resulting image.

4.1.2 Test Data

We assess the restoration performance of the proposed
PLTrans and the competing methods on a well-known
benchmark dataset: CelebA-HQ [28], and multiple in-the-
wild datasets: WIDER FACE [47], LFW-Test [17] and
WebPhoto-Test [41]. Specifically, we randomly sample
2,000 CelebA-HQ images and apply the degeneration op-
eration defined in Eq.(13) to construct degraded images,
and the resulting test dataset is referred to as CelebA-
Test. WIDER-Hard/Medium are derived from the WIDER
FACE dataset, and there are 13,890/3407 face images with
heavy/medium degradations. In addition, LFW-Test and
WebPhoto-Test contain 1,711 and 407 mildly degraded face
images, respectively.

4.1.3 Implementation Details

We adopt an encoder-transformer-decoder architecture to-
gether with a generic discriminator for the proposed
PLTrans. We implement PLTrans using PyTorch with two
NVIDIA GeForce RTX 3090s. For the optimizer, we adopt
Adam [21] with a learning rate of 5×10−5. There are a total
of 30 training epochs with a batch size of 4. For the hyper-
parameters, we set the number of fetched elements d and
the weighting factor λ in Eq.(12) are set to 8 and 5×10−5,
respectively.

4.1.4 Evaluation Protocol

We implement all the competing methods based on the open
source codes, and both training and test images are resized
to 512×512 for a fair comparison. The widely used metrics:
Peak Signal-to-Noise Ratio (PSNR) and the Learned Per-
ceptual Image Patch Similarity (LPIPS) are used to quanti-
tatively evaluate the consistency between the restored face
images and the corresponding ground truth. Considering
that identity preservation is critical for BFR, we further re-
port the IDentity Similarity (IDS) to the ground truth after
restoration in the feature space of a well-trained face recog-
nition model: CosFace [39]. In addition, we assess the di-
versity and the degree of realism of the synthesized data in
terms of Fréchet Inception Distances (FID) [13].

4.2. Degradation-unaware Representation

We begin by verifying the effectiveness of our latent dif-
fusion module in producing degradation-irrelevant features.
There are 500 HQ images and the corresponding 500 LQ
images randomly sampled from CelebA-Test. For each HQ
image and its degraded counterpart, we extract and denote
their encoder features as qhq and qlq. We apply the latent
diffusion-based regularization on qlq, and denote the regu-
larized version as q̂lq. In Figure 3, we visualize the feature
distributions by using t-SNE [37], and can observe that the
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Figure 3. Distributions of HQ image features qhq , LQ image fea-
tures qlq , and the regularized LQ image features q̂lq

.

Figure 4. The average distances between the regularized LQ image
features and the HQ counterparts in the training process.

clusters of qhq and qlq are separable, while the data points
of q̂lq mix with those of qhq . This indicates that our regu-
larization module is useful for mitigating degradations to a
certain extent.

4.3. Impact of the Number of Diffusion Steps

To obtain the degradation-unaware features, we regular-
ize the preliminary features by performing n-step pertur-
bations followed by a reverse diffusion process. It is non-
trivial to determine the optimal number of diffusion steps
for BFR. For a given image with heavy degradation, it typi-
cally takes more perturbation and denoising steps to restore
it, and vice versa. To illustrate this point, we perform an
experiment on the face images with four levels of degrada-
tions (×8/16/32/64 downsampling). In Figure 4, we plot the
average distances between the regularized features of LQ
CelebA-Test images and the preliminary features of the HQ
counterparts in the training process, and the shaded regions
around these lines illustrate their variance. One can observe
that the average distance to the HQ data quickly achieves
the minimum value for the cases where the degree of degra-
dation is low. This confirms that more diffusion steps are
needed to restore the clean face image from a heavily de-
graded one. After the minima are attained, increasing the
steps leads to a performance drop, since the relationship be-
tween the preliminary features and the corrupted features
fades. In Figure 5, we visualize the restored face images at
×32 downsampling scale, showcasing the effects of using
varying numbers of diffusion steps.

Figure 5. The restoration results of PLTrans with different num-
bers of diffusion steps.

Table 1. Results of PLTrans and ablative models on CelebA-Test.

