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Abstract

There has been a growing interest in the task of generat-
ing sound for silent videos, primarily because of its prac-
ticality in streamlining video post-production. However,
existing methods for video-sound generation attempt to di-
rectly create sound from visual representations, which can
be challenging due to the difficulty of aligning visual rep-
resentations with audio representations. In this paper, we
present SonicVisionLM, a novel framework aimed at gen-
erating a wide range of sound effects by leveraging vision-
language models(VLMs). Instead of generating audio di-
rectly from video, we use the capabilities of powerful VLMs.
When provided with a silent video, our approach first iden-
tifies events within the video using a VLM to suggest pos-
sible sounds that match the video content. This shift in ap-
proach transforms the challenging task of aligning image
and audio into more well-studied sub-problems of aligning
image-to-text and text-to-audio through the popular diffu-
sion models. To improve the quality of audio recommen-
dations with LLMs, we have collected an extensive dataset
that maps text descriptions to specific sound effects and de-
veloped a time-controlled audio adapter. Our approach
surpasses current state-of-the-art methods for converting
video to audio, enhancing synchronization with the visuals,
and improving alignment between audio and video compo-
nents. Project page: https://yusiissy.github.
io/SonicVisionLM.github.io/

1. Introduction
The sound effects artists work with various types of

sounds, including those visible on-screen (like footsteps or
a car passing) and those audible but not visible (like back-
ground noises and heartbeats can enhance the video’s au-
thenticity and narrative). On-screen sounds match what is
happening in the video, while off-screen sounds establish
the ambience and provide additional information. Creat-
ing soundtracks for videos is a vital aspect of video produc-
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Figure 1. A model implements the automatic detection of on-
screen sound generation and accepts the user’s editing of text and
time in the off-screen section. On-screen sound refers to audio that
originates from visible actions within the video frame. Off-screen
sound is not directly observable on the screen.

tion, but it can be labour-intensive for artists. Therefore, the
video-sound generation task has gained notable attention.

Although the recent approaches have made great efforts,
the video-sound generation task is still challenging. For on-
screen sounds, achieving semantic relevance and maintain-
ing temporal synchronization continues to be a complex is-
sue. It is hard to edit off-screen sounds. Current methods
[14, 25, 32] primarily focus on the visual content to gen-
erate the corresponding sound, a subset of these methods
[7, 9] considers editability. Nonetheless, the alignment be-
tween video and audio features is tricky, leading to deficien-
cies including 1) incorrect sound meanings and mismatched
timing, 2) monotonous sound effects, and a lack of complex
scenarios. Both lead to unsatisfactory results in the video-
sound generation task.

We propose a novel framework named SonicVisionLM
to solve the above deficiency, as shown in Fig. 1. SonicVi-
sionLM is proposed by introducing three key components:
video-to-text, text-based interaction, and text-to-audio gen-
eration. First, the video-to-text component focuses on gen-
erating sound effects for on-screen events. This step uses
a VLM to identify appropriate sound descriptions from the
input silent video. Following this, a timestamp detection
network is trained to extract specific temporal information
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Figure 2. SonicVisionLM’s framework. SonicVisionLM presents a composite framework designed to automatically recognize on-screen
sounds coupled with a user-interactive module for editing off-screen sounds. The blue dashed box and arrows in the figure represent the
visual automation workflow: First, a silent video goes into the system to determine the occurring events (text) and their timing (time).
Then, this information conditions the generation of sounds matching the screen. The purple dotted box and arrows show how users can
modify or add off-screen sounds.

from the video. A key innovation within this framework
is the design of a time-conditioned embedding, which is
utilized to guide an audio adapter. After that, the text-
based interaction component allows users to change the text
and timestamps from a previous video-to-text component
or to input new corresponding text-timestamp pairs for per-
sonalized sound design. Finally, the text-to-audio genera-
tion component accepts the text and timestamp conditions
and inputs them into the LDM and adapter to generate di-
verse, time-synchronized, and controllable sounds. Simul-
taneously, We collect a text-to-single-sound dataset, named
CondPromptBank, for sound effects caption and timing
cues, comprising over ten thousand data points, covering
23 categories. The main contributions of this work are:

• We propose a novel framework called SonicVisionLM
and collect a dataset CondPromptBank specifically for
training a time-controllable adapter. It ensures the gener-
ated sound aligns perfectly with our text input and main-
tains precise timing control.

