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Abstract

Learning-based underwater image enhancement (UIE)
methods have made great progress. However, the lack of
large-scale and high-quality paired training samples has
become the main bottleneck hindering the development of
UIE. The inter-frame information in underwater videos can
accelerate or optimize the UIE process. Thus, we con-
structed the first large-scale high-resolution underwater
video enhancement benchmark (UVEB) to promote the de-
velopment of underwater vision. It contains 1,308 pairs
of video sequences and more than 453,000 high-resolution
with 38% Ultra-High-Definition (UHD) 4K frame pairs.
UVEB comes from multiple countries, containing various
scenes and video degradation types to adapt to diverse and
complex underwater environments. We also propose the first
supervised underwater video enhancement method, UVE-
Net. UVE-Net converts the current frame information into
convolutional kernels and passes them to adjacent frames
for efficient inter-frame information exchange. By fully uti-
lizing the redundant degraded information of underwater
videos, UVE-Net completes video enhancement better. Ex-
periments show the effective network design and good per-
formance of UVE-Net.

1. Introduction
Underwater images and videos are essential channels

representing various information, but they often suffer from
color deviation and blurring due to water scattering. Un-
derwater Image Enhancement (UIE) can improve the color
deviation and blurring of underwater images, helping them
to be better applied in marine observation. However, UIE
is also full of challenges due to its higher ill-posedness
than video dehazing [1]. Current UIE methods often cannot
completely eliminate the effect of water scattering and can-

not be widely used in various real underwater scenes [2].
Collecting large-scale data to train deep neural networks
and utilizing the fitting ability of neural networks [3] can ap-
proximately solve these problems. The limited scale of ex-
isting datasets restricts the development of UIE [2]. These
factors motivate us to construct the first large-scale real-
world paired underwater video enhancement dataset.

Before data-driven UIE methods became popular, peo-
ple improved the quality of underwater images mainly by
estimating physical priors or adjusting image pixel val-
ues [4, 5]. The emergence of Generate adversarial net-
work [6] (GAN) inspired people to explore synthetic paired
UIE datasets and UIE methods based on GAN [7, 8].
The first paired underwater image enhancement benchmark
UIEB [9] was proposed in 2019. Paired real-world UIE
datasets like UIEB [9] significantly boost the research on
supervised UIE methods [3, 10].

However, UIE research is still full of challenges. Al-
though underwater images are not hard to collect, obtain-
ing calibrated paired underwater images with sufficient va-
riety is expensive and difficult [11]. It makes the existing
paired real underwater datasets relatively small in scale. A
small-scale UIE dataset [2] may increase the risk of overfit-
ting the learned models. The requirements for large-scale,
real-world paired training samples have become the main
bottleneck hindering the development of UIE. Underwater
tasks use more videos than single images, and the redundant
information of adjacent frames in videos can accelerate or
optimize the image enhancement process.

Considering the above factors, we collect high-
resolution videos of diverse underwater scenes with video
quality scores to build the first large-scale underwater
video enhancement benchmark (UVEB). UVEB contains
1,308 underwater video pairs and 453,874 high-resolution
frame pairs. To our knowledge, UVEB is also the largest
Ultra-High-Definition (UHD) 4K video dataset (containing
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173,797 pairs of UHD 4K frames) in the video enhance-
ment/restoration field and the largest video dataset in the
underwater vision field.

To enrich the diversity of samples, we collect underwa-
ter videos from multiple regions of the world (more than 20
countries), various underwater scenes (e,g, coastal waters,
distant sea, rivers, lakes, ports, swimming pools, aquariums,
etc.), diverse color casts (e,g, blue, green, yellow, white,
other colors), and insufficient light underwater videos to
construct UVEB. We also provide 2616 manually annotated
raw video and ground truth (GT) quality scores to charac-
terize and increase the sample reliability.

