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Abstract

Personalized Federated Learning (pFL) has emerged as a
promising solution to tackle data heterogeneity across clients
in FL. However, existing pFL methods either (1) introduce
high computation and communication costs or (2) overfit
to local data, which can be limited in scope and vulnerable
to evolved test samples with natural distribution shifts. In
this paper, we propose PERADA, a parameter-efficient pFL
framework that reduces communication and computational
costs and exhibits superior generalization performance, es-
pecially under test-time distribution shifts. PERADA reduces
the costs by leveraging the power of pretrained models and
only updates and communicates a small number of addi-
tional parameters from adapters. PERADA achieves high
generalization by regularizing each client’s personalized
adapter with a global adapter, while the global adapter uses
knowledge distillation to aggregate generalized information
from all clients. Theoretically, we provide generalization
bounds of PERADA, and we prove its convergence to station-
ary points under non-convex settings. Empirically, PERADA
demonstrates higher personalized performance (+4.85% on
CheXpert) and enables better out-of-distribution generaliza-
tion (+5.23% on CIFAR-10-C) on different datasets across
natural and medical domains compared with baselines,
while only updating 12.6% of parameters per model. Our
code is available at https://github.com/NVlabs/PerAda.

1. Introduction
Federated Learning (FL) allows clients to collaboratively
train machine learning models without direct access to their
data, especially for privacy-sensitive tasks [45]. FL was ini-
tially designed to train a single global model for all clients.
However, such a one-model-fits-all paradigm is not effective
when there is client heterogeneity, i.e., the local data are non-
IID across clients with heterogeneous features or label dis-
tributions [35]. Personalized Federated Learning (pFL) [43]
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Figure 1. Accuracy of personalized models on Office-Home.
“Full”/“Partial” denotes full/partial model personalization. PER-
ADA achieves the highest personalized performance and general-
ization by updating the smallest number of model parameters.

has emerged as an effective solution to tackle client hetero-
geneity. In pFL, each client trains a personalized model
on its local data to ensure personalized performance, while
leveraging the aggregated knowledge from other clients to
improve its generalization.

Existing works in pFL commonly use full model person-
alization, where each client trains a personalized model as
well as a copy of the global model from the server for regu-
larization [33, 59]. However, these methods are parameter-
expensive, leading to high computational and communica-
tional costs, which is impractical for clients with limited
computation resources and network bandwidth [26]. Later
on, partial model personalization alleviates this issue by
splitting each client’s one model into personalized param-
eters and shared parameters, where only the set of shared
parameters would be communicated with the server [48].
Nonetheless, these methods tend to overfit more to the lo-
cal training samples since the set of shared parameters does
not encode generalized knowledge well compared to a full
global model. This hurts the performance of partially per-
sonalized models in real-world FL deployment, where the
incoming local test samples are evolving with natural shifts
from the local training distribution [25], e.g., images taken
under varying weather or lighting conditions.
Our Approach. In this work, we propose PERADA, a pFL
framework that reduces communication and computation
costs for clients while personalizing the model and maintain-
ing its generalization to test-time distribution shifts, as shown
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Figure 2. Illustration of PERADA.

in Figure 1. PERADA is a parameter-efficient personalized
FL framework based on Adapter [50] and Knowledge Distil-
lation (KD) [20]. The overview is shown in Figure 2.

Each client has a pretrained model, a personalized adapter,
and a local adapter, where each adapter consists of a small
number of additional parameters planted in the pretrained
model with skip connections. At each training round, to
reduce the computation and communication costs, PERADA
leverages the power of the pretrained model, and only up-
dates the personalized adapter and the local adapter using
local data, and sends the local adapter to the server. In this
way, it limits the number of trainable parameters and only
communicates the local adapter, instead of the full model.

Then, to improve the generalization, the server aggregates
clients’ local adapters (i.e., teachers) via knowledge distilla-
tion and trains the global adapter (i.e., student). Specifically,
it uses the averaged logits from teachers on an unlabeled pub-
lic distillation dataset as the pseudo-labels to train the student.
This avoids directly averaging clients’ models trained on het-
erogeneous local data, while enriching the global adapter
with the ensemble knowledge from clients’ models and miti-
gating the potential model aggregation drifts caused by het-
erogeneity. After that, the server sends the distilled global
adapter back to the clients, which is used to initialize the
local adapter and regularize the training of the personalized
adapter to prevent overfitting and improve the generalization.
During the testing phase, each client uses the personalized
adapter for inference.

To explain why PERADA is effective in improving gener-
alization, we theoretically derive its generalization bounds
under FL covariate (or feature) shift non-IID setting [44]. We
are the first to show that the generalization on a target distri-
bution (e.g., potentially with test-time distribution shift) can

be enhanced for both global model and personalized models
by KD when the distillation optimization error is small, and
the distribution of the unlabeled distillation dataset is close
to the target distribution. We also characterize the role of
different components in PERADA on generalization, such
as client heterogeneity, pretrained model, and the prediction
distance between the global and personalized models.

In addition, we establish convergence guarantees for PER-
ADA in general non-convex settings. The analysis of PER-
ADA is challenging due to the bi-level optimization between
server distillation training and local client training. We es-
tablish the convergence rates for the global model and per-
sonalized models to stationary points and demonstrate the
effects of KD and client heterogeneity on the convergence.
As far as we know, these are the first-known results for FL
convergence under server distillation.

