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Abstract

Visual prompting of large vision language models such
as CLIP exhibits intriguing zero-shot capabilities. A manu-
ally drawn red circle, commonly used for highlighting, can
guide CLIP’s attention to the surrounding region, to iden-
tify specific objects within an image. Without precise object
proposals, however, it is insufficient for localization. Our
novel, simple yet effective approach, i.e., Differentiable Vi-
sual Prompting, enables CLIP to zero-shot localize: given
an image and a text prompt describing an object, we first
pick a rendered ellipse from uniformly distributed anchor
ellipses on the image grid via visual prompting, then use
three loss functions to tune the ellipse coefficients to encap-
sulate the target region gradually. This yields promising ex-
perimental results for referring expression comprehension
without precisely specified object proposals. In addition,
we systematically present the limitations of visual prompt-
ing inherent in CLIP and discuss potential solutions.

1. Introduction
Large Language Models (LLMs) [2, 17, 19] and Vision-
Language Models (VLMs) [18, 20] emerged in recent
years are featured with some fascinating properties such as
prompting [1, 13, 31, 40]. Notably, in the absence of pre-
defined supervision signals during training, LLMs exhibit
a robust zero-shot capability across diverse tasks such as
translation and question answering, simply through prompt-
ing. For instance, when prompted by “Translate them into
English”, LLMs can accordingly translate the user’s input.
VLMs such as CLIP [20] have demonstrated similar ability,
in which the prompt of “a photo of {}” can enable zero-shot
image classification and boost performance. In light of this,
many works [5, 9, 39] have been dedicated to finding better
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Differentiable Visual Prompt Tuning 

Figure 1. Top: An illustration of visual prompt for CLIP [20]. As
observed in [24], the red circle can guide CLIP’s attention towards
the surrounding region. For example, given a text prompt “the
snail on the top”, the CLIP score reaches its maximum when the
circle is drawn around the snail. Bottom: Our Tune-An-Ellipse.
Given a text prompt, we begin by generating an initial ellipse by
visual prompting and propose three loss functions to iteratively
tune the ellipse coefficients to encapsulate the target region.

text prompts for VLMs, with strategies like CoOp [39] to
equip the prompt with learnable tokens.

Unlike previous efforts purely focusing on the textual
prompts, Aleksandar et al. [24] observed that a visu-
ally prompted image—a red circle simply drawn around
a region—allows CLIP to pinpoint any specific instances
from an image that may contain multiple objects. For an
intuitive explanation, people commonly use a red circle to
highlight and emphasize important elements, and this vi-
sual prompt is then implicitly learned by CLIP through con-
trastive learning on web-scale data. As the example shown
in Fig. 1, given a text prompt “the frog in the middle” and
various visually prompted images, CLIP can correspond-
ingly infer a distinct matching score for the proper prompted
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one. Beyond object recognition, Aleksandar et al. [24] also
showed that scoring a set of pre-extracted object proposals
by visual prompting could empower CLIP to localize ob-
jects described in a referring expression [16, 34]. However,
this approach hinges on the precise object proposals, typi-
cally obtained from external models like Faster R-CNN [21]
with limited pre-defined concepts. While more advanced
open-world detectors can be integrated, the range of their
conceptual knowledge still lags behind that of CLIP. Thus,
enabling CLIP itself to localize objects described in refer-
ring expressions is valuable but remains challenging.

Many works such as CAM [38] and Grad-CAM [22]
have devoted effort to explain what regions the neural net-
works would attend to [3, 12, 22, 29, 38]. These methods
employ learned weights or gradients to generate an activa-
tion map that vividly shows the model’s attention. Fig. 2 (c)
illustrates an example of Grad-CAM, in which we show an
activation map of CLIP in response to the expression “the
yellow fish at the bottom”. One can observe that while
Grad-CAM can correctly identify the relevant regions, it
also attends to considerable inaccurate content. This ob-
servation suggests that Grad-CAM alone is insufficient to
accurately localize specific objects due to its tendency to
produce erroneous attention.