Based on the UVEB dataset, we also provide the first
supervised underwater video enhancement network, UVE-
Net. Most existing video enhancement/restoration methods
achieve better results through aligning [12–14] or aggregat-
ing [15–17] adjacent frames information at the feature or
pixel level. While two ways often have a large computa-
tional burden and inaccurate frame alignment sometimes
also introduces bias to image restoration [18]. UVE-Net
heuristically explores more efficiently and directly inter-
frame information interaction at the action level (convolu-
tion kernel) without frame alignment or aggregation.

Unlike the image-level UIE methods, UVE-Net can use
the inter-frame information and convert the enhancement
process of the low-resolution downsampled middle frame
into convolutional kernels and transmit them to the frames
to be restored, guiding the frames to complete enhancement
more efficiently. In this way, UVE-Net greatly improves
the enhancement effect of the underwater videos with less
additional computational costs.

We summarize the main contributions as follows:
• We collect the first large-scale (1308 pairs of video

sequences, 453,874 frame pairs) real-world underwater
video enhancement dataset, UVEB. UVEB contains high-
resolution video with various scenes and diverse video
degradation types.

• We provide 2616 additional video quality scores for GT
and raw videos. Sufficient experiments confirm the supe-
riority and reliability of the UVEB dataset.

• We propose the first supervised underwater video en-
hancement method, UVE-Net. UVE-Net efficiently uti-
lizes the enhancement process of the downsampled mid-
dle frames to guide the underwater video sequences
achieve better enhancement.

2. Related Work
Underwater Image Enhancement Datasets. Completely
removing water scattering to collect ideal underwater GT
images is difficult. RUIE [24] collects a variety of under-
water image images to be enhanced and constructs a test
set. Some methods like UWCNN [25] and WaterGAN [7]
use land images as GT to synthesize underwater images.

However, due to the significant differences between the syn-
thetic image domain and the real underwater image domain,
the methods trained from synthetic data are difficult to ap-
ply to diverse real-world underwater scenes. Building UIE
datasets with real underwater images with manual voted la-
bels is another solution. UIEB [9] and LSUI [19] chose
the best results produced by current UIE methods as GT.
Many new UIE methods such as PUIE [3], LANet [10], and
FspiralGAN [26] trained on these data have shown remark-
able improvements in enhancing real underwater images.
SAUD [27] construct an UIE quality evaluation dataset with
manual voted labels. We use manual voted labels to con-
struct the UVEB dataset in this work.
Underwater Video/Video Enhancement Datasets. The
high collection and annotation cost [11] of underwater
video results in existing underwater video datasets [20, 21]
being small in scale or with limited scenes. DRUVA [21]
captured 20 videos for underwater video depth estimation.
UTB180 [20] offers 180 video sequences for underwater
video object tracking. Models trained with insufficient un-
derwater data would be hard to adapt to the diverse and in-
tricate underwater conditions.

In contrast, in-air video datasets often have a larger scale.
For example, the video dehazing dataset HazeWorld [1],
contains 1271 video pairs. Moreover, the LHP-Rain [23]
dataset in video deraining includes one million FHD frames.
To obtain a large-scale underwater video dataset with rich
scenes and narrow the development gap between underwa-
ter video enhancement and other low-level visual tasks, we
construct a large-scale underwater video dataset UVEB to
promote the development of underwater vision.
Underwater Image Enhancement Methods. UIE meth-
ods can be roughly divided into learning-free methods and
learning-based methods. The former enhances underwa-
ter images through prior estimation [4, 11, 28–30] or im-
age pixel value adjustment [5, 31]. The latter learns the
mapping of high-quality images through feature extrac-
tion, such as weakly supervised UIE methods MateUE [32],
Semi-UIR [2], and supervised deep learning methods Spi-
ralGAN [33], LANet [10], and PUIE [3]. Research in UIE
is currently more focused on designing better UIE methods
[3, 10]. A few methods, such as FA+Net [34] and Fspiral-
GAN [26], aim to develop faster lightweight networks suit-
able for underwater conditions with limited computational
resources. These methods often sacrifice quality to ensure
speed. Quality is still a more important issue in the UIE
field, and we explore efficient ways to utilize redundant in-
formation in underwater video to achieve better UIE.
Video Restoration Methods. Existing video restoration
methods assist in better image restoration for the current
frame image by aligning [12–14] or aggregating [15–17, 35]
adjacent frame information at the feature or pixel level. Al-
though the former can effectively use inter-frame informa-
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Table 1. Comparison with SOTA real paired underwater datasets and video restoration datasets.

