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Figure 1. The SynFog dataset comprises images under different lighting, with the first row captured in natural sky light and the second with
extra light sources like street lamps and automotive lighting. This dataset covers three levels of fog density across each scene, corresponding
visibility of 600 m, 300 m, 150 m. Additionally, pixel-accurate depth data and segmentation labels for each scene are also provided.

Abstract
To advance research in learning-based defogging algo-

rithms, various synthetic fog datasets have been developed.
However, existing datasets created using the Atmospheric
Scattering Model (ASM) or real-time rendering engines of-
ten struggle to produce photo-realistic foggy images that
accurately mimic the actual imaging process. This limi-
tation hinders the effective generalization of models from
synthetic to real data. In this paper, we introduce an
end-to-end simulation pipeline designed to generate photo-
realistic foggy images. This pipeline comprehensively con-
siders the entire physically-based foggy scene imaging pro-
cess, closely aligning with real-world image capture meth-
ods. Based on this pipeline, we present a new synthetic fog
dataset named SynFog, which features both sky light and
active lighting conditions, as well as three levels of fog den-
sity. Experimental results demonstrate that models trained
on SynFog exhibit superior performance in visual percep-
tion and detection accuracy compared to others when ap-
plied to real-world foggy images.

1. Introduction

Fog, due to its light scattering and attenuation properties,
poses a significant challenge for outdoor vision-based sys-

tems such as remote sensing, surveillance, autonomous
driving, and fire rescue [6, 10, 52]. It causes severe degrada-
tion in object appearance and contrast, resulting in a notable
impact on people’s daily lives. Consequently, there has been
a growing research interest in image defogging task to de-
velop robust outdoor vision systems.

Recent learning-based defogging algorithms depend on
sets of foggy images and corresponding clear images for
model training. While several datasets have been collected
from real-world scenarios [5, 40], they are typically limited
to foggy images only, as it is almost impossible to obtain
pixel-accurate clear images with consistent scene contents
and environmental illumination. Studies in [2–4, 35] at-
tempt to capture real-world foggy and clear image pairs us-
ing smoke machines. However, the scale of these datasets is
inadequate for training of a high-performing model. Given
the challenge of obtaining paired foggy and clear images
in real world, various synthetic fog datasets have been pro-
posed as an alternative [25, 40, 55]. The most widely used
method is based on the theory proposed by McCartney [33],
also known as the Atmospheric Scattering Model (ASM).
However, this model fails to consider accurate global illu-
mination and the actual imaging process that occurs in real-
world captures as detailed in Sec. 3.1. These limitations
significantly impact the model’s overall applicability, par-
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Figure 2. Relationship between noise level and fog density in real-
world foggy images. Using regional contrast stretching for image
enhancement, it can be observed that the noise level increases with
the concentration of fog.

ticularly in nighttime scenarios, and can lead to a disparity
between synthetic and real-world foggy images. As a re-
sult, models trained on synthetic foggy images may exhibit
limited robustness when applied to real-world ones.

To address these issues, we propose an end-to-end
foggy image simulation pipeline that encompasses the en-
tire imaging process starting from 3D virtual scenes to final
photorealistic foggy images. Our approach involves foggy
scene rendering using volumetric path tracing and imaging
through a realistic camera model. As shown in Fig. 3b,
fog is treated as a spatial volume, and the spectral scene ra-
diance is rendered using volumetric path tracing [38]. By
defining the phase function of fog medium and bidirec-
tional reflectance distribution function (BRDF) of the scene
components, we are able to accurately describe the scatter-
ing process with multiple light sources under foggy con-
ditions. The foggy scene radiance data is further processed
through a physically-based camera model, which comprises
optics, sensor and image processing, to faithfully replicate
real camera devices. Based on the proposed pipeline, we
develop a new extensive synthetic fog dataset called Syn-
Fog. This dataset contains 500 unique outdoor scenes, each
featuring two kinds of lighting conditions and three levels
of fog density. Extensive experiments have been conducted
to qualitatively and quantitatively validate the authenticity
of our simulation pipeline and the SynFog dataset.

Our main contributions are summarized as follows:
• We propose a physically-based end-to-end foggy image

simulation pipeline that incorporates accurate light trans-
portation in scattering medium and physical characteris-
tics of optics and sensor into the synthesized images.