This paper proposes to enable CLIP for zero-shot re-
ferring expression comprehension (REC) based on visual
prompting and Grad-CAM, without requiring precise object
proposals. The core idea is to iteratively tune an initial el-
lipse to encapsulate the target region accurately via a neural
network. Specifically, given an image and a textual prompt,
we initially generate an ellipse with coefficients via the pro-
posed differentiable visual prompting and activation map of
Grad-CAM from a set of uniformly distributed anchor el-
lipses (as shown in Figs. 2 (a) and (b)). Subsequently, the
coefficients follow the equation of a rotated ellipse to form
an ellipse curve, which can be embedded in the image as
a visual prompt (Figs. 2 (e) and (b)). This manner makes
the visual prompting process differentiable such that gra-
dient descent can be employed to adjust the initial coeffi-
cients. With tailored learning objectives, a neural network
is adopted to predict proper transformations, moving the el-
lipse curve to encapsulate the target region. We illustrate
the process and some examples at the bottom of Fig. 1. As
observed, given an image and a text prompt “cat looking
at us”, an initial ellipse curve near the cat is generated, then
will be iteratively tuned by the neural network to completely
and compactly encapsulate the cat looking at us.

In addition to presenting our proposed approach, we
systematically analyze the limitations of visual prompting
within CLIP, which currently serves as a bottleneck for
more practical applications. We also engage in a discus-
sion regarding potential avenues for enhancing CLIP’s vi-
sual prompting capabilities.

We summarize the main contributions as follows:
• We propose a novel, simple yet effective approach, i.e.,

differentiable visual prompting, to enabling CLIP itself to
localize objects described in referring expressions with-
out precisely specified object proposals.

• We systematically present the limitations of visual
prompting inherent in CLIP and discuss potential avenues
for further improvement.

2. Related Works
Prompting in Large Scale Models. Benefiting from

scaling parameters and corpus, GPT series [2, 17, 19] ex-
hibit remarkable zero-shot ability in tasks like translation
and chatting with a handful of prompts or samples. For in-
stance, by prompted “Translate the following English text
to French”, these models can suggest an accurate French
translation for the subsequent input. Indeed, apart from the
models’ vast parameter space, this feature may mainly stem
from the inclusion of prompts that encapsulate human in-
tent within the training data. Likewise, beyond language
corpus, recent studies [24] have shown that large vision-
language models like CLIP can also learn and understand
human intent in web-scale visual data, such as images with
red circles highlighting something important. Aleksandar
et al. [24] pointed out that such prompts effectively direct
CLIP’s attention to a specific area within an image, facili-
tating zero-shot recognition for a selected instance instead
of a rough overview.

Visual Prompt Tuning. Nurtured by large-scale multi-
modal data from the web, VLMs such as CLIP have the ca-
pacity to comprehend massive concepts both in textual and
visual forms. However, it is worth noting that CLIP may not
yet exhibit expertise in certain downstream tasks. To miti-
gate this issue, many visual prompt tuning approaches on
text input [5, 9, 39], vision input [7, 28, 33, 37], or both text
and vision inputs [23, 36] have been proposed to efficiently
and effectively adapt CLIP to specific tasks. For instance,
Zhou et al. [39] proposed to learn a set of learnable tokens
as context words to the textual input by fine-tuning on a few
labeled images in specific tasks or domains.

Referring Expression Comprehension (REC). Given
a textual description, REC aims to find the image re-
gion most relevant to the expression. Commonly, most
works [6, 14, 15, 30, 32, 35] focus on identifying the cor-
responding region by scoring a set of pre-extracted object
proposals (usually generated by Faster R-CNN [21]). For
instance, Yu et al. [35] proposed a modular attention net-
work to decompose expression into three modular com-
ponents, in which two kinds of attention are employed to
score the object proposals. Recently, researchers proposed
to tackle referring expression comprehension in an unsuper-
vised / zero-shot manner [8, 24, 26, 33]. ReCLIP [26] first
isolates object proposals via cropping and blurring and em-
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(e) Ellipse curve C(d) Euclidean distance matrix D (f) Ellipse mask M

(b) Initial prompted image i’ (c) Grad-CAM A(a) Points with Anchor Ellipses

Figure 2. An illustration of the differentiable visual prompting
process. The text prompt is “the yellow fish at the bottom”.

ploys CLIP to score each proposal. In addition, a spatial
relation resolver is leveraged to mitigate the weakness of
CLIP on spatial reasoning. CPT [33] paints the object pro-
posals with various colors and gets the most relevant col-
ored proposal via a pre-trained captioning model. More re-
cently, Aleksandar et al. [24] showed the capability of CLIP
to recognize visual markers such as a red circle, and then
proposed to prompt the image via such visual markers and
get the matched proposals via CLIP scoring.