• We introduce three pioneering components: video-to-
text, text-based interaction, and text-to-audio genera-
tion. This unique combination facilitates the automatic
recognition of on-screen sounds while enabling user cus-
tomization of off-screen sounds.

• The proposed framework achieves state-of-the-art results
on conditional and unconditional video-sound generation
tasks. The conditional task can be noticeably enhanced in
all metrics. (IoU: 22.4→39.7)

2. Related Work

Audio Generation can be broadly classified into two cat-
egories. The Text-to-Audio Generation field includes Text-
to-Speech (TTS) and Text-to-Music (TTM). Leading TTS
models, such as FastSpeech2 [29] and NaturalSpeech [33],
now produce speech virtually indistinguishable from human
speech. In TTM, MusicLM [1], Noise2Music [12], Mu-
sicGen [6] and MeLoDy [21] are aimed to generate music
segments from text, bringing innovation to music compo-
sition and synthesis. Models like AudioGen [19], Audi-
oLDM [24], Tango [10], and Make-an-Audio [13] focuses
on universal audio generation modeling. AudioGen [19]
treats audio generation as a conditional language modelling
task, while the other three models employ latent diffusion
methods to accomplish sound generation. Current meth-
ods use datasets including sound effects, voices, and mu-
sic, but practical applications use these elements separately.
As the textual descriptions of time are subjective, videos
are more intuitive and precise, so V2A requires more ac-
curate semantic features and time control than T2A. There-
fore, we have created a text-to-single-sound dataset called
CondPromptBank with detailed semantic segmentation and
temporal annotations that help models produce high-quality
sound effects for videos. In Video-to-Audio Generation
task, SpecVQGAN [14] utilizes a Transformer-based au-
toregressive model, drawing on ResNet50 or RGB+Flow
features to generate sound. Im2Wav [32] uses a dual-
transformer model conditioned on CLIP features for sound
generation. CondFoleyGen [9] and VARIETYSOUND [7]
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introduce tasks for controllable timbre generation. Diff-
foley [25] uses contrastive audio-visual pretraining to align
audio and visual features. ClipSonic [8] learns the text-
audio correspondence by leveraging the audio-visual cor-
respondences in videos and the multi-modal representation
learned by pre-trained VLMs. However, the sounds gener-
ated by these methods often suffer from poor audio-visual
synchronization, noticeable noises, and lack of editability.
Unlike the works above, our model ensures audio-visual
synchronization, enriches diversity, and supports personal-
ized user edits. Our model provides a more comprehensive
sound solution for video production.
Diffusion Model has been utilized for generating both mel-
spectrogram generation [4, 28], and waveform generation
[3, 20, 22]. However, their iterative generation process can
be slow for high-dimensional data. Models such as Audi-
oLDM [24], Make-An-Audio [13], and Tango [10] have
successfully trained diffusion models within a continuous
latent space. Nevertheless, achieving satisfactory results in
controlling LDM for audio generation tasks remains chal-
lenging. This paper aims to introduce time control to ensure
audio-visual synchronization.
Vision Language Models like ChatGPT-4, which demon-
strated advanced multi-modal abilities and inspired vision-
language LLMs. Vision-LLM [36] and LLaVA [34] fo-
cus on aligning image inputs with large language mod-
els Vicuna[5] exhibit similar multi-modal capabilities. Re-
cent developments in this field include MiniGPT-v2 [2].
Kosmos-2 [27] demonstrates multi-modal LLMs’ ability to
perform visual grounding. In this paper, we first introduce
the VLMs to the audio generation task.