Methods FID↓ LPIPS↓ PSNR↑ IDS↑

PLTrans w/o V 90.12 0.4808 18.81 0.2866
PLTrans w/o DIFF 44.96 0.4304 18.89 0.4820

PLTrans w/o LT 42.12 0.4301 19.11 0.5201
PLTrans w/o DWT 41.57 0.4487 17.99 0.4672

PLTrans 39.58 0.4260 19.36 0.5264

4.4. Ablation Study

We consider that the superior restoration performance
of our PLTrans is mainly due to the latent diffusion-based
regularization, HQ face prior, DWT-based low-frequency
information injection and the prior-based key-value. To
highlight the effectiveness of the four factors in BFR, we
perform a number of ablative experiments. Specifically,
we build four variants by disabling the diffusion mod-
ule (DIFF), DWT, dictionary and Lightweight Transformer
(LT) in the Prior-based Key-Value Module, and the resulting
models are referred to as ‘ PLTrans w/o DIFF’, ‘ PLTrans
w/o DWT’, ‘ PLTrans w/o V’ and ‘ PLTrans w/o LT’ re-
spectively. The experiments are performed on CelebA-Test,
and we summarize the results of the models in terms of FID,
PSNR, LPIPS and IDS in Table 1. We can make the follow-
ing observations: PLTrans outperforms its variants, yielding
superior quantitative results across all the metrics. With-
out the latent diffusion-based regularization, it is difficult
to restore the disordered structural information of degraded
images, and the restoration performance reduces 5.38 in
terms of FID. A number of artifacts in the resulting syn-
thesized images are also observed as shown in Figure 6.
When compared with ‘PLTrans w/o V’, the inclusion of the
latent dictionary leads to 0.0548 improved performance in
terms of LPIPS. This demonstrates that the HQ face prior is
useful for synthesizing texture details. When disabling the
lightweight transformer module, ‘ PLTrans w/o LT’ learns
the key and value vectors directly from the dictionary fea-
tures, and we can observe a performance drop of 0.25 in
terms of PSNR. We conclude that this module can infer a
reasonable transformation to leverage the prior knowledge,
which is useful for plausible synthesis. What’s more, when
disabling the DWT-based information injection module, ‘
PLTrans w/o DWT’ leads to a significant performance drop
of 0.0592 in terms of IDS. This suggests the information in-
jection module is beneficial for preserving the semantics of
the input image.
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Figure 6. Visual comparison between PLTrans and ablative models on an in-the-wild image.

4.5. Comparison to State-of-the-arts

To demonstrate the superiority of the proposed PLTrans,
we perform quantitative and qualitative comparisons with
state-of-the-arts, including generic image enhancement
methods: Restormer [50] and DIL [23], BFR methods:
GFP-GAN [41], GPEN [48], RestoreFormer [43] and
Panini [42], and two diffusion-based methods: ILVR [5]
and DR2 [44].

4.5.1 Results on CelebA-Test

We adopt the same setting as [43] to perform the experi-
ments, where PLTrans and the competing methods are used
to restore the degraded face images across a spectrum of
downsampling ratios (×16, ×32, ×64). The results of
the methods are summarized in Table 2. GPEN, DR2 and
RestoreFormer achieve lower FID/LPIPS and higher IDS
scores than the other competing methods, which indicates
that they perform better in terms of the precision and real-
ism of the restored face images. On the other hand, PLTrans
surpasses the competing methods in terms of all the metrics.
In particular, for the most difficult case of downsampling
×64, PLTrans is able to achieve the FID and PSNR scores
of 39.58 and 19.36, which are lower and higher than the sec-
ond best methods (GPEN: FID 45.12; DIL: PSNR 19.25) by
5.54 and 0.11, respectively.

Both ILVR and DR2 are diffusion-based methods, and
DR2 outperforms ILVR in the above comparison. Differ-
ent from DR2 which relies on a pre-trained DDPM model,
PLTrans learns a latent diffusion module to regularize the
preliminary features of degraded images. We perform an
additional experiment to further highlight the advantage of
PLTrans over DR2. We apply the methods to handle four
types of degradation: Gaussian Noise, Blur, Downsample,
and JPEG. Figure 7 shows the PLTrans is able to signif-
icantly outperform DR2. This suggests that the proposed
latent diffusion strategy is more effective for our task.

Figure 7. Comparison between PLTrans and DR2 over different
types of degradations.