3. Methodology
The goal is to tune a visual prompt, i.e., a red ellipse ○␣,
to get a maximum overlap with the region most relevant to
the text prompt. This work builds upon CLIP [20], a model
designed to align image and text information in the same
feature space. Following the previous study [24], we denote
the input image as i ∈ RH×W×3 and text as t ∈ Σ∗, where
Σ is the alphabet. CLIP is hereby formulated as a function
s(·) to predict a score s(i, t) ∈ R1, which measures the
semantic similarity between i and t. In addition, we denote
a fixed set of background text prompts [11] such as “a clean
origami land” and “a clean origami wall” as {t−1 , t

−
2 , · · · }.

Furthermore, the activation map obtained by applying Grad-
CAM on image-text pair (i, t) is denoted as A ∈ RH×W .

In the following, we first introduce how to make the pro-
cess of visual prompting differentiable (§ 3.1) and then elab-
orate on the proposed learning objectives to tune the initial
ellipse toward the target region (§ 3.2).

3.1. Differentiable Visual Prompting

The visual prompt ○␣ can be represented as a rotated ellipse
ϕ(x, y) parameterized by the ellipse center (cx, cy), major
axis a, minor axis b, and rotated angle θ:

ϕ(x, y) =
((x− cx) cos θ + (y − cy) sin θ)

2

a2

+
((x− cx) sin θ − (y − cy) cos θ)

2

b2
− 1,

(1)

where x, y : Ω ⊂ R2. As shown in Fig. 2 (d), given a mesh
grid to ϕ(·), a matrix of Euclidean distance D ∈ RH×W can
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Figure 3. The architecture of MLP model.

be derived, where the distance values on the ellipse curve
are all zeros. In this way, we can transform D into a matrix
C with an approximate ellipse curve on it by applying an
un-normalized Gaussian distribution f(·):

f(ϕ(x, y)) = exp

(
− (ϕ(x, y)− µ)2

2σ2

)
, (2)

where µ and σ2 represent the mean and variance. By set-
ting µ = 0 and a proper σ, a rotated ellipse curve can be
approximated and used to visually prompt the image i to i′

(as shown in Figs. 2 (e) and (b)).
In addition, we also transform D to a mask of approx-

imately binarized rotated ellipse M using the following
modulated inverse tangent function g(·) with ϵ:

g(ϕ(x, y)) =
1

2

(
1 +

2

π
arctan

(
ϕ(x, y)

ϵ

))
, (3)

where ϵ controls the fuzziness. Such a transformation is il-
lustrated from Fig. 2 (d) to Fig. 2 (f). Note that g(·) can
be any function, e.g., Sigmoid function, capable of approx-
imating the Heaviside step function.

3.2. Ellipse Coefficients Tuning

Initialization. Here, we introduce how to obtain a rel-
atively good initialization of the ellipse coefficients to the
target region. Motivated by anchor-based object detec-
tion [21] and SAM [10], we uniformly sample N points
on the image and assign each point with M various an-
chor ellipses in different sizes. We showcase some exam-
ples in Fig. 2 (a). For an image, we can totally obtain
NM proposals, resulting in a set of visually prompted im-
ages {i′1, · · · , i′NM}. Then, we measure the similarity be-
tween each prompted image and the text input to get a set
of scores {s(i′1, t), · · · , s(i′NM , t)} and calculate a set of
average activation {

∑
(A1·M1)∑

M1
, · · · ,

∑
(ANM ·MNM )∑

MNM
} with

Grad-CAM. Subsequently, we initialize the ellipse coeffi-
cients by selecting the proposal with the highest average
activation among the Top-K matching scores. We notate the
initial visually prompted image as i∗ with the ellipse coeffi-
cients of (c∗x, c

∗
y, a

∗, b∗, θ∗), transformed binarized mask as
M∗ and the corresponding Grad-CAM as A∗. Note that A∗

is fixed over the optimization process.
MLP Model. Given a set of initial coefficients, we aim

to tune them to approach the region most relevant to the text
prompt. A small MLP model is employed to predict a set of
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Algorithm 1 Ellipse Coefficients Tuning