Datasets Venue Sequece Frame Resolution Annotation

UIEB [9] TIP ′ 19 None 0.89k 299×168 ∼ 2180×1447 Underwater image enhancement
LSUI [19] TIP ′ 23 None 5k 256×256 ∼ 1280×1024 Underwater image enhancement

UTB180 [20] ACCV ′ 22 180 58K 1920×1080 Underwater video object tracking
DRUVA [21] ICCV ′ 23 20 6.11K 1920×1080 Underwater video depth estimation

HazeWorld [1] CVPR ′ 23 1271 326K 960×720 ∼1588×720 Video dehazing
RVSD [22] ICCV ′ 23 110 11.423K 640×480 ∼3840×2160 Video desnowing

LHP-Rain [23] ICCV ′ 23 3000 1000K 1920×1080 Video deraining

Ours 1308 453.874K 960×528 ∼ 3840×2160 Underwater video enhancement

tion, inaccurate frame alignment sometimes brings bias to
image restoration [18], and frame alignment often has a
large computational burden. Although the latter can fully
utilize inter-frame information through multi-level aggre-
gation of adjacent frames or three-dimensional convolution
to fusion spatiotemporal information, it often has a high
computational cost and low efficiency in utilizing redun-
dant information of adjacent frames. We enlighteningly
carry out efficient interaction of inter-frame information at
the action level (convolutional kernel), transforming the en-
hancement process of the downsampled middle frame into
convolutional kernels (action instructions) and pass them to
the current frames to be enhanced, helping them complete
enhancement more efficiently.

3. Large-scale real-world paired Benchmark

3.1. Benchmark Collection

We use FIFISH V6 and FIFISH V-EVO equipped with
4K resolution cameras to collect underwater videos from
multiple sea areas and ports in China. We also collect inter-
net underwater videos shared by underwater photographers
from many countries to enrich our dataset. Due to the diffi-
culty in obtaining clear underwater GT images, the existing
real-world UIE datasets UIEB [9] and LSUI [19] utilize 12
and 18 methods to enhance the raw images and select the
best results from the enhancement results as GT. Practices
[2, 3, 10, 26] have proven that this strategy is currently the
best way to build paired UIE datasets. We follow this strat-
egy to construct the UVEB dataset.

We select 20 UIE methods (including 10 methods pub-
lished in the last two years) that can process underwater
videos of different sizes to enhance the raw videos and
obtain GT. After processing more than 9,000,000 high-
resolution frames, we obtained 20 enhancement results of
the raw videos. We evaluate the quality score of each en-
hancement result and choose the optimal enhancement re-
sult as the GT. We also provide video quality scores for raw
video and GT as supplementary information in the UVEB

Table 2. Total score of all methods on the test videos.

Method score Method score

PUIE [3] 60071 CLUIE [37] 42376
LANet [10] 59779 fusion-based [38] 40145
CLAHE [5] 53196 MSCNN [39] 38208
FA+Net [34] 49815 WWPF [40] 32689
URanker [36] 49277 retinex-based [41] 30894

FspiralGAN [26] 48633 GDCP [42] 29547
GC [43] 47975 HE [44] 29309

USUIR [45] 46308 UDCP [46] 19195
MLLE [31] 43745 MetaUE [32] 19088

Red Channel [30] 43541 DCP [28] 13647

dataset. The existing UIE methods for both quality assess-
ment and quality enhancement [2, 36] make us believe that
future research can utilize the sample quality information
for better underwater video enhancement.