• We develop a photo-realistic synthetic fog dataset, Syn-
Fog, which includes both sky light and active lighting
conditions, as well as three levels of fog density.

• We demonstrate the authenticity and effectiveness of our
simulation pipeline and the superior realism of SynFog
dataset compared to other synthetic fog datasets.

2. Related Work
Given the challenge of acquiring paired foggy and clear im-
ages in the real world for training learning-based defog-
ging methods, researchers have proposed many synthetic
fog datasets as an alternative. In this section, we will offer
a thorough review and analysis of foggy image simulation
techniques and their associated datasets.

Based on Atmospheric Scattering Model (ASM). This
method involves rendering fog onto clean images along
with their depth information [1, 19, 25, 26, 40, 53, 55].
Depth information can be acquired through game engines,
depth cameras or depth estimation methods. In an earlier
study conducted by Tarel et al. [46], FRIDA was con-
structed using a total of 90 synthetic images, with clear
images and depth maps generated using SiV ICTM soft-
ware. Subsequently, in their later work [47], more synthetic
images were added, leading to an upgraded version named
FRIDA2, which includes 330 synthetic images. However,
the scale of these datasets is insufficient for modern data-
driven defogging methods, and the foggy images appear
unrealistic. In more recent works [26, 53], a similar ap-
proach has been employed to acquire both the clear images
and their corresponding depth maps from game engines. In
[25], a general dehazing dataset called RESIDE was intro-
duced. The indoor training set (ITS) of RESIDE was con-
structed based on existing indoor RGBD datasets NYUv2
[42] and Middleburry stereo [41]. For the outdoor train-
ing set (OTS), 2071 real-world outdoor images were col-
lected, and the corresponding depth information was esti-
mated using a learning-based technique [27]. It is important
to note that the accuracy of depth estimation based on learn-
ing methods is still unsatisfactory, as single-image-based
depth estimation is inherently an ill-posed problem. Fur-
thermore, Foggy Cityscapes was introduced in [40], utiliz-
ing images from the Cityscapes dataset [9]. Despite efforts
to enhance the original depth maps in Cityscapes, artifacts
and discrepancies still persist, resulting in synthetic foggy
images that appear unnatural.

Based on Real-time Rendering Engines. Foggy im-
ages generated utilizing real-time rendering engines like
Unity and Unreal have been discussed in works such as
[18, 44]. Among them, Virtual KITTI 2 [18] stands out as
a notable example. However, these foggy images often lack
realism and exhibit limited diversity in terms of fog density.

Based on Physical Means. Fog/haze machines are em-
ployed in real-world settings to generate artificial fog, as
discussed in works such as [2–4, 35]. However, these
datasets are generally limited in scale and may not offer
sufficient supervision for learning-based defogging meth-
ods. Moreover, ensuring consistent content between the
clear and foggy image captures can be challenging.

There are also several real-world fog datasets available,
such as Foggy Driving [40], Foggy Zurich [11], and Seeing
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(a) Atmospheric Scattering Model (ASM) [34].

(b) Foggy scene rendering based on volumetric path tracing.

Figure 3. Foggy scene simulation methods.

Through Fog [5]. However, due to the absence of corre-
sponding clear reference images, these datasets can only be
used for testing purposes rather than for training. In this pa-
per, we propose a physically-based end-to-end foggy image
simulation pipeline to improve the authenticity of synthetic
foggy images and construct a photo-realistic fog dataset to
facilitate future research on defogging algorithms.

3. End-to-end Foggy Image Simulation

We propose an end-to-end approach for generating photo-
realistic foggy images that incorporates accurate light trans-
portation in scattering medium and physical characteristics
of optics and sensor into the synthesized images, as illus-
trated in Fig. 4. We first introduce a foggy scene imag-
ing model in Sec. 3.1. Based on this model, we estab-
lish a simulation pipeline consisting of two components:
a) Foggy scene radiance is rendered using volumetric path
tracing [38]. b) The radiance data is processed through a
physically-based camera model, which comprises optics,
sensor and image processing to faithfully replicate real cam-
era devices [17]. These components are further detailed in
Sec. 3.2.1 and Sec. 3.2.2, respectively.