1: Preparation:
2: A set of initial ellipse coefficients (c∗x, c

∗
y, a

∗, b∗, θ∗).
3: Prompted image i∗, text and background prompts t, t−j .
4: Main loop:
5: for step ∈ {1, . . . ,max step} do
6: L ← Lsim + Linf + Lsqz
7: Calculate gradients∇L to update the MLP model.
8: Predict (tx, ty, ta, tb, tθ) using the MLP model.
9: Use (tx, ty, ta, tb, tθ) to update (c∗x, c

∗
y, a

∗, b∗, θ∗).
10: Get the updated prompted image i∗.
11: end for

transformations (tx, ty, ta, tb, tθ) to shift the initial location
to (cx+tx, cy+ty, a+ta, b+tb, θ+tθ). The overall model
architecture is presented in Fig. 3. It consists of stacked
linear layers with LeakyReLU(·) activation, ending with a
tanh(·). Note that a set of learnable tokens is employed as
the input of the MLP model.

Optimization. To tune the current ellipse coefficients,
we logistically design three loss functions. The first one is
the matching loss Lsim based on the similarity scores:

Lsim = − log
exp(s(i∗, t))

exp(s(i∗, t)) +
∑

j exp(s(i
∗, t−j ))

, (4)

where t−j is the j-th background prompt. Lsim maximizes
the similarity between the visually prompted image i∗ and
caption t, guiding the MLP model to predict transforma-
tions that align the ellipse curve with the target region.
However, in principle, the concepts are not independent,
and CLIP can, at times, derive relevant information from the
background that aligns with the input caption. This implies
that there exist local optima within the image space that can
distract the attention of the network. To this end, inspired by
mathematical morphology [25], we propose to dynamically
adjust the size of the ellipse to prevent the model from get-
ting trapped in local optimal solutions (background). This
yields two additional learning objectives: inflation loss Linf
and squeezing loss Lsqz. Specifically, Linf is formulated as:

Linf = − log

(∑
(A∗ ·M∗)

HW

)
. (5)

Linf aims to inflate the red ellipse curve to include more
activation. However, as Grad-CAM often attends to those
irrelevant regions, the involvement of Linf may over-inflate
the ellipse curve. To mitigate the problem, we introduce the
squeezing loss Lsqz:

Lsqz = − log

(∑
(A∗ ·M∗)∑

M∗

)
. (6)

Lsqz maximizes the average activations inside the rotated
ellipse, equivalent to encouraging the ellipse to cover the
target region compactly.

A combination of these learning objectives would result
in a well-suited ellipse curve covering the target region:

L = Lsim + Linf + Lsqz, (7)

where the weights of three loss terms are set as 1. We
present the coefficients tuning process in Algorithm 1.

4. Experiments

4.1. Experimental Setup

Datasets and Evaluation Metrics. Following the proto-
col [24, 26], we evaluate the proposed method using the re-
ferring expression comprehension (REC) task, which aims
to find the image region that is most relevant to the given
text input. The REC task is commonly evaluated on Re-
fCOCO [34], RefCOCO+ [34], and RefCOCOg [16], in
which each image is annotated with multiple expressions
and each expression refers to a unique object with bound-
ing box information. In particular, expressions in Ref-
COCO and RefCOCOg include relation-based words such
as left/bigger/closer, and only appearance-based descrip-
tions are involved in RefCOCO+. For RefCOCO and Re-
fCOCO+, it is split into testA and testB for people and non-
people evaluation. We evaluate performance using the per-
centage of accurate predictions, considering a box as cor-
rectly predicted when its intersection-over-union with the
ground-truth box exceeds 0.5.