3.2. Labeled Sample Generation

Annotation Preparation. Selecting the optimal enhance-
ment results involve video quality assessment, thus the
whole process is performed under the guidance of ITU-R
BT500-13 [47] with 15 observers. All observers conducted
video quality assessment using the Redmi-27H 4K display
under the same experiment setting. Observers can rate the
video quality with an integer from 0 to 100, similar to the
task setting in [48]. Each Observer underwent two days
of professional knowledge training to fully understand the
physical process and common types of underwater image
degradation.
Rigorous and Reasonable Assessment Process. Differ-
ent from [48, 49], underwater video enhancement quality
assessment is much more difficult due to the diversity and
complexity of video degradation types. Thus, we adopt a
more rigorous approach for video quality assessment.

We select 1743 videos (83×21) covering various scenar-
ios and degradation types for assessment test. Although the
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Figure 1. The diversity of UVEB samples with data from different color distortions in multiple scenes. Each column provides the water
color deviation, raw video quality score, and GT quality score.

(a) Distribution (b) Degradation types (c) Resolution

Figure 2. (a) The spatial distribution of videos collected in our dataset. (b) The proportion of six types of underwater video degradation in
UVEB. (c)The resolution information of UVEB.

types and degrees of degradation are diverse and each ob-
server’s visual perception is different, each observer’s rating
of the same data should be stable and reasonably increase
with increasing quality. To ensure this point, we prepared
150 videos with various types of videos to construct the ex-
ample library. We asked observers to score and sort the 150
videos in increasing order of quality. The sorted example li-
braries obtained by each observer through the process were
used as respective video quality scales. Observers could
view their scales if they needed reference on their ratings
and watch the videos many times to give more definitive
ratings. To avoid visual fatigue, observers took a manda-
tory half-hour break after a half-hour evaluation, and the
labeling task was allowed to be completed within 30 days.
Processing of Annotated Data For each set of videos, the
ratings of observers that deviated by two standard devia-
tions were eliminated based on all observers’ ratings of the
raw video. The remaining ratings were used to select GT.
Based on the remaining ratings, we selected method M ,
which received the most votes and the highest score. The
remaining ratings of the raw video are averaged as the raw
video quality score Rq .

The mean scores of the observers who chose M as the
best enhancement method on the raw video and the en-

Figure 3. MOS of the samples before and after enhancement.

hanced result are Sr and Se, respectively. The difference
between the two is ∆s. The GT sample score Gq is ob-
tained by

Gq = Rq +∆s (1)

where Rq is given by more observers’ evaluation than Sr.
Therefore, we set it as the raw video score. Since Se and
the raw video score Rq are given by inconsistent observer
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Figure 4. Color deviation changes with ambient light.
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Figure 5. The rating increases as the video quality improves.

groups. Therefore, treating Se as the quality score of GT is
sufficiently credible. The quality improvement degree ∆s
of the M method on the raw video is more reliable. There-
fore, we follow the Eq. (1) to obtain the quality score of
GT. We also deleted 43 sets of samples with Rq less than
40 and enhancement degree ∆s less than 3, as the quality
improvement of these samples was not significant.

3.3. Data Analysis

Diversity of Dataset. UVEB includes various underwater
scenes such as offshore, open sea, rivers, lakes, ports, aquar-
iums, swimming pools, etc. Fig. 1 shows the scene diversity
and degradation type diversity of UVEB samples. UVEB
video degradation mainly includes six types: blue, green,
yellow, white, other colors, and insufficient lighting. Fig. 2
(b) shows the proportion of six types of underwater video
degradation in UVEB. UVEB dataset contains 25% yellow,
white, and other color deviation data, as well as underwater
videos with insufficient light, which are rarely mentioned
but appear in actual scenes. Fig. 2 (a) shows that the distri-
bution of video collectors’ source countries in this dataset
is diverse, which is more than twenty. Fig. 2 (c) shows the
resolution information of the overall dataset. The resolu-
tions of most data are larger than 2K. The number of frames
in the various resolution intervals in our UVEB dataset to-
taled 453,874 frames. Fig. 3 shows the mean opinion scores
(MOS) of the samples before and after enhancement. We
can see that the UVEB includes samples of diverse quality
and the GT quality is better than raw videos.