Empirically, we conduct extensive evaluations on differ-
ent datasets, including natural and medical images (CIFAR-
10, Office-Home, and CheXpert) under both FL covariate-
shift and label-shift non-IID settings. We show that PERADA
achieves competitive personalized accuracy over state-of-the-
art pFL methods with only 12.6% of trainable parameters
while obtaining higher generalization, especially when eval-
uated on out-of-distribution data. We further show that the
benefits of PERADA extend to differentially private (DP) FL
settings and improve the DP-utility trade-offs compared to
full model personalization. In summary,
• We propose PERADA, a lightweight pFL framework with

personalized adapters that provides personalization while
reducing computation/communication costs. We improve
the generalization of PERADA with server-side KD.

• We theoretically analyze the effectiveness of PERADA,
and prove the generalization bounds and the convergence
rates for both the global model and personalized models
under non-convex settings.

• Through extensive experiments, we show that PERADA
achieves higher personalized performance and better gen-
eralization than state-of-the-art pFL methods with smaller
computation and communication costs. Moreover, PER-
ADA retains its benefits under differential privacy.

2. Related Work
Full Model Personalization. Many pFL approaches require
each client to train a personalized model and a global model,
where the global model is used to prevent the personalized
model from overfitting. It includes methods based on meta
learning [12], model mixture [10, 16, 43], global reguarl-
ization [33], mean regularization [16, 17, 59] and cluster-
ing [15, 54]. However, these methods induce high costs by
training two full models in each client and communicating
the full model. Another approach is to locally finetune an FL
global model (e.g., from FEDAVG [45]). While local fine-
tuning yields promising personalized accuracy [8, 62, 65], it
could be prone to catastrophic forgetting and overfitting to its
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(limited) local data, sacrificing the generalizability [25, 49].
Partial Model Personalization trains one model for each

client to reduce the costs, which is partitioned into shared
parameters and personalized parameters, such as personal-
ized feature extractors [9], prediction head [3, 7, 38], batch
normalization [36], adapters [48], and adaptively selected
parameters [58]. Nevertheless, the shared parameters do
not learn generalized information well compared to a full
global model, so the partially personalized models can have
inferior generalization ability. To further reduce the costs,
Shysheya et al. [56] apply parameter-efficient transfer learn-
ing techniques to train FEDAVG and perform local finetuning.
However, it does not specifically address the generalization
issues of personalization, which is the focus of our work.

Knowledge Distillation (KD) in FL. KD is a technique
that transfers the knowledge from one or multiple teacher
models to a student model [20]. Ensemble distillation has
been used to tackle data heterogeneity in generic FL, by
refining the server model with ensemble knowledge from
clients, rather than directly aggregating their model param-
eters. Specifically, the ensemble predictions from clients’
models on an unlabeled dataset are used to guide the train-
ing of the server model, where the unlabeled dataset can be
public data [6, 31, 39] or generated data [67]. Another line
of work leverages client-side local distillation to transfer
global knowledge to local models in generic FL [29, 68]
or personalized models in pFL [46, 66]. To reduce the load
for clients, we focus on parameter-efficient ensemble distil-
lation in the server with public data to train a better global
model, and study its effects on personalized models with
novel convergence guarantees and generalization bounds.

Parameter-efficient fine-tuning techniques applied to
pretrained large models [5] have become the prominent prac-
tice in transfer learning to save computation costs [14, 30,
40]. Motivated by the success of Adapter, a low-cost plug-in
mounted on pre-trained vision models [50] or large language
models [21, 37, 41], we investigate Adapter in the context of
parameter-efficient personalization. Instead of training both
the backbone and adapter for pFL as in [48], we treat the
adapter parameters as personal and the rest of the model pa-
rameters as frozen, and further leverage sever-side ensemble
distillation to improve pFL performance.
3. Preliminaries and Challenges
We consider a typical setting of FL with M clients
where each client m has a training dataset Dm =

{(xm,j , ym,j) , j 2 [nm]} with nm data samples dawn
from its local distribution µm. Let f(W,x) represents a
model that outputs the logit vector given input x, where
W 2 Rd, denotes its model parameters. Let the loss
function be `(f(W,x), y), and the empirical loss on lo-
cal data Dm associated with client m be Lm(W ) :=
1

nm

Pnm

j=1 ` (f (W,xm,j) , ym,j).
Generic FL aims to optimize a single global model with

all clients’ local data with the FL objective: minW L(W )

where L(W ) :=
1
M

PM
m=1 Lm(W ). A standard way to

solve it is FEDAVG, which iterates between local model
training and global model aggregation for multiple commu-
nication rounds. However, due to the heterogeneous local
data distributions among clients, local model would drift
away from each other, making the aggregated global model
deviate from the optimal solution.

Personalized FL learns a personalized model for each
client to perform well on its local data while preventing
overfitting by leveraging the knowledge from other clients.
However, achieving the goal is non-trivial due to the fol-
lowing challenges: (1) High costs: existing full model
personalization studies [12, 16, 33, 59], which optimize
minW,{Vm}

1
M

PM
m=1(Lm(Vm) +

�
2 kVm �Wk2), require

twice the memory footprint of the full model at each client
by locally updating personalized model Vm 2 Rd and global
model W 2 Rd where � is the `2 regularization weight
controlling the extent of personalization. (2) Limited gener-
alization: partial model personalization [7, 9, 38, 48] is more
efficient by training a full model Vm = (u, vm) at each client
and communicating a subset of parameters, where u 2 Rdu

are shared parameters and vm 2 Rdv are personal param-
eters: minu,{vm}

1
M

PM
m=1 Lm(u, vm). However, such a

partially personalized model can be dominated by personal
knowledge with vm and poor at encoding generalized knowl-
edge with the remaining u from global distribution, leading
to inferior performance under test-time distribution shifts.
Figure 3 depicts such challenges in existing studies.
4. Method
Here we introduce the objectives and algorithm for PERADA.