Implementation Details. Akin to prior studies [24, 26],
we employ an ensemble of two CLIP vision encoders (ViT-
B/16 and ViT-L/14) to compute the loss, and an ensemble
of ViT-B/16 and ViT-L/14@336px to get the Grad-CAM
in our experiments. More experimental results on various
CLIP vision encoders are provided in supplementary ma-
terials. Given an image i, text prompt t, and background
prompts {t−1 , t

−
2 , · · · }, we can accordingly get a list of

scores {s(i, t), s(i, t−1 ), s(i, t
−
1 ), · · · } and then stack them

together to obtain a vector. We further apply the Softmax
function to normalize them and get the activation map of
Grad-CAM following the open-source implementation1. In
the process of differentiable visual prompting, σ in Eq. 2
is set as 0.05. The number of nodes in each MLP layer
is 64 (input), 128, 128, and 5 (output), respectively. The
learnable tokens are randomly initialized. To ensure the
MLP model predicts a more stable transformation vector,
we multiply the input of tanh(·) by 0.5. We adopt the Adam
optimizer and set the learning rate as 0.001 with a cosine
annealing scheduler. The default tuning steps are set as 200.

1https://github.com/jacobgil/pytorch-grad-cam
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Methods ZS Proposal RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

DTWREG [27] × F-RCNN 39.2 41.1 37.7 39.2 40.1 38.1 – –
Pseudo-Q [8] × F-RCNN 56.0 58.3 54.1 38.9 45.1 32.1 46.3 47.4

CPT [33] ✓ F-RCNN 32.2 36.1 30.3 31.9 35.2 28.8 36.7 36.5
ReCLIP [26] ✓ F-RCNN 45.8 46.1 47.1 47.9 50.1 45.1 59.3 59.0
Red Circle∗ [24] ✓ F-RCNN 48.6 56.2 41.7 54.7 61.5 46.0 59.3 58.9
Ours∗ ✓ F-RCNN 49.8 58.0 40.9 55.1 62.8 45.7 58.4 58.7

ReCLIP [26] ✓ P-Ellipses 7.35 6.59 7.69 7.90 6.88 8.99 12.1 11.7
Red Circle [24] ✓ P-Ellipses 8.34 6.56 10.2 8.94 6.85 11.3 16.0 15.1
Ours ✓ P-Ellipses 26.3 32.3 19.8 27.8 32.7 22.1 29.9 29.0

Table 1. Comparison with state-of-the-art on REC. We present
Top-1 accuracy (%). ZS refers to the zero-shot setting. Two types
of proposals, i.e., Faster R-CNN (F-RCNN) and points with an-
chor ellipses (P-Ellipses) (Fig. 2 (a)), are considered in the com-
parison. F-RCNN means that object-bounding boxes detected by
Faster R-CNN are used as object proposals. P-Ellipses indicate
that we just uniformly sample points on the image and use an-
chor ellipses of different sizes as the proposals (as introduced in
Sec. 3.2). Red Circle∗ indicates that results are based on our re-
implementation. Ours∗ means that we score the object proposals
the same as Red Circle but use the proposed differentiable visual
prompting.

4.2. Quantitative Results

We present a comparison with state-of-the-art REC ap-
proaches in Table 1. Zero-shot REC methods generally ini-
tialize a set of candidate object proposals detected by Faster
R-CNN, score each proposal, and then select the proposal
with the highest score as the final localization. In this way,
CPT [33], ReCLIP [26] and Red Circle [24] achieve com-
petitive performance to those supervised methods such as
DTWREG [27] and Pseudo-Q [8]. A potential limitation
of this approach may lie in their performance drop when
encountering expressions with un-predefined concepts like
”snail” that the Faster R-CNN detector fails to localize. As
shown in Table 1, regarding uniformly distributed anchor el-
lipses as object proposals, these methods significantly fail to
localize the target region, reaching low accuracy across Re-
fCOCO, RefCOCO+, and RefCOCOg datasets. For exam-
ple, ReCLIP only obtains 8.3%, 6.5%, and 10.2% accuracy
on RefCOCO val, testA, and testB, respectively. In contrast,
our Tune-An-Ellipse can relatively mitigate the problem by
tuning the proposals to encapsulate the target region, which
can achieve more promising results. As observed, our ap-
proach can get better accuracy of 26.3%, 32.3%, and 19.8%
on RefCOCO val, testA, and testB, respectively.