According to observations during the data collection, the
diversity of water types, imaging distances, and ambient
light contributes to the variety of color deviations in un-
derwater images. From Fig. 4, we can find that the color
deviations may be diverse due to changes in ambient light

Figure 6. Brightness variation curves for different enhancement
results of #1057 video.

even in the same video.
Reliable Samples Quality. We calculate the proportion of
samples within two standard deviations like [49], which is
96.99% and larger than 95%. According to [47], our eval-
uation process is reliable and the error is controlled within
a reasonable range. Fig. 5 shows the partial scoring results
of the observers. The first line shows that the ratings of
videos with different color deviations increase with qual-
ity improvement. The second line shows that the ratings of
videos with the same color deviation increase as the degree
of color deviation decreases. The better the overall quality
of the image, the higher the score.

Since image enhancement methods do not consider the
correlation between video frames and enhance a single
frame individually, people may be concerned about the
flickering issues among different enhanced frames. To in-
vestigate this point, we show the brightness variation curves
of different enhancement methods with an video example
in Fig. 6. Some brightness curves fluctuate sharply, such as
MSCNN [39] and GDCP [42] in Fig. 6. According to ob-
servations, due to the good fitting ability of neural networks,
the enhancement results of most deep learning methods will
not encounter this problem, such as the enhancement results
of FspiralGAN [26] and PUIE [3] methods used as GT in
the sample. Only the enhanced results with stable bright-
ness changes and no frame flicker can be chosen as GT.

4. UVE-Net

In most cases, the water body and degradation level be-
tween adjacent frames are quite similar. Thus, we can make
use of this fact and let the adjacent frames follow similar
feature extraction and enhancement processes to accelerate
the inference speed. The downsampled frame and its orig-
inal frame have similar contents and degradation process,
which makes them follow a similar enhancement process.
Therefore, we can use the enhancement process of the low-
resolution downsampled frame to guide the original frame
to complete enhancement more directional efficiently.

In UVE-Net, we first use an auxiliary network to un-
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Figure 7. (a) Overall framework of the UVE-Net. UVE-Net includes the upper branch Video Enhancement Network, and the lower branch
Auxiliary Enhancement Network. (b) FEGM. (c) FRGM. (d) DCKG. (R, R/2, and R/6 mean 30, 15, and 5 residual blocks.)

derstand and solve the image enhancement problem of the
downsampled middle frame. Then, the auxiliary network
converts the problem-solving process (enhancement pro-
cess) into action instructions (convolutional kernels) and
passes them on to the main network. The main network
completes middle frame enhancement more directionally
and efficiently based on the guidance information. Based
on the strong correlation of degradation in adjacent frames,
these convolutional kernels (action instructions) are also
transmitted to adjacent frames to help them complete en-
hancement more efficiently.

4.1. UVE-Net Overall framework

As shown in Fig. 7 (a), UVE-Net comprises the upper
branch video enhancement network (VE-Net) and the lower
branch auxiliary enhancement network (AE-Net). AE-Net
completes the quality enhancement of Di ∈ RH

4 ×W
4 ×3.

VE-Net completes the enhancement of the current frames
{Xi ∈ RH×W×3}i+t

i−t. The overall framework is aim to ef-
ficiently transfer the enhancement process of low resolution
middle frame to the current frame to be restored, helping
the current frame to better complete the image enhancement
process efficiently.

{Xi}i+t
i−t are the degraded frames, where Xi is the mid-

dle frame. Xi gets down-sampled low-resolution represen-
tation Di through ×4 downsample operation. AE-Net uses
the enhancement process of Di to guide {Xi}i+t

i−t complete
enhancement process. The guidance process is carried out
at low resolution, bringing less computational costs.