3.1. Foggy Scene Imaging Model

The Atmospheric Scattering Model (ASM) [33, 34] has
been widely used for the generation of foggy images [19,

25, 40, 53]:

E(d, λ) = Eo(λ)e
−β(λ)d︸ ︷︷ ︸

transmission

+Lh(∞, λ)
(
1− e−β(λ)d

)
︸ ︷︷ ︸

airlight

,

(1)
where E is the irradiance reaching the film under foggy con-
ditions, Eo is the irradiance under clear conditions, β is the
scattering coefficient characterizing the scatter ability of the
medium, d is the distance between the object and the cam-
era, Lh(∞, λ) denotes the radiance of airlight at infinity and
λ refers to wavelength. Fig. 3a provides a more intuitive
description of this process. Foggy images can be generated
with pre-defined β and Lh values by directly using the clear
images as E0 and the corresponding depth maps as d.

However, there are two issues with this scattering model
for generating foggy images: (1) The definition of environ-
mental illumination fails to consider the contribution of in-
direct illumination from the scene to the scattering medium,
resulting in an unfaithful representation of the actual illumi-
nation. (2) The current formulation of airlight is insufficient
for accurately modeling the lighting conditions that involve
multiple point light sources, such as street lamps and auto-
motive lights. This limitation restricts the model’s applica-
bility in situations like nighttime [29, 51].

Furthermore, ASM only captures the irradiance reaching
the sensor plane. Consequently, foggy images generated us-
ing ASM fail to accurately incorporate the realistic physical
characteristics of optics and sensor in actual imaging pro-
cess. In Fig. 2, we depict the relationship between noise
level and fog density after the enhancement of regional con-
trast stretching [48] on a real captured image [8]. It can be
seen that the noise level increases with higher fog density,
emphasizing the critical need for accurate noise modeling
in foggy image simulation.

To enhance the consistency between synthetic images
and real-world captures, we develop a comprehensive foggy
scene imaging model that incorporates the entire imaging
process, referred to as:

Iout = fISP (fsensor(foptics(Lscene)) + n), (2)

where Lscene is the scene radiance obtained using vol-
umetric path tracing [38], as described in Sec. 3.2.1;
{foptics, fsensor, fISP } denote the optics, sensor and ISP
processes respectively, as described in Sec. 3.2.2, and the
noise term introduced by the sensor is denoted as n.

By employing volumetric path tracing to obtain the radi-
ance of foggy scene, we can precisely model the light scat-
tering process under global illumination and active lighting.
By incorporating the complete imaging process described
in Eq. (2), we are able to faithfully replicate the authentic
camera characteristics in foggy image simulation.
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Figure 4. End-to-end foggy image simulation pipeline. The spectral radiance data is rendered using volumetric path tracing and passing
through a realistic optics model before reaching the sensor plane. Subsequently, the irradiance is converted into a digital image through the
sensor model. The raw image from the sensor is then processed by an ISP module to generate the final foggy image.

3.2. End-to-end Simulation Pipeline

3.2.1 Foggy Scene Rendering

We utilize procedural modeling techniques, similar to the
approach employed in [31, 49], to create large-scale and
diverse driving scenes. This involves defining adjustable
parameters and using a set of predefined rules to generate
explicit scene definitions. Our model library incorporates a
diverse range of pedestrians, bicyclists and cars, each with
well-defined material and texture properties. Furthermore,
we carefully select 16 sky maps with cloudy conditions to
ensure realistic lighting for foggy scenes, following the es-
tablished guidelines from previous works [2–4].

In our approach, fog is treated as a spatial volume, and
the spectral scene radiance is rendered using volumetric
path tracing [38]. To accurately model the scattering pro-
cess of the fog medium, we employ Henyey and Greenstein
phase function [21, 38] to model its particle scattering char-
acteristics, denoted as:

pHG(cos θ) =
1

4π

1− g2

(1 + g2 + 2g(cos θ))
3/2

. (3)

By empirically setting the asymmetry parameter g = 0.87,
we can accurately simulate the probability distributions for
scattering in a specific direction at a given point within the
fog medium, as shown in Fig. 3b.

The rendering equation consists of two parts that account
for reduction of radiance caused by out-scattering and in-
crease of radiance due to in-scattering at point p in direction
ω, represented by Eq. (4) and Eq. (5), respectively [38].