As Grad-CAM is involved in the proposed loss terms,
we present a comparison with it on RefCOCO testA and
testB in Fig. 4. For a fair comparison, we evaluate accuracy
at the pixel level, considering a mask as correctly predicted
when its intersection over-union with the ground-truth mask
exceeds 0.5. By applying a threshold, binary masks can be
derived from Grad-CAM activation maps. Notably, Grad-
CAM exhibits sensitivity to threshold variations, leading to
significant performance fluctuations between thresholds of
0 and 1. In contrast, the proposed Tune-An-Ellipse does not
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Figure 4. Comparison with Grad-CAM on the referring expression
comprehension (REC) task. We utilize an ensemble of ViT-B/16
and ViT-L/14 for our method and Grad-CAM. To ensure a fair
comparison, we derive binary masks from Grad-CAM by applying
a threshold and calculating the mask accuracy using the ground-
truth mask. Similarly, we transform the predicted ellipse into a
mask to compute the mask accuracy for our method.

require the thresholding process and always achieves better
performance than Grad-CAM.

4.3. Visualization Results

We showcase the visualization of referring expression com-
prehension results for Tune-An-Ellipse in Fig. 5. The sam-
ples are drawn from RefCOCO val, testA, and testB. The
ground truth is represented by green bounding boxes, while
the predicted results from Tune-An-Ellipse are depicted us-
ing red ellipses. One can observe that Tune-An-Ellipse
can accurately find the target region described in the refer-
ring expressions, even in some complicated scenes. For in-
stance, as observed in the top-right of Fig. 5, though the
lady and guy stand in the background of the two salient
players, given referring expressions “lady middle pink” and
“guy in back left red shirt”, the proposed Tune-An-Ellipse
can also precisely and completely find the corresponding
regions. These cases highlight the significant potential of
vanilla CLIP, coupled with our tuning approach, in accu-
rately interpreting expressions and finding the correspond-
ing target regions, without the need for precise object pro-
posals extracted by pre-trained detectors.

Visualizations of Grad-CAM and the localization results
of Tune-An-Ellipse are presented in Fig. 6. Grad-CAM of-
ten focuses on irrelevant or incorrect regions, posing chal-
lenges in localizing objects described in referring expres-
sions alone. For example, in the top-left corner of Fig. 6,
when provided with the referring expression “adult male
center right”, Grad-CAM erroneously focuses more on the
head of the child, accompanied by background activation.
Moreover, Grad-CAM frequently tends to concentrate on
sub-words within an expression, as illustrated by the em-
phasis on the “hat” in the top-right of Fig. 6. Additionally,
it often highlights discriminative parts of the target object,
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“man on right” “person on left yellow boots” “white car”

“lady middle pink”

“guy in back left red shirt”

“right player”

(1) “man on right” (2) “person on left yellow boots” (3) “white car” (4) “lady middle pink” (5) “guy in back 
left red shirt” (6) “right player”

“umbrella” “apple slices” “brown stuffed animal” “full drink” “clock left” “right clock”

standing kid

“girl sitting in back” “boy green shirt and tie” “girl in dress” “papa ducky left” “goose on right” “standing kid”
Figure 5. Localization results of Tune-An-Ellipse on RefCOCO val, testA, and testB. The bounding boxes in green are the ground truth and
the red ellipses are the results predicted by the proposed Tune-An-Ellipse. The texts such as “papa ducky left” are the referring expressions.

as seen with the focus on the head of the person in the mid-
dle right of Fig. 6. In contrast, Tune-An-Ellipse effectively
avoids incorrect attention by visually prompting anchor el-
lipses and subsequently tuning the initial ellipse to accu-
rately and completely encapsulate the target regions. For
example, in the bottom-left of Fig. 6, when presented with
the expression “front orange”, Tune-An-Ellipse accurately
locates the region of the orange in the front, despite the pres-
ence of erroneous activation around the right orange.

4.4. Ablation Studies

As introduced in Sec. 3.2, Linf and Lseq complement each
other to prevent the tuned ellipse from over-inflating or un-
derestimating the target regions. It may seem that these
two loss terms alone are sufficient for the accurate local-
ization of target objects. In practice, the Lsim is necessary
and we illustrate its importance in Fig. 6, which presents vi-
sualization of Grad-CAM, localization results of Tune-An-
Ellipse w/o Lsim on RefCOCO testA and testB. It is evident
that Grad-CAM often focuses on incomplete or incorrect
regions that are irrelevant to the referring expressions. For
example, in the top-right of Fig. 6, when given the expres-
sion “man with hat”, Grad-CAM exclusively attends to the
region of the hat, disregarding the entire body of the man.
With only Linf and Lseq, the resulting red ellipse only covers
the hat. Upon incorporating Lseq, the final predicted red el-
lipse accurately and compactly encompasses the man with
a hat. Furthermore, Grad-CAM may erroneously focus on
inaccurate regions, leading to significant localization inac-
curacies. For instance, in the bottom-right of Fig. 6, when
presented with the expression “laying elephant”, most of