AE-Net and VE-Net complete preliminary feature ex-
traction through 3 × 3 convolution. VE-Net converts the
middle extraction feature Mi ∈ RH

4 ×W
4 ×C and clean

restoration feature Li ∈ RH
4 ×W

4 ×C in the enhancement
process of Di into convolutional kernel sequences fe

i ∈
R3×3×16C and fr

i ∈ R3×3×16C through the feature extrac-
tion guidance module (FEGM) and feature restoration guid-

ance module (FRGM). By enlighteningly performing more
efficient information exchange through the transfer of con-
volutional kernels without feature alignment or aggregation,
we reduce the computational costs required in FRGM and
FEGM modules. We also use group convolution in FEGM
and FERM to further reduce their computational costs. Sub-
sequent experiments show that FRGM and FEGM can sig-
nificantly improve the learning performance of VE-Net with
low computational costs.

fe
i and fr

i serve as the action guidance for the feature ex-
traction and enhancement of the current frame Xi, helping
VE-Net performs more efficient feature transformations.
Based on the strong correlation of degradation in adjacent
frames, fe

i and fr
i are also transmitted to adjacent frames

to help them complete enhancement better and faster. For
frames {Xi}i+t

i−t, the auxiliary network AE-Net is only acti-
vated once in Xi, which also makes the guidance process is
carried out in an efficient way.

4.2. FEGM

FEGM shown in Fig. 7 (b) converts the intermediate ex-
tracting feature during the enhancement process of Di into
convolutional kernels fe

i and delivers them to the current
frames to help VE-Net complete feature extraction better
without frame alignment and inter-frame information ag-
gregation. The process of FEGM can be expressed as:

{F e
i }i+t

i−t = FEGM({Ei}i+t
i−t,Mi) (2)

where Mi represents the coarse feature extraction of the
middle frame in the lower branch. {Ei ∈ RH×W×C}i+t

i−t

represents the initial feature extraction of {Xi}i+t
i−t.

The initial extracted feature D′
i ∈ RH

4 ×W
4 ×C of the up-

per branch passes through 30 residual blocks to gener-
ate the middle extracted feature Mi. Mi and {Ei}i+t

i−t

from {Xi}i+t
i−t are respectively processed by PixelUnshuf-
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fle(4 × ↓) and be converted to M4
i ∈ RH

16×
W
16×16C and

{E4
i ∈ RH

4 ×W
4 ×16C}i+t

i−t for channel adjustment. The pur-
pose of these adjustments is to generate convolutional ker-
nels while avoiding drastic changes in network channels.
M4

i is converted into convolutional kernels fe
i through mul-

tiple pooling and group convolution operations like [50],
which is described as dynamic convolutional kernels gener-
ation (DCKG) in Fig. 7 (d). After this stage, the information
of H/16 × W/16 pixels is converted into a 3 × 3 convo-
lutional kernel. VE-Net performs more directional feature
extraction with the help of fe

i . {E4
i }

i+t
i−t is convolved with

fe
i and pass through PixelShuffle(2× ↑) to get the guided

extraction features {F e
i ∈ RH

2 ×W
2 ×4C}i+t

i−t. To summarize
the above process, Eq. (2) can be be expressed in detail as:

{F e
i }i+t

i−t = (DCKG(Mi ↓4) ∗ {Ei}i+t
i−t ↓4) ↑2 (3)

where ↓4 represents the PixelUnshuffle rate as 4 , ↑2 repre-
sents the PixelShuffle rate as 2, (∗) represents convolution.

4.3. FRGM

Under the guidance of low-resolution clean features Li

obtained before Di completes enhancement, the current
frame {Xi}i+t

i−t can complete the mapping transformation
to the clear image {Yi}i+t

i−t. The mathematical expression is
as follows:

{F r
i }i+t

i−t = FRGM({Ri}i+t
i−t, Li) (4)

where {Ri ∈ RH
4 ×W

4 ×4C}i+t
i−t represents the input frames

refined extracted feature of the upper branch, Li represents
the clean features obtained before Di completes enhance-
ment in the lower branch.