3. Method
3.1. Overview

In this section, we introduce the framework of SonicVi-
sionLM, as shown in Fig. 2. Before delving into the spe-
cific design details, we first briefly overview the preliminary
knowledge (Sec. 3.2). Then, we introduce the Visual-to-
Audio Event Detection Module (Sec. 3.3), which obtains
textual descriptions of on-screen sounds through VLMs.
Subsequently, we present the Sound Event Timestamp De-
tection Module (Sec. 3.4), designed to accurately detect the
timing information through network architecture. Finally,
we introduce the proposed time-controllable adapter as an
extension of the audio diffusion model (Sec. 3.5), enabling
the generation of multiple sounds that are semantically co-
herent and temporally aligned.

3.2. Preliminaries

Audio Diffusion Model. The text-prompt encoder encodes
the input description τ ∈ RL×dt of the sound, where L
is the token count and dt and is the token-embedding size.

The latent diffusion model (LDM) is used to construct the
audio prior z0 with the guidance of text encoding τ . This
essentially reduces to approximating the true prior q (z0 | τ)
with parameterized p (z0 | τ). LDM can achieve the above
through forward and reverse diffusion processes. The for-
ward diffusion is a Markov chain of Gaussian distributions
with scheduled noise parameters 0 < β1 < β2 < · · · <
βN < 1 to sample noisier versions of z0, where N is the
number of forward diffusion steps. For each step n, we de-
fine αn = 1 − βn, and calculate the cumulative product
ᾱn =

∏n
i=1 αn.The diffusion equations are described as

follows:

q (zn | zn−1) = N
(√

1− βnzn−1, βnI
)
, (1)

q (zn | z0) = N
(√

ᾱnz0, (1− ᾱn) I
)
, (2)

where the noise term ϵ and the final step of the forward pro-
cess yields zN follow a Gaussian distribution, specifically
ϵ, zN ∼ N (0, I). The reverse process denoises and recon-
structs z0 through text-guided noise estimation (ϵ̂θ) using
following loss function:

LDM =

N∑
n=1

γnEϵn∼N (0,I),z0

∥∥∥ϵn − ϵ̂
(n)
θ (zn, τ)

∥∥∥2
2
, (3)

After training LDM, we generate audio latent by sampling
through the reverse process with zN ∼ N (0, I), condi-
tioned on the given textual representation τ . Its reverse dy-
namics are shown below:

pθ (zn−1 | zn, τ) = N
(
µ
(n)
θ (zn, τ) , β̃

(n)
)
, (4)

µ
(n)
θ (zn, τ) =

1
√
αn

[
zn − 1− αn√

1− ᾱn
ϵ̂
(n)
θ (zn, τ)

]
, (5)

β̃(n) =
1− ᾱn−1

1− ᾱn
βn. (6)

The noise estimation (ϵ̂θ) is parameterized with U-Net
framework [30] with a cross-attention component to include
the text guidance τ .

After that, the decoder of audio VAE [18] constructs
a mel-spectrogram feature from the latent audio represen-
tation ẑ0. This mel-spectrogram feature is conveyed to a
vocoder to generate the final audio.

3.3. Visual-to-Audio Event Understanding Module
The diversity of sound is influenced by various factors

such as its source, actions, the environment, and more.
At the same time, these factors are often included in the
description of visual images. Inspired by the widespread
use of VLMs [23, 37, 39], we chose MiniGPT-v2 [2] to
process visual information and generate descriptions of
sounds. Recognizing that MiniGPT-v2 was initially de-
veloped for single-image understanding and its limitations
in conveying dynamic information, we have adapted the
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LLaMA-2 [34] conversation template design to suit a multi-
modal instructional framework. To not miss sound events,
we encoded four random video frames with time-sensitive
prompts (temporal cues):

First ,< Img >< ImageFeature >< Img >.
Then ,< Img >< ImageFeature >< Img >.
After that,< Img >< ImageFeature >< Img >.
Finally ,< Img >< ImageFeature >< Img >.
[Task Identifier ] Instruction

3.4. Sound Event Timestamp Detection Module
In practice, sound artists need to manually determine the

point in time when a sound event starts and ends and then
adjust the appropriate sound effect to the correct position.
This judgment is usually based on current visual informa-
tion. To simplify the process, we use the sound event times-
tamp detection module to detect the timestamp of the sound
event in the video inspired by the CondFoleyGen [9]. In-
stead of using a hand-crafted approach to transfer sounds
from the conditional audio, We use a ResNet(2+1)-D18 [35]
visual network to capture timestamps as time-conditional
inputs to the LDM, trained on paired video and timestamp.