Personalized and Global Objectives of PERADA. We
address the challenges discussed in Sec. 3 by proposing
PERADA, which improves the efficiency of learning per-
sonalized adapters and enhances their generalization with
regularization and KD. Specifically, we (1) train the person-
alized adapter {vm} regularized towards a global adapter
w to optimize a personalized objective (Personal Obj), and
(2) train a well-generalized w via KD to optimize a global
objective (Global Obj) under non-IID data, where we use
the alternative optimization between client local training of
local adapter {✓m} and server KD training of w.

Concretely, we improve the efficiency of partial model
personalization with a pretrained model and personalized
adapters. Here the personalized adapter consists of a small
number of additional parameters with skip connections (in
Figure 2), which can reduce to the identity function when
its parameters are zero [50, 66]. Our personalized adapter
is trained with regularization to prevent overfitting, yielding
the personal objective of each client m:

min
vm

Pm(vm, w) := Lm(u, vm) +
�

2
kvm � wk2,

(Personal Obj)
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where u 2 Rdu denotes the fixed pretrained parameters, and
vm, w 2 Rda are personalized adapter and global adapter,
respectively, with da ⌧ du.

Since the global adapter w is trained with all client data,
regularizing vm with w could potentially boost vm’s general-
ization power. Thus, enhancing w’s generalization capacity
is crucial for training a personalized model that demonstrates
robust generalization as well. Instead of using FEDAVG [45]
to learn w as in regularization-based pFL method [33], we
leverage server-side ensemble distillation [39] to enrich the
global adapter with ensemble knowledge from clients’ mod-
els and alleviate model aggregation drifts induced by client
heterogeneity, yielding the global objective:

min
w

RKD(u, {✓m}Mm=1, w) (Global Obj)

where ✓m = argmin
✓

Lm(u, ✓), initialized with w.

Here ✓m 2 Rda is client m’s locally updated global
adapter, and we call it as local adapter for distinguish-
ment. The KD loss is defined as: RKD(u, {✓m}Mm=1, w) :=Pnaux

j=1 `KD(
PM

m=1
f((u,✓m),xj)

M , f((u,w), xj)), which is the
average distillation loss (between the averaged logits of local
models and logits of the global model) on an auxiliary (unla-
beled) dataset Daux = {xj}naux

j=1 drawn from the distribution
µaux. Here `KD(a, b) = KL(�(a),�(b)) is Kullback-Leibler
divergence loss where � is softmax function [20]. Compared
to server-side KD in generic FL [6, 39, 67], we only update
adapters instead of full models, which is more efficient for
training and communication.

Algorithm 1 PERADA with client and server training
1: Input:M clients, pretrained model parameters u, initialized adapters

w0, {v0m}, local datasets {Dm}, an unlabeled dataset Daux

2: Output: Personalized adapters vT1 , . . . , vTM
3: for communication round t 2 [T ] do
4: St  Server samples C clients from M clients
5: Server sends global adapter wt to the selected clients
6: for client m 2 St do
7: Client initializes personalized adapter vt,0m as vtm
8: for step s 2 [S] do
9: // update personalized adapter

10: v
t,s+1
m  v

t,s
m � ⌘p

⇣
frLm

⇣
u, v

t,s
m

⌘
+ �

⇣
v
t,s
m � wt

⌘⌘

11: Client sets vt+1
m  vt,Sm

12: Client initializes local adapter ✓t,0m as wt

13: for step e 2 [E] do
14: // update local adapter
15: ✓t,e+1

m  ✓t,em � ⌘l erLm(u, ✓t,em )

16: Client sends local adapter ✓t+1
m  ✓t,Em to server

17: Server initializes the global adapter wt,0 by averaging
18: wt,0

 
P

m2St
1

|St|
✓t+1
m

19: for step r 2 [R] do
20: // update global adapter
21: wt,r+1

 wt,r
� ⌘g erwRKD(u, {✓

t+1
m }m2St , wt,r)

22: Server sets wt+1  wt,R

PERADA Algorithm. Now we introduce the details of
iteratively optimizing the personalized objective and the
global objective. Algorithm 1 presents our workflow. At
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Figure 3. Current full model personalization incurs high computa-
tion costs by training two models, whereas existing partial model
personalization often falls short in terms of generalizability. By up-
dating adapter only, PERADA achieves a favorable balance between
training/communication costs of clients and their pFL performance.

each communication round t 2 [T ], the server selects C

clients St and broadcasts the current global adapter w
t.

To optimize personalized objective, each selected client
m 2 St initializes personalized adapter as vt,0m  v

t
m, and

updates it for S steps with learning rate ⌘p and mini-batches
{⇠t,sm }S�1s=0 sampled from Dm (Line 10). The client sets
personalized adapter v

t+1
m  v

t,S
m after training. To op-

timize global objective, each selected client m initializes
local adapter as the received global adapter ✓t,0m  w

t, and
makes local updates for E steps with learning rate ⌘l and
mini-batches {⇠t,em }E�1e=0 sampled from Dm (Line 15). Then
client m sends the updated local adapter ✓t+1

m  ✓
t,E
m to

server. After receiving local adapters, the server first initial-
izes the global adapter by parameter-averaging w

t,0  ✓̄
t+1
m

where ✓̄t+1
m :=

P
m2St

1
|St|

✓
t+1
m . Then, the server updates

global adapter for R steps via knowledge distillation from
local adapters (Line 21) with learning rate ⌘g and batches
{⇠t,r}Rr=1 sampled from Daux. The server will send the up-
dated global adapter as wt+1  w

t,R to clients at the next
communication round.