Li(p
′,−ω) = e−

∫ d
0

σs(p+tω,ω)dtLo(p, ω). (4)

Ls(p, ω) = Le(p, ω)+σs(p, ω)

∫
S2

p (p, ωi, ω)Li (p, ωi) dωi.

(5)
σs represents the scattering probability per unit distance,
{Li, Lo, Le, Ls} are the {incident, exitant, emission, total
added} radiance. In our implementation, we employ the
Monte Carlo algorithm to solve the above integration.

The key distinction between our physically-based foggy
scene rendering technique and ASM lies in the modeling of
airlight, as represented by Eq. (5). Our approach offers a

Figure 5. Noise flow and sensor simulation.

more accurate depiction of light scattering process through
the utilization of specific phase function, and enables incor-
poration of global illumination and multiple light sources
within the scene, producing authentic scene radiance to the
camera model described in the next section.

3.2.2 Imaging through Realistic Camera Simulation

After obtaining the scene radiance, we employ ISETCam
[15–17, 30, 32] to simulate the realistic digital camera sys-
tem that encompasses optics, sensor and ISP components.
Specifically, we use a diffraction-limited optics model [7]
with consideration of off-axis irradiance attenuation based
on the cosine-fourth law [24] to convert scene radiance Lo

to optical image irradiance Ei, denoted as:

Ei = π · Lo
1

1 + 4(f/#(1−m))2
(cosϕ)4, (6)

where f/# is the f-number, m represents the magnification
defined as the negative ratio of image distance and object
distance. In this optics model, blur mainly depends on the
f-number value but little else.

We model the sensor process including photovoltaic con-
version, analog amplifier, and analog-to-digital conversion
as described in Fig. 4 and simulate the real noise character-
istics depicted in Fig. 5. Among the various noise sources,
shot noise arising from the photovoltaic conversion emerges
as the dominant type of noise in foggy images which fol-
lows the Poisson distribution. To ensure the credibility of
our sensor simulation, we incorporate a set of calibrated
sensor parameters from the Mi10Pro cellphone, encompass-
ing the CFA and infrared filter data.

Finally, we process the RAW image output from the sen-
sor with a simple ISP module, including black level com-
pensation, white balance, demosaicing, color correction and
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Table 1. Comparisons between SynFog and existing synthetic fog
datasets in the driving field.

Datasets Global Optics and Sensor
Illumination Characteristics

Foggy Cityscapes × ×
Virtual KITTI 2 × ×
SynFog (Ours) ✓ ✓

gamma correction, to get the final synthetic image that mim-
ics the real camera characteristics.

4. SynFog Dataset
By utilizing the proposed pipeline, we develop a new exten-
sive synthetic fog dataset called SynFog. Example images
are shown in Fig. 1. We first generate 500 large-scale, di-
verse driving scenes using procedural modeling techniques.
For each scene, we generate two sets of images under dif-
ferent lighting conditions: one set with sky light only and
the other set with both sky light and active light sources,
such as street lamps and automotive lighting. Within each
group, we create a set of four images: one clear image and
three foggy images with varying fog levels defined by the
scattering coefficient σs. According to McCartney’s work
[33], the scattering coefficient remains independent of the
wavelength for fog [13, 34]. Therefore, we use a consis-
tent scattering coefficient for wavelengths within the visible
range. To ensure realistic simulation of fog, we employ the
meteorological optical range (MOR) [23] or visibility as a
reference to select appropriate scattering coefficients, de-
scribed as:

MOR = 2.996/σs. (7)

Based on this equation, we select scattering coefficient val-
ues of 0.005, 0.01, 0.02, which correspond to visibility
range of 600 m, 300 m and 150 m, respectively. According
to National Standard of China [36], these visibility ranges
are classified as heavy fog, thick fog, and dense fog, thereby
the simulated foggy images are diversified enough to reflect
real-world complicated foggy conditions.