the Grad-CAM activation concentrates on the standing ele-
phant rather than the laying one. The absence ofLsim results
in notably inaccurate localization, as evidenced by similar
instances in the middle row. These examples underscore the
necessity and effectiveness of Lsim. More numerical results
on ablation studies of the three loss terms Linf, Lseq, and
Lsim are presented in Table 2. It is evident that when all
three loss terms are involved, Tune-An-Ellipse achieves the
best performance. Moreover, an ensemble of Grad-CAM
with two CLIP vision encoders (simply adding two activa-
tion maps) results in improved performance.

Ablation studies on various initialization manners and
tuning steps are presented in Table 3. Without any tun-
ing, the initial ellipses can only obtain around 4% accuracy.
With the proposed tuning method, it can achieve significant
improvement with an accuracy of 32.3%. In addition, the ta-
ble shows that selecting the anchor ellipse with the highest
average activation among the Top10 matching scores, i.e.,
Top10 (S) & Top1 (A), would lead to better performance.

We perform the sensitivity analysis of the number of
Top-K, uniform points, and anchor ellipses as object pro-
posals introduced in Sec. 3.2 and the results are presented
in Table 4. It is evident that, with a fixed number of points
(9*9) and anchor ellipses (6), opting for the Top10 anchor
ellipses with the highest scores and subsequently selecting
the Top-1 ellipse with the largest average activation yields
a better performance on RefCOCO. When the number of K
and anchor ellipses is fixed at 10 and 6, respectively, em-
ploying 9*9 uniformly sampled points across the image re-
sults in a better performance on RefCOCO. Besides, when
the number of K and points is fixed at 10 and 9*9, respec-
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Referring expression: “adult male center right” Referring expression: “man with hat”

Grad-CAM without Lsim with Lsim Grad-CAM without Lsim with Lsim

Referring expression: “red middle” Referring expression: “left guy”

Referring expression: “front orange” Referring expression: “laying elephant”

Figure 6. Visualization of Grad-CAM and localization results of Tune-An-Ellipse w/o Lsim on RefCOCO testA and testB. Ground truth
bounding boxes are indicated in green, and the results predicted by Tune-An-Ellipse are depicted by red ellipses.

Lsim Linf Lseq Accuracy (%)

✓ 4.63 / 5.30
✓ 5.78 / 5.75

✓ 0.14 / 0.19
✓ ✓ 6.01 / 6.28
✓ ✓ 0.25 / 0.48

✓ ✓ 31.2 / 27.2
✓ ✓ ✓ 32.3 / 29.0

Table 2. Impact of three losses on REC Top-1 accuracy based on
ensemble Grad-CAM from CLIP ViT-B/16 and ViT-L/14@336 or
based on single Grad-CAM. The results are from RefCOCO testA.

tively, assigning 6 anchor ellipses for each point yields a
better performance on RefCOCO.

5. Limitations

Deficiency of CLIP’s Visual Prompting. Note that the vi-
sual prompting ability of CLIP sometimes still falls short
of perfection, especially in situations without precise object
proposals. This potentially lowers the upper bound of our
method. Here, we systematically list the challenges below.