5. Generalization Bounds of PERADA
In this section, we analyze the generalization bounds for
PERADA by answering the questions: how do the distillation
data distribution and KD optimization impact the generaliza-
tion of the global model? How does the global model impact
the generalization of personalized models?

For notation simplicity, we define p1, · · · , pM as the per-
sonalized hypothesis, where each hypothesis pm 2 Pm :

X ! [0, 1]
k maps the input x 2 X to a probability vec-

tor over the k classes (i.e., softmax outputs). Similarly,
we define global hypothesis g 2 G and local hypothesis
hm(x) 2 Hm, 8m 2 [M ]. We call “hypothesis” as “model”
in this section. The local dataset Dm of each client m is
drawn from the local distribution µm, and the distillation
dataset Daux of the server is drawn µaux. We study gener-
alization of the global model and personalized models on
a target distribution µ of interest (e.g., with distribution
shifts), by analyzing the effect of local distributions {µm}
and distillation distribution µaux used in FL training. We
focus on the generalization bounds under FL covariate shifts
following [44] and defer all proofs to Appendix C.
Global Model. Previous KD-based FL generalization
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bounds [39, 68] simply assume a perfect distillation (i.e.,
the global model is the ensemble of local models) which
neglects the actual distillation errors and the choice of
distillation distribution. To take them into account, we
define the ensemble distillation distance on naux points
{xi}naux

i=1 drawn from µaux as: �µaux,naux
(h1, . . . , hM ; g) :=

1
naux

Pnaux

i=1 kg(xi) � 1
M

PM
m=1 hm(xi)k1 which measures

the output difference between the global model and the en-
semble of local models. To show g can have good generaliza-
tion bounds on µ with KD, our main idea is to bound error
probabilities of g with the expected distillation distances and
errors of local models, and then bound the errors on µ by µm

based on prior arts from domain adaptation [4]. We defer
the preliminaries about learning theory to Appendix C.3.

Theorem 1 (Generalization bound of PERADA global
model). Consider empirical datasets D ⇠ µ,Daux ⇠
µaux,Dm ⇠ µm with |D| = |Dm| = n, |Daux| = naux.
Let dm be the VC dimension of Hm, Radnaux

be
the empirical Rademacher complexity measured
on naux samples. With probability at least 1 � �,
for every hm 2 Hm, 8m 2 [M ] and g 2 G, we

have Pr
(x,y)⇠µ


argmax

y0
g(x)y0 6= y

�
 2E

(x,y)⇠µ
[1 �

g(x)y]  O(k
3/2

[maxj(
1
M

PM
m=1 Radnaux

(Hm|j)) +

maxj Radnaux
(G|j)])+ 6

M

MP
m=1

(
4
3

q
2dm log(2n)+log(6M/�)

n +

q
log(6M/�)

2n +

q
log(6/�)
2naux

+ O(Radn(Hm))) +

1
M

MP
m=1

(2ERR(Dm, hm)| {z }
local empirical risk

+ d̂H�H(Dm,D)| {z }
client heterogeneity

+�m) +

2�µaux,naux
(h1, . . . , hM ; g)

| {z }
ensemble distillation distance

+4TV(µ, µaux)| {z }
TV divergence

, where

ERR(Dm, hm) =
1
n

Pn
j=1

⇥
1� hm(xm,j)ym,j

⇤
,�m =

"µm(h
⇤
) + "µ(h

⇤
), h
⇤
:= argminh2H "µm(h) + "µ(h).

Remark 1. We discuss key implications of Theorem 1: (1)
Ensemble distillation. �µaux,naux

captures the distillation
error measured on the distillation dataset Daux as minimized
in Line 21. When µaux = µ, e.g., using data from the target
distribution as the distillation dataset, KD improves the
generalization of g during training by directly minimizing
�µaux,naux

. The smaller the distillation distance, the better
the generalization. When µaux 6= µ, KD on µaux decreases
�µaux,naux

while causing additional generalization gap
measured by TV divergence TV(µaux, µ). Compared to
without KD, using a distillation dataset from a domain
close to µ with small TV(µaux, µ) and reducing �µaux,naux

during KD can also improve the generalization (e.g., when
�µaux,naux

+2TV(µaux, µ)  �µ,naux
). We empirically verify

the effect of different distillation datasets in Sec. 7.1. (2)
Quality of local models. The ERR(Dm, hm) term shows
that reducing the empirical risk of local models w.r.t local

distributions µm improves the generalization of the global
model. We verify in Sec. 7.1 that a more powerful pretrained
model, which results in higher quality local models, leads
to better generalization. (3) Sample complexity. More
empirical samples during training improve the generaliza-
tion. We further discuss the effect of client heterogeneity
d̂H�H(Dm,D) (i.e., the empirical H -divergence between
two datasets) and number of classes k in Appendix C.1.
Personalized Models. We show that personalized model
pm can generalize well on µ if global model g generalizes
well on µ and pm has small prediction distance with g.

Theorem 2 (Generalization bound of PERADA per-
sonalized model). With probability at least 1 � �,
for every pm 2 Pm, 8m 2 [M ], and for every

g 2 G, we have Pr(x,y)⇠µ


argmax

y0
pm(x)y0 6= y

�


2E(x,y)⇠µ(1� g(x)y)+2
1
n

Pn
i=1 min {1, kpm(x)� g(x)k1}+

6

q
log(2/�)

2n +O
�
k
3/2

[maxj Radn(P|j) + maxj Radn(G|j)]
�
.