We compare SynFog with existing fog datasets in the
field of autonomous driving, including the extensively used
Foggy Cityscapes [40] and Virtual KITTI 2 [18]. The com-
parison is presented in Tab. 1. In terms of foggy image
generation, methods that rely on ASM [34] require accu-
rate depth maps to calculate the correct transmission maps.
However, obtaining accurate depth maps for outdoor im-
ages can be challenging, leading to artifacts such as holes
and discontinuities in synthetic foggy images, similar to
what is observed in Foggy Cityscapes [40]. On the other
hand, foggy images generated using Game Engines like
Unity or Unreal [18] typically employs rasterization tech-
niques in the rendering process. While effective for creating

scenes, rasterization techniques may not accurately model
light transportation as precisely as path tracing, which is
employed in SynFog. Moreover, SynFog takes the realistic
imaging process into account, resulting in highly authen-
tic foggy images with realistic physical characteristics. The
superior realism of SynFog is further supported by the ex-
perimental results.

Furthermore, our data simulation pipeline offers excep-
tional flexibility and control, allowing us to generate not
only the final RGB images but also other valuable data
modalities, including RAW images. This capability opens
up avenues for research on defogging algorithms in the
RAW domain, which has not been explored due to the lack
of paired foggy RAW images and clear RGB images neces-
sary for training deep defogging networks.

5. Experiments

5.1. Fog Chamber Validation

We establish an indoor fog chamber to validate the fidelity
of our fog simulation pipeline. The chamber is constructed
as a capped glass cube with dimensions of 1.5m× 0.5m×
0.5m. To reproduce the dark night environment that has
directional light sources in the fog chamber, we position 4
light bars on each side of the front face of the cuboid fog
chamber and enclose it with black blackout cloth from the
inside. Fog inside the chamber is generated using a 1.7MHz
ceramic atomizer that emulates water mist. To ensure uni-
formity of fog concentration within the chamber, we incor-
porate dual fans to promote even distribution. A visibility
measurement module is designed to quantify the fog den-
sity. This module is comprised of a PM-160 wireless power
meter from Thorlabs, an 852 narrowband laser, an aperture
and a narrowband filter adapted to the laser band. The aper-
ture serves to filter out stray light and the narrowband filter
plays the role in blocking interference caused by non-laser
light sources in the scene. The principle of visibility (scat-
tering coefficient σs) measurement is expressed as [37]:

σs =
ln

(
P0

Pu

)
u

, (8)

where P0 is the laser power measured without fog and Pu is
the measured laser power after the propagation of u distance
under foggy conditions.

We then use Blender to create a virtual fog chamber that
can reproduce the real-world counterpart. Our process in-
volves calibrating the light conditions, object information
and camera properties prior to capture, resulting in a one-
to-one reproduction of the real fog chamber. We select
the standard Macbeth color checker as our test object and
use Mi10Pro cellphone to capture images. We evaluate
the matching degree between the simulation and reality un-
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(a)

(b)

Figure 6. Color analysis under foggy conditions. (a) Visual com-
parison between real captures and simulated images under differ-
ent fog densities in linear RGB space. We increase the brightness
of the images (×2) for visual purpose. (b) Analyzing the trend of
color variation across different fog densities.

der clear conditions by conducting a color analysis on the
checker, which is available in the supplementary material.

After ensuring the consistency of initial capture condi-
tions, we proceed to capture images under foggy conditions.
We first record the laser power under clear condition as P0,
and then proceed to generate fog until the object is no longer
visible. During the fog dispersion process, we capture im-
ages at regular intervals of 1 second and record the laser
energy Pu to obtain real-time fog density measurements.
We utilize the measured fog density parameter σs to sim-
ulate corresponding foggy counterparts based on the pro-
posed foggy image simulation pipeline.

In Fig. 6a, we showcase both the real-captured foggy
images and simulated ones generated using our pipeline and
the ASM [33]. It can be seen that images simulated through
our pipeline exhibit a closer resemblance to real-captured
foggy images. We also conduct a color analysis on 24 color
patches under different fog densities as depicted in Fig. 6b.
The results demonstrate that, as fog density increases, the
trend of each channel in simulated images generated by our
pipeline consistently follows that of the real captures. In
contrast, the simulated images based on ASM do not exhibit
this trend. These findings provide a quantitative validation
of the realism of our foggy image simulation method.