Thus, we design FRGM to convert the Li into con-
volutional kernels fr

i and deliver them to {Xi}i+t
i−t. VE-

Net performs more directional feature restoration with the
help of fr

i . Fig. 7 (c) shows the architecture of FRGM.
Specifically, Li is reshaped to L4

i ∈ RH
16×

W
16×16C by Pix-

elUnshuff(4 × ↓) and {Ri}i+t
i−t is reshaped to {R2

i ∈
RH

4 ×W
4 ×16C}i+t

i−t by PixelUnshuff(2×↓). Then L4
i is trans-

formed into fr
i through pooling and convolutional layers

like FEGM. {R2
i }

i+t
i−t is convolved with fr

i and pass through
PixelShuffle(4 × ↑) to obtain the guided restoration features
{F r

i ∈ RH× W×C}i+t
i−t. Eq. (4) is transformed into:

{F r
i }i+t

i−t = (DCKG(Li ↓4) ∗ {Ri}i+t
i−t ↓2) ↑4 (5)

where ↓4 represents the PixelUnshuffle rate as 4 , ↓2 rep-
resents the PixelUnshuffle rate as 2, ↑4 represents the Pix-
elShuffle rate as 4, (∗) represents convolution.

4.4. Loss Function

We calculate the loss of the upper and lower branches as
the total loss function L.

L = Lpix{(Ŷi, Yi)}i+t
i−t + Lpix(P̂i, Y

′
i) (6)

where Lpix refers to Charbonnier Loss [51]. {Yi}i+t
i−t is the

GT of sample {Xi}i+t
i−t, and Y ′

i is the GT of Di.

5. Experiments
5.1. Settings

Datasets. UVEB contains 1208 paired training videos and
100 paired testing videos under 6 different scenes.
Comparison methods. We only compare our method
against 20 underwater image enhancement methods due to
the lack of underwater video enhancement methods. Our
UVE-Net is the first supervised underwater video enhance-
ment method. The R, R/2, and R/6 are set to 30, 15, and
5 residual blocks in our model. We also provide a sim-
plified model (”Ours-s”) to meet limited computational re-
quirements. For the simplified model, the R, R/2, and R/6
are changed to 10, 3, and 1 residual blocks. The t is set to 1
in the two models.
Evaluation metrics. We utilize PSNR and MSE to eval-
uate the enhancement performance quantitatively. We also
record memory usage and time cost for different methods
during inferencing the UHD 4K videos.
Implementation details. We implement our method with
PyTorch and train it on 4 NVIDIA Tesla A40 GPUs. We use
an ADAM optimizer for network optimization. The initial
learning rate is set as 2×10−4. The total number of itera-
tions is 150K. The batch size is 4, and the patch size of input
video frames is 512×512.

Table 3. Quantitative comparisons of enhanced video quality on
UVEB dataset. In the Memory column, ∗ represents the CPU,
while without ∗ represents the GPU. Top 1st, 2nd results are
marked in red and blue respectively.

Methods PSNR(dB)↑ MSE(×103)↓ Infrence time(s) Memory(G)

DCP [28] 13.03 3.7708 1.8394 0.05∗

UDCP [46] 10.75 6.2848 70.9177 0.38∗

GDCP [42] 13.33 3.7112 7.6557 0.74∗

fusion-based [38] 17.73 1.3916 5.9321 0.91∗

MSCNN [39] 13.17 3.6562 49.2594 2.53∗

Red Channle [30] 19.61 1.0549 5.6375 0.59∗

retinex-based [41] 18.75 1.1917 9.0674 0.74∗

CLAHE [5] 19.71 0.9139 0.0503 0.05∗

GC [43] 16.61 1.9759 0.8557 0.05∗

HE [44] 15.78 2.0156 0.0403 0.05∗

MLLE [31] 18.79 1.2805 7.2611 1.22∗

WWPF [40] 17.67 1.4640 17.6036 1.15∗

FspiralGAN [26] 18.67 1.2353 0.0474 12.58
CLUIE [37] 19.44 1.0226 0.4098 24.68
FA+Net [34] 15.34 2.3076 0.1663 9.47
LANet [10] 21.49 0.8369 8.540 33.99