(a) High Response to Background. Without precise ob-
ject proposals, many anchor ellipses are falling in the back-
ground, such as sky and grass. Unfortunately, a red ellipse
drawn on the background can sometimes lead to a high
response of CLIP to the referring expressions. We show-
case examples in Fig. 7 (a). Given “the big one”, the vi-
sual prompt ○␣ on the background, such as sky and grass,
would get a higher matching score than that of well around
the ground truth. These cases underscore that the current
CLIP’s visual prompting ability might encounter challenges

Initialization Tuning Steps Accuracy (%)

Top-1 (S) 0 3.94
Top-1 (A) 0 1.26
Top-1 (S) 200 29.1
Top-1 (A) 200 31.6

Top-10 (S) & Top-1 (A) 0 3.13
Top-10 (A) & Top-1 (S) 0 3.96
Top-10 (A) & Top-1 (S) 200 31.8
Top-10 (S) & Top-1 (A) 200 32.3

Table 3. Ablation studies on initialization manners and tuning
steps. Top-1 (S) indicates the anchor ellipse with Top-1’s high-
est matching score and Top-1 (A) indicates the anchor ellipse with
Top-1’s largest average activation. Top-10 (S) & Top-1 (A) indi-
cates the anchor ellipse with the highest average activation among
the Top-10 matching scores.

#K #Points #Anchor Ellipses Accuracy (%)

5 9 * 9 6 31.6
15 9 * 9 6 31.8

10 6 * 6 6 31.5
10 12 * 12 6 31.8

10 9 * 9 3 31.3
10 9 * 9 6 32.3
10 9 * 9 9 31.8

Table 4. Sensitivity analysis w.r.t. the number of Top-K, grid
points, and anchor ellipses introduced in Sec. 3.2.

in effectively eliminating background interference.
(b) High Response to Partial Inclusion. REC strives

for precise and complete localization of referring objects.
Unfortunately, CLIP does not possess such an ability per-
fectly as illustrated in Fig. 7 (b). Given “right bear”, the
red ellipses that completely encompass the target objects
receive matching scores of 0.47 and 0.30, respectively, even
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“right bear”
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“person to the left of the dog”
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“the big one”
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“The gray stuffed animal in the red and white stripes”

“top donut” “right giraffe”

“3rd row, 4th from left” “elephant in foreground”

Figure 7. Illustration of scenarios where CLIP’s visual prompting falls short. We categorize three main scenarios: (a) high response to the
background, (b) high response to inaccurate inclusion, and (c) high response to sub-words of expressions. The bounding boxes in green
are the ground truth. Number on the left corner of the image is the matching score s(i∗, t) between visually prompted image i∗ and
text prompt t. The scores are the summation of two CLIPs, i.e., ViT-B/16 and ViT-L/14.

lower than that of partially including the target object.
(c) High Response to Sub-words. In REC, the task in-

volves a comprehensive understanding of expressions fol-
lowed by the accurate localization of corresponding regions.
Unfortunately, CLIP sometimes makes mistakes in this sit-
uation as shown in Fig. 7 (c). When presented with “person
to the left of the dog”, the goal is to localize the person.
However, CLIP gives the visual prompt of the dog on the
right a higher score than that of the person.

Potential Solutions. We attribute the above challenges
to the limited representation of both positive and negative
examples of such visual prompts during CLIP’s training. In
addition to incorporating more visually prompted images
to train vision-language models, introducing visual prompts
on the background and part of the target object as negative
samples for contrastive learning would potentially enhance
CLIP’s visual prompting ability to mitigate the problems.

6. Discussions
As mentioned above, CLIP’s visual prompting ability may
not be flawless in certain cases, necessitating the use of ad-
ditional loss terms such as Linf and Lsqz based on Grad-
CAM for compensation. However, these terms can poten-
tially lead to the problem of over-tuning, since Grad-CAM
is also not reliable as depicted in Fig. 7 (d). We argue that
if CLIP’s visual prompting ability is perfect, only the pro-
posed differentiable visual prompting with Lsim would be
sufficient to accurately localize the target within the given

context, which will be extremely simple and effective.

7. Conclusion
Building upon the emerging visual prompting capability of
CLIP, this work proposed an approach, i.e., differentiable
visual prompting, to enabling CLIP to automatically lo-
calize the image region most relevant to referring expres-
sions, eliminating the requirement of precise object propos-
als from detectors such as Faster R-CNN. Our approach in-
volved the generation of an initial ellipse from uniformly
distributed anchor ellipses through visual prompting. Sub-
sequently, three loss functions were employed to iteratively
refine the ellipse coefficients, gradually encapsulating the
target region. Experimental results demonstrated that our
method can achieve promising results in zero-shot referring
expression comprehension. In addition, we also systemat-
ically outlined the challenges of visual prompting within
CLIP and engaged in a discussion regarding potential av-
enues for improvement.
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