5.2. Transferability across the Real-to-Virtual Gap

We evaluate 7 representative state-of-the-art defogging al-
gorithms on SynFog dataset: DCP [20], CAP [57], Grid-
DehazeNet [28], MSBDN [12], FFA-Net [39], AECR-Net
[50], and DehazeFormer [43]. We directly apply the mod-
els trained on SynFog to real foggy images sourced from
Foggy Zurich [11] and Seeing Through Fog [5] datasets,
without undergoing any model fine-tuning or domain adap-
tation. During the training process, we adhere to the official
settings of these methods, and all of them demonstrate con-
vergence by the end of the training. The results are shown
in Fig. 7. Despite DCP [20] and CAP [57] producing exces-
sively dark outputs, models trained on SynFog can produce
natural defogged images with minimal artifacts.

To underscore the superior realism of SynFog com-
pared to existing synthetic fog datasets, we further en-
hance our evaluation by training the top-performing mod-
els (AECR-Net [50], DehazeFormer [43]) on two promi-
nent synthetic fog datasets relevant to autonomous driving
(Foggy Cityscapes [40], Virtual KITTI [18]). Subsequently,
these models are evaluated on real fog datasets for a com-
parative analysis. Additionally, we utilize ASM [34] to cre-
ate a SynFog-β dataset with clear images from SynFog and
test it using DehazeFormer [43].

Comparison with existing synthetic fog datasets. To
mitigate any potential impact arising from model training
issues, we initially conduct tests for each model using the
corresponding test set of the training data. Test results are
available in the supplementary material. Both AECR-Net
[50] and DehazeFormer [43] exhibit high performance, con-
firming the correctness of the model training process. Sub-
sequently, the trained models are directly applied to real-
world test foggy images. Results are shown in Fig. 9
and Tab. 2. Owing to the high authenticity of the Syn-
Fog dataset, models trained on it can effectively general-
ize to real foggy images and produce naturally colored de-
fogged images. Conversely, models trained on the other two
datasets display poorer generalization to real data, resulting
in artifacts and color distortion in defogged images. We also
evaluate the defogged images using a pre-trained YOLOv8
[22] model for detection, showcasing how SynFog enhances
machine vision capabilities (See Tab. 3). More results can
be found in the supplementary material.

It is noteworthy that the training set of Foggy Cityscapes
[40] comprises 8925 data pairs, and Virtual KITTI [18] in-
cludes 3452 data pairs, both exceeding the 1350 data pairs
in SynFog. However, models trained on SynFog demon-
strate superior generalization capabilities on real-world data
compared to them, highlighting the crucial role of data qual-
ity for researchers.

Comparison with SynFog-β synthesized by ASM.
With the ability to obtain pixel-accurate depth information
for each image, we can eliminate the impact of inaccurate
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Table 2. Defogging evaluations with AECRNet on real-world fog datasets.

Training Set O-Haze [2] Foggy Zurich [11] Foggy Driving [40] BeDDE [56]
PSNR ↑ SSIM ↑ DHQI [14] ↑ DHQI [14] ↑ DHQI [14] ↑ DHQI [14] ↑

Foggy Cityscapes 14.46 0.5737 43.40 52.06 51.55 36.07
Virtual KITTI 13.90 0.5315 42.80 50.94 47.46 33.42

SynFog 15.43 0.6116 44.46 54.16 52.07 43.28

Figure 7. Transferability across real-world fog datasets. Test results of models trained on SynFog.

Figure 8. Ablation of sensor noise simulation.

Table 3. Detection evaluations on real-world fog datasets. “FZ”
refers to Foggy Zurich. “STF” represents Seeing Through Fog.

Method Training Set
FZ [11] STF [5]

mAP (%) mAP (%)

AECRNet
Foggy Cityscapes 69.7 54.8

Virtual KITTI 68.9 53.3
SynFog 71.5 55.5

DehazeFormer

Foggy Cityscapes 67.9 54.9
Virtual KITTI 68.5 53.1

SynFog-β 59.7 55.3
SynFog 69.7 55.3

depth and focus solely on the fog simulation method itself.
The foggy image is synthesized from its clear counterpart in
SynFog according to Eq. (1). Specifically, we employ the
same airlight estimation method used in the construction of
Foggy Cityscapes [40], which involves computing the me-
dian of all the 0.1% pixels with the largest dark channel
values, as proposed in [45]. We use DehazeFormer [43] to
train on both SynFog and SynFog-β, followed by testing
the trained model on real-world foggy images. As shown in
Fig. 9, image output by model trained on SynFog exhibits a
better visual appearance compared to that of SynFog-β.