Remark 2. The first term is the population risk of g on µ,
which has been upper bounded by Theorem 1. The second
term is the prediction difference between g and personalized
models. Therefore, the generalization of personalized model
is intrinsically related to the performance of global model. In
Sec. 7.1, we empirically show that moderately increasing the
regularization strength � in (Personal Obj) could improve the
generalization of pm, by reducing such prediction distance.

6. Convergence Guarantees of PERADA
In this section, we aim to provide the convergence analysis.
We outline the analysis challenges for PERADA, arising from
the bi-level optimization between server distillation and local
training, as well as the personalization regularized by the
global model. Then, we present the convergence analysis
for PERADA global model and personalized model. For
notation simplicity, we will omit the frozen parameters u

and use w/✓m/vm to represent corresponding models.
To convey the salient ideas, we consider full client par-

ticipation (i.e., |St| = M ) for convergence analysis follow-
ing [46, 52]; thus, the stochasticity comes from mini-batch
samplings during client and server training. Below, we first
give several necessary assumptions.

Assumption 1. (Smoothness). Lm(✓) is L-Lipschitz smooth
8m 2 [M ] and R({✓m}, w) is LR-Lipschitz smooth.

Assumption 2. (Bounded Variance). The stochastic gra-
dients are unbiased and variance is bounded 8m 2 [M ]:
EkerLm (✓) � rLm (✓) k2  �

2, EkerwR({✓m}, w) �
rwR({✓m}, w)k2  �2

R.

Assumption 3. (Bounded Diversity). The variance
of local gradients to global gradient is bounded
1
M

PM
m=1 krLm(w)� 1

M

PM
i=1rLi(w)k2  �̄.
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Assumption 4. (Bounded Gradients). The func-
tions Lm,R, Pm, 8m 2 [M ] have bounded gradi-
ents: krLm(✓)k  G, krwR({✓m}, w)k  GR,
krwPm(vm, w)k  GP .

We defer more discussions on the assumptions to Ap-
pendix D.1. Next, we discuss the challenges and present the
main results. All proofs are relegated to Appendix D.
Global Model Convergence with Ensemble Distillation.
Despite the wide applications of knowledge distillation in
FL [29, 66, 68], its convergence analysis is less explored. To
the best of our knowledge, there is no convergence guaran-
tee under server-side ensemble distillation [6, 31, 39, 67].
This lack of research is likely because (1) the complexity of
bi-level optimization between server distillation for wt and
client training for {✓tm}, which incorporates two objectives
(i.e., minimizing distillation loss and local loss respectively);
(2) at each round, the global model is initialized by averaged
local models before distillation, and local models are initial-
ized by the global model before local training. Such mutual
initializations intervene in the model updating trajectories
of wt and {✓tm} w.r.t their training objectives, making the
convergence even harder to analyze. On the other hand, it
has been empirically shown that ensemble distillation can
improve the global model performance by incorporating di-
verse knowledge from clients (e.g., low L(wt

) measured on
all clients’ data) [6, 31, 39, 67]. Therefore, we aim to under-
stand the global model convergence w.r.t L(wt

) as a function
of ensemble distillation. To overcome the aforementioned
challenges, we regard {✓tm} as the intermediate models to
update w

t+1, and quantify the effects of local client training
and server distillation on optimizing FL global objective:
Theorem 3 (Convergence of PERADA global model). Let
Assumptions 1 to 4 hold, and ⌘l =

1
EL
p
T

, ⌘g =
1

LRRT ,
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R. In particular,
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Remark 3. (1) Convergence rate is O(1/

p
T ) as it is the

dominant term, matching the rate of the general FL non-
convex settings of our interest [46, 59]. (2) Local steps &
distillation steps. With more local updating steps E and
distillation steps R, the terms  1 and  2 decrease. It means
that a larger E and R can reduce the required communica-
tion rounds T to converge, thus lowering communication
costs. (3) Client heterogeneity is reflected in �̄, whose ef-
fect can be mitigated by larger T . (4) Ensemble distillation
is mainly reflected in  2 where �2

R are inherent data sam-
pling noise when using stochastic gradients [12, 59], and GR

is from the bounded gradient assumption for distillation. The

distillation gradient can be small when the averaged logits
of local models (teacher) and the logits of the global model
(student) are close (See Equation (11) and more discussion
in Appendix D.1). Notably, the convergence bound remains
valid for any distillation data, even if it is out-of-domain.

Personalized Model Convergence. Regarding personaliza-
tion, unlike [59], to preserve generalization, the global model
w

t of PERADA is not updated based on the personalized ob-
jective P (v

t
m, w

t
). Thus, it remains unclear how the global

model wt learned from the ensemble distillation impacts
the convergence of personalized models w.r.t P (v

t
m, w

t
). In

Theorem 4 (Appendix D.1), we analyze such impacts and
show the convergence rate of personalized models.

7. Experiments
We empirically compare PERADA to existing pFL methods.
We defer the details of experiments and hyperparameter as
well as the additional experimental results to Appendix A.
Data and Model. We use CIFAR-10 [28], Office-Home [61],
and medical image data CheXpert [24]. We simulate pFL
setting for (1) label Non-IID using Dirichlet distribution
Dir(↵) [23] with ↵ = 0.1/0.3 on CIFAR-10/CheXpert, cre-
ating different local data size and label distributions for M
clients; and (2) feature Non-IID on Office-Home by dis-
tributing the data from 4 domains (Art, Clipart, Product, and
Real Word) to 4 clients respectively [58]. We use M = 20