MetaUE [32] 15.91 1.8831 0.3784 14.67
PUIE [3] 24.21 0.4335 0.5339 33.64

URanker [36] 23.93 0.4286 0.2103 14.74
USUIR [45] 21.64 0.6516 0.4208 10.33

UVE-Net-s (Ours-s) 24.43 0.5787 0.0910 5.6
UVE-Net (Ours) 26.27 0.4059 0.675 11.04

5.2. Comparisons with State-of-the-Art Methods

Quantitative comparison. Tab. 3 summarizes the quan-
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Figure 8. Visual comparisons with state-of-the-art methods on real underwater scenes.

titative results of our network and compares methods on
UVEB. Our method outperforms other methods by a signif-
icant margin in PSNR and MSE metrics from these quanti-
tative results. Specifically, our method further improves the
PSNR from 24.21 dB to 26.27 dB and the MSE from 0.4286
to 0.4059. For 4K videos, our simplified model (UVE-Net-
s) has the smallest memory cost during inferencing the en-
hanced result of per frame. The UVE-Net-s can achieve an
inference speed of 11 Frames per rate (FPS) on 4K videos
as shown in the Tab. 3 and 25 FPS on 2K videos.
Qualitative comparison. Fig. 8 visually compares en-
hanced results produced by our network and other methods
on UVEB. Compared methods often lead to color distortion
and noise in the enhancement results, while UVE-Net can
remove color distortion better.

5.3. Ablation Studies

We conduct a series of ablation studies to analyze the ef-
fectiveness of major components of our network. As shown
in Tab. 4, the VE-Net here means the upper branch of UVE-
Net with FEGM and FRGM replaced by two sets of tra-
ditional convolutions. VE-Net and FEGM mean a set of
traditional convolutions replaced by the FEGM model.
Effectiveness of network design. From columns (a), (b),
and (d) of Tab. 4, compared to using only the upper branch,
using the entire network has better quality improvement and
less computational costs with the help of AE-Net. These
improvements prove the effectiveness of network design.

The lower branch converts its enhancement process into
action information (convolutional kernels) and transmits it
to the upper branch, allowing the upper branch to perform
feature extraction and enhancement more efficiently. This
strategy brings a significant improvement in the overall net-
work performance. The entire network has fewer computa-
tional costs than the upper branch due to using group convo-
lutions in FEGM and FRGM and processing low-resolution
images in AE-Net, which have few computational costs.
Effectiveness of FEGM and FRGM. The results in
columns (b), (c) and (d) of Tab. 4 verify the effectiveness
of FEGM and FRGM. From columns (a), (b), (c) and (d),

Table 4. Ablation studies of major components in UVE-Net.

(a) (b) (c) (d)

VE-Net ✓ ✓ ✓
AE-Net ✓ ✓ ✓
FEGM ✓ ✓
FRGM ✓

PSNR 24.41 25.15 26.20 26.27
MSE(×103) 0.5066 0.4452 0.4226 0.4059

Inference time(s) 2.749 0.8827 0.6943 0.675
Memory(G) 5.48 10.18 11.04 11.04

TFLOPs 10.34 13.95 12.79 11.42

FEGM brings significant performance improvements to the
network, and FRGM further improves network performance
in the MSE metric from 0.4226 to 0.4059. The introduction
of each module not only reduces computational complexity
but also accelerates inference time. Both the FEGM and
FRGM modules help the VE-Net complete enhancement
faster and better.

6. Conclusion
We propose the first large-scale and high-resolution

paired underwater video enhancement benchmark. Our pro-
posed UVEB dataset includes multiple types of underwater
video degradation with assessment scores. Extensive exper-
iments verify the superiority of the proposed UVE-Net on
underwater video enhancement tasks. We also proposed a
simplified model, UVE-Net-s, which enables real-time in-
ference of 2K videos with good performance.
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