4.5.2 User Study on In-the-wild Data

We further evaluate PLTrans and the competing methods
on WIDER-Hard/Medium, LFW-Test and WebPhoto-Test.
Please note that all the models are trained on FFHQ only. In
Figure 8, we also present a number of representative restora-
tion results to demonstrate the advantages of PLTrans in re-
ducing artifacts, restoring realistic details, and preserving
identity. A user study is performed to assess the restoration
quality. We randomly sample 50 degraded face images from
the four datasets, and there are 80 workers who are required
to score the restoration results of the methods, ranging from
0 to 10. The maximum attainable score is 10 points. The
high-score results should represent delightful content with
realistic details, while at the same time properly preserving
the basic information of the degraded ones. To ensure an
unbiased evaluation, the results of the models are presented
in a random order. Figure 9 shows the average scores of
the models. Our PLTrans achieves the best performance in
terms of the highest average scores with a small variance.

4.6. Extended Applications

Due to the inclusion of the latent diffusion module, the
proposed PLTrans is capable of performing various image
synthesis and editing tasks. We impose Gaussian regular-
ization on the latent variable u in Eq.(2), and is thus able
to synthesize diverse face images by sampling u from the
prior distribution. In addition, we apply linear interpola-
tion to construct a path between two latent variables: u1

and u2, and decode the interpolated vectors. We find that
PLTrans can produce continuously changing images along
the path. By feeding out-of-domain images, such as car-
toon, incomplete image, human scribble and segmentation
map, the synthesized face images are realistic while at the
same time preserving semantic consistency with the input
to a certain extent. We can also edit face components by
replacing the u’s subvector associated with the customized
region with the counterparts of the reference. As shown in
Figure 10, PLTrans produces realistic face images in dif-
ferent tasks. This demonstrates the greater capability of
PLTrans in face image enhancement.

5. Conclusion
This paper presents a prior-based latent transformation

approach for blind face restoration. We facilitate this task
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Table 2. Quantitative Comparison between PLTrans and competing methods on CelebA-Test.

Methods × 16 × 32 × 64

FID↓ LPIPS↓ PSNR↑ IDS↑ FID↓ LPIPS↓ PSNR↑ IDS↑ FID↓ LPIPS↓ PSNR↑ IDS↑

GFPGAN [46] 40.83 0.3583 21.00 0.6446 107.65 0.4334 18.91 0.2523 159.24 0.4590 18.41 0.1679
GPEN [48] 25.82 0.3781 20.28 0.7126 36.22 0.4339 18.62 0.5698 45.12 0.4512 18.20 0.5011
ILVR [5] 103.08 0.5708 21.08 0.5768 97.96 0.5446 19.76 0.5173 107.83 0.5734 19.21 0.4627

Panini [42] 47.14 0.3935 21.90 0.6754 44.23 0.4838 19.01 0.4857 52.37 0.4864 19.06 0.4272
Restormer [50] 148.56 0.5981 22.12 0.3346 185.25 0.6302 19.79 0.1771 197.32 0.6459 19.24 0.1332

RestoreFormer [43] 24.32 0.3592 21.99 0.7378 39.39 0.4397 19.41 0.5379 46.28 0.4597 19.11 0.4778
DIL [23] 207.88 0.6375 21.91 0.3626 406.17 0.6835 19.81 0.1697 463.76 0.6918 19.25 0.1230
DR2 [44] 35.18 0.4115 21.09 0.5965 43.41 0.4276 19.62 0.5273 49.64 0.4560 19.14 0.4721
PLTrans 19.64 0.3207 22.13 0.7412 32.36 0.3978 19.91 0.5963 39.58 0.4270 19.36 0.5264

Figure 8. Visual comparison between PLTrans and competing methods on representative in-the-wild images.

Figure 9. The scoring result of user study on in-the-wild data.

by improving the attention computation in a restoration
transformer, which represents an effective attempt to trans-
form query, key and value vectors to synthesize the clear
face images from degraded ones. Toward this end, we in-
corporate a latent diffusion module to regularize the prelim-
inary features, such that the regularized version becomes
less sensitive to degradations. This is essential for enhanc-
ing the generalization performance over unknown degrada-
tions. We further incorporate a HQ face prior in the form
of a latent dictionary to learn key and value, followed by
cross-attention computation with the regularized features as
query. Extensive experiments validate the effectiveness of
our proposed framework PLTrans in restoring faithful de-
tails and preserving identity information.
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