for CIFAR-10/CheXpert, and sample 40% clients at every
round following [7, 39], and use full client participation for
Office-Home following [58]. We use ResNet-18 pretrained
on ImageNet-1K [53] for all datasets. For PERADA1, we use
out-of-domain distillation dataset CIFAR-100 for CIFAR-10,
and use CIFAR-10 for Office-Home/CheXpert.
Baselines. We evaluate full model pFL methods FE-
DAVG+FT [65], DITTO [33], APFL [10], MTL [57],
PFEDME [59], and partial model pFL methods with
decoupled personalized/global parameters, including
FEDBN [36], LG-FEDAVG [38], FEDREP [9], FED-
SIM [48], FEDALT [48]. We also include PERADA W/O KD,
which is PERADA without Line 21 server-side knowledge
distillation (i.e., using FEDAVG to aggregate global adapter).
Note that we use the same pretrained ResNet as initialization
for all methods for fair comparisons.
Evaluation Metrics. We report the averaged test accuracy
(pFL accuracy) and standard deviation over all clients’ per-
sonalized models. For CheXpert, we report the AUC score
since it is a multi-label classification task. We evaluate
pFL accuracy mainly under two metrics: Local-test (i.e.,
clients’ corresponding local test data) and Global-test (i.e.,
the union of clients’ local test data), to study the personal-
ized performance and generalization (against label or co-
variate shifts), respectively. In addition, for CIFAR-10, we
evaluate pFL generalization against distribution shifts on

1We follow [48] to implement Adapter, which includes prediction head.
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Table 1. Parameter-efficiency and averaged test accuracy across all clients’ personalized models. PERADA achieves higher personalized
performance and generalization with a smallest # of trainable parameters. bold/Underline fonts highlight the best/runner-up approach.

Algorithm Personalized
Params

# Trained
Params

# Comm.
Params

CIFAR-10 Office-Home CheXpert
Local-test Global-test CIFAR-10.1 CIFAR-10-C Local-test Global-test Local-test Global-test

STANDALONE Full model 11.18M 0M 85.94± 8.82 29.77± 8.09 25.82± 6.27 26.67± 7.07 81.64± 6.08 59.15± 3.32 65.06± 1.88 65.45± 2.3

MTL [57] Full model 11.18M 11.18M 86.24± 8.45 29.46± 8.33 25.64± 6.42 26.4 ± 7.29 81.82± 5.53 59.25± 2.84 65.15± 1.95 65.48± 2.3

FEDAVG+FT [65] Full model 11.18M 11.18M* 88.91± 5.71 43.99± 9.57 35.49± 8.02 36.51± 8.36 79.42± 5.62 77.19± 0.56 70.16± 0.78 70.6 ± 0.31

PFEDME [59] Full model 22.36M 11.18M 90.73± 4.67 45.06± 8.65 36.51± 7.2 37.65± 7.6 80.21± 5.32 75.69± 0.69 65.07± 1.2 64.86± 1.22

APFL [10] Full model 22.36M 11.18M 90.74± 4.75 43.92± 9.18 35.83± 7.5 36.51± 7.94 81.24± 4.51 76.98± 1.39 68.98± 1.04 68.96± 1.1

DITTO [33] Full model 22.36M 11.18M 90.21± 4.61 53.82± 6.35 42.72± 5.68 44.32± 5.73 81.77± 4.31 75.66± 1.01 68.79± 1.4 68.86± 1.22

FEDBN [36] Batch norm. 11.18M 11.17M 90.37± 5.19 43.18± 8.67 35.01± 7.24 36.29± 7.43 81.86± 5.13 74.26± 0.52 68.74± 1.17 68.83± 1.08

FEDALT [48] Input layer 11.18M 6.45M 87.07± 6.54 32.23± 8.23 27.49± 6.41 28.51± 7.11 81.07± 5.59 65.85± 0.9 67.63± 1.18 67.74± 1.1

FEDSIM [48] Input layer 11.18M 6.45M 87.93± 6.25 33.07± 8.16 28.21± 6.41 29.15± 7.16 82.45± 5.03 67.66± 0.82 67.49± 1.32 67.54± 1.24

LG-FEDAVG [38] Feat. extractor 11.18M 0.005M 86.7 ± 8.01 29.96± 8 25.97± 6.21 26.83± 6.95 82.04± 5.96 63.57± 2.32 65.78± 1.62 66.23± 1.75

FEDREP [9] Output layer 11.18M 11.17M 87.76± 6.46 35.19± 6.97 30.15± 5.89 30.68± 6.31 79.05± 5.88 74.17± 2.02 66.66± 1.82 66.52± 1.47

FEDALT [48] Output layer 11.18M 11.17M 89.68± 5.4 40.68± 7.3 33.61± 6.12 34.3 ± 6.5 83.24± 3.96 70.62± 1.46 68.27± 1.3 68.36± 1.31

FEDSIM [48] Output layer 11.18M 11.17M 89.75± 5.51 41.98± 7.66 34.21± 6.22 35.31± 6.79 82.91± 4.46 72.34± 0.51 68.22± 1.34 68.12± 1.24

FEDALT [48] Adapter 12.59M 11.18M 87.26± 7.78 31.51± 8.55 27.38± 6.65 27.77± 7.19 81.41± 6.5 57.88± 3.57 72.13± 1.34 74.67± 1.57

FEDSIM [48] Adapter 12.59M 11.18M 87.76± 7.57 31.97± 7.44 27.76± 5.78 28.1 ± 6.46 82.14± 5.46 58.62± 3.24 71.75± 1.4 74.09± 1.55

PERADA W/O KD Adapter 2.82M 1.41M 91.27± 5.15 53.81± 6.27 42.5 ± 5.06 44.45± 5.48 83.31± 5.54 76.55± 2.47 76.77± 2.24 77.59± 2.18

PERADA Adapter 2.82M 1.41M 91.82± 4.43 59.05± 5.24 47.25± 4.48 48.53± 4.74 83.58± 4.74 77.2 ± 1.63 76.98± 3.87 77.88± 1.55

*FEDAVG+FT requires full model communciation during FEDAVG training and there is no communciation during local finetuning.