The workflow begins with feeding a sequence of silent
video frames Vf into the detection network. The network
then outputs a binary vector Vct representing predictions
for each frame, derived from a fully connected layer post-
pooling. The ground truth Vct is obtained: Function P de-
tects audio a in each frame, applying a threshold x to re-
duce noise effects. Sounds within 0.02s across consecutive
frames are considered a single event. This method identi-
fies the start xstart and end points xend of sound segments,
as delineated in Eq. 7. Based on timestamps, we construct
Tct, as depicted in Eq. 8, where 1 indicates the presence of
sound, and 0 indicates the absence. The process equations
are as follows:

xstart, xend = P (ac) , (7)

Tct =

{
1 , if t in [xstart, xend],

0 , else.
(8)

Finally, Tct is adjusted to correspond with the video
frames’ duration, represented as Vct. We employ binary
cross-entropy loss to penalize inaccuracies in time predic-
tion. Given that an input video may contain multiple sound
events, each sound event’s weights are based on its duration
relative to the total sound duration in the video. The binary
vector Tct serves as input for the Time-controllable Latent
Diffusion Model. The whole process and network structure
are shown in Fig. 3.

3.5. Time-controllable Latent Diffusion Model

In our experimentation, we observed that the results gen-
erated were semantically inaccurate and temporally unsyn-
chronized. This issue often arose when utilizing audio-
visual datasets to train end-to-end models, limiting the

Input video
(2+1)D conv

space-time pool

fc

[0,0,....,0,0,1,1,1,0,0...........,0,0,0,0,0]
Vct

{len = fps*video duration} ResNet(2+1)-D18

Figure 3. Sound Event Timestamp Detection Module. The net-
work analyzes the video’s features to output a binary vector corre-
sponding to the video’s frame count. Within this vector, sections
marked in white (value of 1) mean sound presence, and those in
black (value of 0) indicate sound absence.

task’s practical application. We attribute these shortcom-
ings to the complexity of the sound sources and the poor
audio quality of the audio-visual dataset used for training.
To address this, we use text to bridge audio and video and
then introduce time control in the T2A generation model. In
the visual domain, many works are based on the ControlNet
[40] architecture, which can finer control the generation of
images or videos by manipulating the input image condi-
tions of neural network blocks. However, unlike the visual
domain’s inherent intuitiveness, audio features exhibit tem-
poral continuity and are inherently more complex and ab-
stract. Thus, selecting appropriate audio features to guide
the generation process poses a greater challenge.

In this paper, we propose a embedding called Audio
Time-condition Embedding, denote as Act, which is con-
structed through the following procedure: During the train-
ing phase, the adapter extracted Mel-spectrogram features
from audio waveform a and then normalized it, denoted as
amel = mel(a). For ac = max(mel(a), Tct), we then ini-
tialize ac to match amel’s dimensions but with zero values,
then fill ac’s Mel channels with the maximum values based
on the corresponding frames where Tct equals 1. Finally,
Act is derived by encoding the embedding of ac via the en-
coder Ea, and described as follows:

Act = Ea (max (mel (ac) , Tct)) . (9)

Inspired by ControlNet [40], we have developed a
network architecture named Time-controllable Adapter.
Then, we integrate the audio time-condition embedding Act

with the text embedding τ and target audio embedding into
the neural network block. This integration facilitates joint
training for the time-controllable adapter. Act is fed solely
into the adapter, while text embedding τ inputs into both
Tango and the adapter.