5.3. Ablation Study of Sensor Noise

To demonstrate the importance of sensor noise simulation
in our pipeline, we create SynFog-α dataset. During the

Table 4. Impact of sensor noise on defogging performance.

Experimental setting
O-Haze [2]

PSNR ↑ SSIM ↑ DHQI ↑
AECRNet+SynFog(w/o noise) 15.16 0.5795 37.53
AECRNet+SynFog(w/ noise) 15.43 0.6116 44.46

Table 5. Impact of sensor noise on detection performance. “FZ”
refers to Foggy Zurich. “STF” represents Seeing Through Fog.

Experimental setting
FZ [11] STF [5]

mAP (%) mAP (%)
AECRNet+SynFog(w/o noise) 69.5 54.7
AECRNet+SynFog(w/ noise) 71.5 55.5

data generation process, the sensor-induced noise is set to
zero, while all other settings remain consistent with those
of the original SynFog dataset. We compare the defogging
and detection performance of models trained on SynFog
and SynFog-α datasets, as shown in Fig. 8 and Tab. 4-
5. The model trained on SynFog that incorporates sensor
noise produces more natural results with fewer artifacts and
higher detection accuracy.

5.4. Algorithm Benchmarking

We use SynFog test set to assess the aforementioned repre-
sentative defogging methods, employing both full-reference
and no-reference metrics to evaluate the defogged results.
To illustrate the challenges presented by SynFog, we also
provide evaluation results from the widely-used RESIDE
dataset [25]. The full-scale quantitative comparison results
are available in the supplementary material.

Generally, learning-based methods consistently outper-
form earlier algorithms based on natural or statistical priors
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Figure 9. Visual and detection comparisons on real-world foggy images using DehazeFormer models trained on SynFog, SynFog-β, Foggy
Cityscapes [40] and Virtual KITTI [18].

Figure 10. Qualitative comparisons of SOTA defogging methods on SynFog dataset with different fog levels. Zoom in for better view.

in terms of PSNR, SSIM and LPIPS [54]. In particular,
DehazeFormer [43] attains the highest PSNR (27.96) and
SSIM (0.923) values, while GridDehazeNet [28] achieves
the best LPIPS (0.163) value on SynFog test set. Al-
though the overall performance trend of the algorithms on
SynFog is similar to that on RESIDE [25], the evalua-
tion scores are noticeably lower, highlighting the challenges
posed by SynFog. Fig. 10 depicts the qualitative compar-
ison among these methods across different fog levels. Im-
ages restored by DCP [20] and CAP [57] tend to appear
excessively dark and noisy due to inaccurate airlight estima-
tion and the lack of effective denoising capabilities. Grid-
DehazeNet [28] lacks color recovery ability in dense fog,
while the outputs of FFA-Net [39] and DehazeFormer [43]
seem smooth. This comparison further indicates the sub-
stantial room for improvement in existing defogging meth-
ods, especially when applied to more realistic fog datasets.

5.5. Discussion and Limitations

Experimental results reveal that models trained on SynFog,
incorporating realistic physical characteristics of optics and
sensors, exhibit a more robust performance on real-word
fog datasets in terms of visual perception and detection ac-
curacy. This outcome implies that integrating a physically-
based end-to-end imaging process replicating real capture
methods can significantly improve the generalization of

trained models. However, given the time-consuming nature
of the physically-based volumetric path tracing technique,
the scale of SynFog is not as extensive as other synthetic fog
datasets. Nonetheless, we are committed to expanding the
scene contents in the future and exploring a broader range
of scattering mediums beyond fog.

6. Conclusion

In this paper, we present an end-to-end foggy image simula-
tion pipeline. Our approach utilizes volumetric path tracing
to model a more precise light scattering process with global
illumination. By incorporating a physically-based camera
processing pipeline that includes optics, sensor and image
processing, we can closely mimic the authentic capture pro-
cess under foggy conditions. Additionally, we develop a
new synthetic fog dataset, SynFog, to facilitate the research
on defogging. Comprehensive experiments have validated
the authenticity and reliability of the SynFog dataset.
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