CIFAR-10.1 [51] and common image corruptions (e.g. Blur,
Gaussian Noise) on CIFAR-10-C [19].

7.1. Evaluation Results
PERADA is parameter-efficient. ResNet-18 model con-
sists of 11.18 million (M) parameters, and the adapter has
1.41M (12.6%) parameters. Tab. 1 reports each client’s #
trainable parameters and # communicated parameters to the
server. We see that PERADA is most parameter-efficient
by locally training two adapters and communicating one
adapter. Most full model pFL requires training two full mod-
els (PFEDME, APFL, DITTO), and sends one full model to
the server. Partial model pFL requires training one full model
and communicating its shared parameter. Note that adapter-
based partial model pFL in FEDALT and FEDSIM are more
expensive than PERADA because they still need to train both
a personalized adapter plus a shared full model (12.59M),
and communicate the full model. Additional comparison
under ResNet-34 shows similar conclusions in Figure 1.
PERADA achieves competitive personalized performance
and better generalization than baselines. Tab. 1 shows
that even with the smallest number of trainable parame-
ters, PERADA achieves the comparable personalized per-
formance (+1.08%, 0.34%, 4.85% on CIFAR-10, Office-
Home, CheXpert) and better generalization (+5.23%, 4.53%,
4.21%, 0.22%, 3.21% on CIFAR-10, CIFAR-10.1, CIFAR-
10-C, Office-Home, CheXpert). Specifically, (a) PERADA
W/O KD already achieves favorable performance compared
to the best baseline, which shows that the plug-in module
adapter can adapt the pretrained model to FL data distribu-
tions, and personalized adapter can successfully encode both
local knowledges (with local empirical risk) and generalized
knowledge (with regularization). (b) PERADA outperforms
PERADA W/O KD, which shows that KD improves the gen-
eralization of personalized models (Theorem 2). We present
the convergence curves in Figure 6 (Appendix B) to show
the learning performance from the convergence perspective,
where PERADA achieves the best convergence speed.

Table 2. Generalization comparison of the global model from
different generic FL and pFL methods on CIFAR-10.

Algorithm Algorithm Type Trained Params Global-test CIFAR-10.1 CIFAR-10-C

FEDAVG [45] generic FL Full 69.34 54.95 57.07
FEDPROX [32] generic FL Full 69.64 54.75 56.84
FEDDYN [2] generic FL Full 70.36 56.3 55.91
FEDDF [39] (w/ KD) generic FL Full 74.83 60.95 61.23

PFEDME [59] pFL Full 68.25 52.55 56.33
APFL [10] pFL Full 69.79 53.6 57.06
DITTO [33] pFL Full 69.95 55.25 57.33
PERADA W/O KD pFL Adapter 74.22 57.6 61.40
PERADA pFL Adapter 76.77 62.5 64.47

To verify that such improvement of pFL is due to an
improved global model (Theorem 1), we compare the perfor-
mance of the global model of PERADA to the global model of
state-of-the-art methods in pFL (PFEDME, APFL, DITTO)
and generic FL (FEDAVG, FEDPROX [32], FEDDYN [2],
FEDDF [39]). Note that FEDDF [39] also uses ensemble
knowledge distillation for global model aggregation, but up-
dates the full model. Tab. 2 shows that the generalization
of PERADA global model with adapter also outperforms
baselines, and KD indeed improves our global model.
Existing partial model pFL can have poor generalization
to out-of-distribution shifts. As shown in Tab. 1, these
methods, while showing promising personalized accuracy
on CIFAR-10 and sometimes outperform full model pFL
on Office-Home and CheXpert by personalizing the right
model component, they significantly lag in generalizing to
test-time distribution shifts. (a) Compared to full model
pFL, the root causes of this inferior generalization in exist-
ing partial model pFL methods are twofold: (i) a smaller
number of shared parameters prevents them from effectively
learning global information; (ii) personalized parameters
can predominately encode local information for the partially
personalized model. PERADA circumvents such issues by
regularization, which enforces personalized adapters to learn
both local and global information. (b) Moreover, the fact
that PERADA even w/o KD has better generalization than ex-
isting partial pFL methods suggests that updating the shared
parameters globally via FL on heterogeneous data can com-
promise the pretrained feature exactor. Our findings indicate

23844



Table 3. Averaged test accuracy across personalized models with
data heterogeneity degrees Dir(1) and Dir(0.3) on CheXpert. PER-
ADA achieves best personalized performance and generalization.

Algorithm Personalization Local-test Global-test

Dir(1) Dir(0.3) Dir(1) Dir(0.3)