Tango’s denoising model, akin to UNet, includes en-
coder F , middle block M , and decoder G. F and G have
12 corresponding blocks. Tango’s outputs of the encoder’s
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i− th block and decoder’s j − th block are fi and gj , with
m for the single middle block. The adapter mimics Tango’s
encoder and middle layers as F ′ and M ′. Adapter’s outputs,
like f ′

i and m′, are marked with (′). Following this, the out-
put of the time-controllable adapter is concatenated with the
output of the corresponding decoder block during the de-
coding process. For example, f1 from the 1st encoder layer
adds to g12 of the decoder, making i + j = 13. To achieve
it, we ensure that all Tango’s elements are kept frozen while
modifying the input of the i− th block of the decoder as:


Concat

(
m + m

′
, fj + zero

(
f
′
j

))
i = 1, j = 12.

Concat
(
gi−1, fj + zero

(
f
′
j

))
2 ⩽ i ⩽ 12, i + j = 13.

(10)

zero(·) is one zero convolutional layer, facilitating trainable
and fixed neural network block connections. Its weights
evolve from zero to optimized values during training. This
approach not only retains the Tango’s capability for gener-
ating audio, trained on billions of audio-text pairs, but also
enables the model to comprehend the guidance provided by
the time control embedding, resulting in temporally control-
lable outcomes.

Table 1. Distribution of CondPromptBank Categories
Category % Category % Category %

Household Daily 14.11 Transportation Vehicles 10.42 Impacts Crashes 10.10
Foley 8.24 Human Elements 7.77 Industrial 6.58
Weapons War 5.83 Cartoon Comical 4.90 Sports 4.43
Animals Insects 4.04 Instruments 3.68 Water Liquid 3.27
Technology 2.70 Horror 2.41 Emergency 2.20
Public Places 1.87 Sound Design Effects 1.69 Doors Windows 1.56
Fire Explosions 1.49 Nature Weather 1.02 Leisure 0.84
Multimedia 0.47 Bells 0.37

4. Experiments
4.1. Experiment Settings

Dataset. Since Tango’s training datasets include varied au-
dio types like speech, sound effects, and music, it tends to
produce mixed audio outputs. Our task requires distinct
handling of these audio types, ensuring each sound event is
separate. To meet our specific needs, we developed Cond-
PromptBank, a high-quality dataset of single sound effects
crafted for training time-controlled adapters. This dataset
consists of 10,276 individual data entries, each with a sound
effect, title, and start/end timestamps. Each sound is typi-
cally 10 seconds or shorter, sourced from freely available
sound effect libraries and websites. During the collection,
we focused on 23 common categories of sound effects and
manually filtered out low-quality data with noise and mixed
sources. The category distribution shows Tab. 1. To en-
hance the textual descriptions with precise details, we fur-
ther annotated the sound effect text labels with fine-grained
information based on sound characteristics. Now, each label
not only identifies the audio source but also describes the as-
sociated actions in detail. We believe the division into single
audio sources is crucial, as videos provide a more concrete

expression of content than text, thus requiring more precise
sound representation.
Implementation details. To train our complete model, we
first train the adapter on CondPromtBank, then train the
timestamps detection net on Greatest Hits [26] and Countix-
AV dataset [41]. We trained the adapter for approximately
200 epochs with a batch size 32 and a learning rate of
3.0× 10−5 using Adam [17]. Our model has two versions:
small and full. The difference between them is the version
of pre-trained parameters used for Tango. We trained the
timestamps detection net for 70 epochs with a batch size
of 24 and a learning rate of 1.0 × 10−5. The training of
the adapter takes approximately five days, and the training
of the timestamps detection network requires approximately
one day using one NVIDIA A6000 GPU.

4.2. Conditional Generation Task Results

We tested our model using the Greatest Hits [26] dataset,
which has 977 videos of drumsticks interacting with differ-
ent objects, lasting 11 hours. This dataset is divided into
two types of actions and 17 types of materials. This de-
tailed categorization helps check if our model can change
sound types based on these details but still match the target
action. We used the same test settings as CondFoleyGen [9]
and compared our results with theirs.
Evaluation Metrics. For the conditional generation task,
we use the following five objective metrics to evaluate the
performance of the model: CLAP-top, Onset Acc [9], Onset
AP [9], Time Acc, and IoU.
Quantitative Results. SonicVisionLM-full demonstrates
superior performance over CondFoleyGen across all met-
rics, as seen in Tab. 2. It achieves leading scores of 36.8%
and 42.8% on CLAP-top versions, exceeding any CondFo-
leyGen model by more than 20%. This result suggests that
it is better at matching sounds to text prompts. Our model
significantly surpasses CondFoleyGen in audio-visual syn-
chronization, evidenced by an 11% improvement in Onset
AP and a 16% rise in IoU. Moreover, we see a 6% en-
hancement in onset accuracy and an 8.3% increase in tim-
ing precision. These advancements illustrate our model’s
outstanding accuracy in sound event detection and its effec-
tiveness in synchronizing generated sounds with the input
video. We think CondFoleyGen relies on the audio-visual
synchronization module [15] to improve time accuracy, re-
quiring many samples to re-ranking the sounds. In contrast,
our model gets higher synchronization during the genera-
tion process with fewer samples.
Qualitative Results. As shown in Fig. 4 (row 4, 6, 7),
we compare the timestamped positional distance to the tar-
get sound. Our results closely match the target sound,
demonstrating a high degree of accuracy. However, Cond-
FoleyGen often produces results with the wrong number of
sounds and with a large difference in the positional distance.
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Method CLAP − topgeneral↑ CLAP − topunfused↑ Onset Acc ↑ Onset AP↑ Time Acc↑ IoU↑
CondFoleyGen(old)∗ [9] 17.3 15.6 21.6 67.0 35.5 23.3

CondFoleyGen(new) ∗ [9] 16.3 13.6 19.2 68.6 37.4 22.4
Ours-small 29.6 28.0 19.4 77.03 27.8 35.6
Ours-full 36.8 42.8 27.6 78.1 43.8 39.7

Table 2. Conditional Generation Task Quantitative Results. CLAP-top metric evaluates a model’s ability to control sound content. It
calculates the percentage of times the sound samples generated by all models ranked in the top 1 according to the CLAP ranking, divided
by the total number of samples. We used two versions of the CLAP models for evaluation: CLAPgeneral and CLAPunfused. Onset Acc
and Time Acc are both metrics based on the number of sound occurrences, with Onset Acc focusing on the onset count and Time Acc on the
count of time intervals. We measure the average accuracy of predicting onsets within 0.1s of ground truth to assess the timing of generated
onsets. IoU is calculated by computing the intersection and union of these vectors. These metrics collectively allow us to comprehensively
evaluate the accuracy of the generated sounds in terms of both timing and content. The variant “old” corresponds to the prior codebook,
while variant “new” matches the updated codebook. The old model was trained on 192-width spectrograms, and the new one was trained
on 2s waveforms. “∗ ”denotes the data sourced from the official code and is based on experiments conducted with our local configurations.
Underline denotes the worst performance. Boldface denotes the best performance. The six metrics are all measured in percentage.

silent video

cond video

cond sound

target sound 

CondFoleyGen

Ours

text prompt stick hit the cloth stick hit the leaves stick hit the cloth stick scratch the metal stick hit the wood stick hit the dirt stick hit the drywall

Figure 4. Conditional Generation Task Qualitative Results. The red dashed boxes are the conditional audio inputs and generated results
for CondFoleyGen, and the blue dashed boxes are the conditional text inputs and results corresponding to SonicVisionLM.

This indicates that our model has a higher visual-audio syn-
chronization than CondFoleyGen. As shown in Fig. 4 (col-
umn 3, 7), we compare the sound shape to the conditional
sound. Even though our model has not learned any timbre
on the Greatest Hits dataset, our results are still very similar
to the conditional sound. As shown in Fig. 4 (column 1, 7),
The mel-spectrograms of the CondFoleyGen results do not
produce sounds that are similar to, and sometimes blurred.

4.3. Unconditional Generation

To evaluate the task of unconditional sound genera-
tion, considering that our LDM has not been trained on

audio-visual datasets, we have chosen to perform quanti-
tative evaluation and qualitative evaluation on two datasets:
Greatest Hits [26] and CountixAV [41], which are zero-shot
tasks for all models. We use two state-of-the-art V2A mod-
els as baselines: SpecVQGAN [14] and DIFF-FOLEY [25].