STANDALONE Full 64.69 ± 1.63 65.06 ± 1.88 65.32 ± 1.7 65.45 ± 2.3

MTL Full 65.18 ± 1.95 65.15 ± 1.95 65.67 ± 1.72 65.48 ± 2.3

PFEDME Full 64.8 ± 1.4 65.07 ± 1.2 64.85 ± 1.25 64.86 ± 1.22

APFL Full 69.21 ± 1.23 68.98 ± 1.04 69.21 ± 1.05 68.96 ± 1.1

DITTO Full 68.65 ± 0.82 68.79 ± 1.4 68.72 ± 0.58 75.55 ± 0.34

FEDBN BN 69.09 ± 0.79 68.74 ± 1.17 69.03 ± 0.57 68.83 ± 1.08

FEDALT Input 67.74 ± 0.85 67.63 ± 1.18 67.88 ± 0.6 67.74 ± 1.1

FEDSIM Input 67.65 ± 0.88 67.49 ± 1.32 67.82 ± 0.61 67.54 ± 1.24

LG-FEDAVG Feat. extractor 65.77 ± 1.48 65.78 ± 1.62 66.33 ± 1.38 66.23 ± 1.75

FEDREP Output 66.42 ± 1.62 66.66 ± 1.82 66.49 ± 1.53 66.52 ± 1.47

FEDALT Output 68.31 ± 0.79 68.27 ± 1.3 68.41 ± 0.47 68.36 ± 1.31

FEDSIM Output 68.51 ± 0.82 68.22 ± 1.34 68.63 ± 0.57 68.12 ± 1.24

FEDALT Adapter 72.52 ± 0.99 72.13 ± 1.34 74.79 ± 1.21 74.67 ± 1.57

FEDSIM Adapter 72 ± 1.26 71.75 ± 1.4 74.3 ± 1.51 74.09 ± 1.55

PERADA W/O KD Adapter 77.45 ± 1.21 76.77 ± 2.24 78.02 ± 1.36 77.59 ± 2.18

PERADA Adapter 77.47 ± 1.54 76.98 ± 1.81 78.02 ± 1.55 77.88 ± 1.55

that maintaining frozen parameters, as done in PERADA
without KD, is more effective in preserving the capabilities
of the pre-trained model.
Adapter-based personalization methods are generally
effective on CheXpert. Tab. 1 shows that adapter-based
personalization, including FEDALT, FEDSIM, PERADA, are
especially effective on the X-ray data CheXpert. This con-
clusion holds under different degrees of data heterogeneity
Dir(0.3) and Dir(1) in Tab. 3. It indicates that when adapt-
ing to FL domains that have a large domain gap for ImageNet
pre-trained models, e.g., medical domains, adapter personal-
ization may be preferable to input/output/batch-norm pFL.
Effects of KD. We use CIFAR-100 as the distillation dataset
on CIFAR-10, and Figure 4 shows that more distillation
steps and distillation data samples are better for pFL gen-
eralization. These results echo our theoretical analysis in
Theorem 1 that smaller KD optimization error �µaux,naux

and
a larger number of samples can tighten the generalization
bounds. We also evaluate different distillation datasets, and
Figure 4 shows that out-of-domain datasets (STL-10, CI-
FAR100) can improve generalization compared to the one
without KD (None) by a margin, and achieve comparable
performance compared to in-domain CIFAR10 validation
data. The flexibility of choosing distillation datasets makes it
practical for the server to leverage public data for KD.

Another potential way to improve generalization is by
moderately increasing regularization strength � for less per-
sonalization. However, Figure 7 (Appendix B) show that
an overly large � degrades the personalized performance,
which matches the observation for `2 regularization-based
pFL methods in [48]. Notably, KD does not have such a
negative impact on personalized performance (in Figure 4).
Effects of pretrained models. Starting personalization
from a pretrained model, such as FEDAVG global model,
is commonly considered in pFL [44, 48]. Therefore, we first
train a ResNet-18 global model on FL data from scratch
using FEDAVG and utilize it as initialization for pFL. Re-
sults in Figure 5 show that PERADA also achieves compa-
rable personalized performance and higher generalization
than baselines with FEDAVG pretrained model. Moreover,

Figure 4. Effect of KD on PERADA evaluated on CIFAR-10. More
distillation steps and data samples lead to better generalization
and out-of-domain distillation data (STL-10, CIFAR-100) achieve
similar performance as in-domain (validation) data.

Figure 5. Effect of different initializations (Random, FEDAVG
model, and ImageNet pretrained model).

ImageNet-pretraining leads to better generalization than FE-
DAVG-pretraining for PERADA, which echos Theorem 1
that high-quality local models (enabled by good pretrained
model) can further improve generalization.
Utility under differential privacy guarantees. To further
protect local data privacy, we train our method under sample-
level (✏, �) -differential privacy (DP) [11] on CIFAR-10
with a ViT-S/16-224 model 2. Following [42], we consider
full client participation and perform local training with DP-
SGD [1] for both personalized models and the global model
(see experimental details in Appendix A); We set � = 10

�5

and report averaged ✏ across all clients and averaged pFL
accuracy under Local-test. Tab. 4 shows that (1) PERADA
W/O KD retains higher utility than full model personaliza-
tion DITTO under reasonable privacy guarantees due to a
smaller number of trainable parameters and the whole model
is less impacted by DP noise. (2) KD with unlabeled pub-
lic data in PERADA can further improve the utility without
consuming additional privacy budgets.

Table 4. PERADA retains high personalized utility under DP guar-
antee on CIFAR-10 with ViT-S/16-224 model.

Algorithm Personalization ✏ =1 ✏ = 5.99± 3.03 ✏ = 3.7± 2.12 ✏ = 1.81± 1.12

Ditto Full 98.59 ± 1.63 76.76 ± 24.14 76.75 ± 24.13 76.67 ± 24.12
PERADA W/O KD Adapter 97.69 ± 1.79 77.49 ± 21.21 77.32 ± 21.16 76.68 ± 21

PERADA Adapter 98.08 ± 1.28 80.33± 20.76 79.79 ±20.45 77.83± 19.58

8. Conclusion
We propose a pFL framework PERADA based on
global/personalized adapter and knowledge distillation with
convergence and generalization guarantees, and show that it
reduces computation and communication costs and achieves
higher personalized performance and generalization.

2As batch normalization layer in ResNet creates dependencies between
samples and violates DP, we use ViT model [64] for DP experiments.
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