Evaluation Metrics. For objective evaluation, we have
employed three metrics as [14, 25]: Inception Score (IS)
[31], Frechet Distance (FID) [11], and Mean KL Diver-
gence (MKL) [14]. For subjective evaluation, as the [9],
we conduct user evaluations for the three critical compo-
nents: overall audio quality (OVL), alignment with the
input video (REL), and time synchronization (Time-sync).
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Metric

Dataset Greatest Hits Countix-AV
Method MKL↓ FID ↓ IS↑ IoU↑ MKL↓ FID ↓ IS↑ IoU ↑

SpecVQGAN∗ [14] 6.80 82.4 2.17 25.8 7.39 34.1 5.3 34.9
DIFF-FOLEY† [25] 5.68 20.0 3.84 22.0 4.9 15.9 5.2 31.3

Ours-small 6.46 31.9 3.88 36.6 10.0 21.7 15.1 37.5
Ours-full 4.67 24.9 3.26 39.5 9.71 19.7 12.7 42

Table 3. Unconditional Sound Generation Quantitative Results. IS assesses the quality and diversity of generated samples, FID
measures distribution-level similarity, and MKL measures paired sample-level similarity. “∗ ”denotes the data sourced from the official
code and is based on experiments conducted with our local configurations. “† ”denotes that data is obtained from our adjusted official code.
Underline denotes the worst performance. Boldface denotes the best performance. IoU metric is measured in percentage.
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Figure 5. Unconditional Generation Task Qualitative Results. The left example is from CountixAV, and the right one is from Greatest
Hits. We’re comparing them side by side. The dashed box highlights examples of both good and bad results we generated.

Method OVL↑ REL↑ Time-sync ↑
SpecVQGAN∗ [14] 37 25 31
DIFF-FOLEY† [25] 48 64 58

Ours 75 69 87

Table 4. Subjective Results. Following [9], we invited the
300 English-proficient evaluators to rate 30 randomly selected au-
dio samples from three perspectives: OVL, REL, and Time-sync.
Scores were averaged on a 1-100 scale. “∗” denotes the data
sourced from the official code and is based on experiments con-
ducted with our local configurations. “†” denotes data obtained
from our adjusted official code. Underline denotes the worst per-
formance. Boldface denotes the best performance.

Quantitative Results. In our experiments, the choice of
vocoder significantly influenced the FID metric. We up-
graded from DIFF-FOLEY’s weak Griffin-Lim vocoder to
the superior MelGAN to ensure fairness. Despite our model
using 64 Mel filters compared to MelGAN’s 80, our per-
formance on the Greatest Hits dataset excels in MKL, IS,
and IoU metrics, as shown in Tab. 3. This underscores our
model’s precise time control and high-quality sound gen-
eration, demonstrating its exceptional capability to produce

sounds that align closely with the ground truth. In the Coun-
tixAV dataset, SonicVisionLM-small outperforms baselines
by nearly 10 points in the IS metric, highlighting its excep-
tional sound quality. Despite slightly lower MKL and FID
scores compared to baselines, we do not view this as a draw-
back. Unlike the Greatest Hits dataset, which was recorded
in high quality with specialized recording equipment, the
CountixAV dataset is sourced from diverse YouTube videos.
It often includes sounds marred by low-quality background
noise or mixed sound sources, especially human vocals.
MKL and FID metrics emphasize similarity to the ground
truth. Since DIFF-FOLEY was trained on similar audio-
visual data, its tendency to mix multiple sounds in response
to complex visual information explains its advantage in
these metrics. Our model, targeting sound events from spe-
cific actions and filtering out irrelevant auditory informa-
tion, diverges from the ground truth, a deliberate choice to
enhance sound event relevance. The IoU metrics show that
our model makes sound at the correct times and remains
silent otherwise. To further argue our point, we conducted
a subjective assessment of three aspects of OVL, REL, and
Time-sync. As shown in Tab. 4, our model performed sig-
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Method FD↓ FAD↓ KL↓ IoU↑
tango-small∗ [10] 44.9 11.5 3.47 41.3

Ours-small 26.2 2.05 2.30 71.6

tango-full∗ [10] 44.3 10.87 3.14 39.3
Ours-full 25.4 3.19 2.32 65.7

Table 5. Time Condition Ablation Results. “∗ ”denotes the data
sourced from the official code and is based on experiments con-
ducted with our local configurations. Underline denotes the worst
performance. Boldface denotes the best performance. IoU metric
is measured in percentage.

Figure 6. Conditioning-scale Ablation Study. In the chart, the
higher the indicators are, the better they are. The brightness of the
colour also represents a good or bad performance.
 Silent Video 

��������������
��� ��� ��� ���

�������

Fring Meat  (on-screen sound track 1)

Pot Collide  (on-screen sound track 2)

Noisy Kitchen  (off-screen sound track)

Figure 7. Multi-soundtracks generation example. In the video,
the blue and green masks show different soundtracks. The timing
of on-screen sounds (corresponding to visible actions) aligns accu-
rately with their occurrence in the frames. Conversely, off-screen
sounds (not visible in the video) lack precise timing.

nificantly better than the baseline models in all metrics.
Qualitative Results. For clearer time point comparison, we
denoised the data from the CountixAV. Fig. 5 reveals our
generated sounds are more precise than the baseline mod-
els. Furthermore, our model can capture finer-grained vi-
sual transformations, capturing the signal despite sudden
changes in the frequency of movement and producing the
correct sound. In contrast, SpecVQGAN results are full of
noise. DIFF-FOLEY can sometimes generate clear sounds,
but it is not aligned with the visual-sound synchronization.

4.4. Ablation Study

Time condition. Evaluation Metrics. We employed ob-
jective metrics from Tango [10], such as the Frechet Au-
dio Distance (FAD) [16] and Frechet Distance(FD) [24] to
measure the distribution difference between generated au-
dio and ground truth without the need for any reference au-
dio samples. KL divergence [19, 38] assesses their similar-
ity based on the broad concepts present in the original and
the generated audio signals.
Result. we compared our model with the Tango [10]. As
shown in Tab. 5, both in the small and full versions, our
model outperforms Tango in terms of IoU, which validates
the effectiveness of the time-controllable adapter.
Conditioning-scale. As seen in the Fig. 6. The sound qual-
ity improves in the range from 0.6 to 2.0 on the conditioning
scale as it lines up better with the IoU. But at 3.0, control
goes down a lot. The best mix of good sound quality and
steadiness is found at a conditioning scale equal to 2.0.

4.5. Multi-soundtracks generation

As shown in Fig. 7, SonicVisionLM works like a sound
designer in traditional video post-production. First, it looks
at the visual information to find the key sounds needed. For
example, it picks out the hissing of cooking meat and the
clinking of pots. Then, if the story needs it, the sound de-
signer adds off-screen sounds. This might include extra
kitchen sounds like distant chopping, simmering pots, or
the buzz of kitchen machines, making it feel more natural.
Lastly, SonicVisionLM puts these audio tracks in the right
place on the video timeline. This ensures the sounds match
perfectly with what is happening in the video, creating a
smooth audio-visual experience. More detailed results can
be found in the Supplementary Materials.

5. Conclusion
In this paper, we propose SonicVisionLM, which uti-

lizes the capabilities of powerful vision-language models
(VLMs). When provided with a silent video, SonicVi-
sionLM first identifies events within the video using a VLM
to suggest possible sounds that match the video content.
SonicVisionLM demonstrates outstanding performance
in both conditional and unconditional generation tasks.
Further, we tested its efficacy in post-production, focusing
on automatic recognition of on-screen sounds and person-
alized editing for off-screen sounds. Extensive experiments
show the superior performance of our method.
Limitations. While SonicVisionLM has achieved adequate
results, refinements in the visual understanding and times-
tamp detection parts are still required. Regarding various
multimedia contexts, expanding the diversity and range of
audio generation control are still the key demands of ap-
plications. Thus, the model should enrich the audio-visual
experience and broaden applicability in future attempts.
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