
UniPTS: A Unified Framework for Proficient Post-Training Sparsity

Jingjing Xie1,Yuxin Zhang1, Mingbao Lin2, Zhihang Lin1, Liujuan Cao1*, Rongrong Ji1
1Key Laboratory of Multimedia Trusted Perception and Efficient Computing,
Ministry of Education of China, School of Informatics, Xiamen University.

2Tencent Youtu Lab
{jingjingxie, yuxinzhang, lmbxmu, zhihanglin}@stu.xmu.edu.cn,

{caoliujuan, rrji}@xmu.edu.cn

Abstract

Post-training Sparsity (PTS) is a recently emerged av-
enue that chases efficient network sparsity with limited data
in need. Existing PTS methods, however, undergo signif-
icant performance degradation compared with traditional
methods that retrain the sparse networks via the whole
dataset, especially at high sparsity ratios. In this paper,
we attempt to reconcile this disparity by transposing three
cardinal factors that profoundly alter the performance of
conventional sparsity into the context of PTS. Our endeav-
ors particularly comprise (1) A base-decayed sparsity ob-
jective that promotes efficient knowledge transferring from
dense network to the sparse counterpart. (2) A reducing-
regrowing search algorithm designed to ascertain the op-
timal sparsity distribution while circumventing overfitting
to the small calibration set in PTS. (3) The employment of
dynamic sparse training predicated on the preceding as-
pects, aimed at comprehensively optimizing the sparsity
structure while ensuring training stability. Our proposed
framework, termed UniPTS, is validated to be much supe-
rior to existing PTS methods across extensive benchmarks.
As an illustration, it amplifies the performance of POT, a
recently proposed recipe, from 3.9% to 68.6% when prun-
ing ResNet-50 at 90% sparsity ratio on ImageNet. We re-
lease the code of our paper at https://github.com/
xjjxmu/UniPTS.

1. Introduction
Deep neural networks (DNNs) have shown exceptional per-
formance in a variety of tasks, including computer vi-
sion [3, 4, 36], natural language processing [6, 33], etc.
However, this extraordinary growth is offset by an over-
whelming volume of model parameters, ranging from sev-
eral millions to billions [2, 42], presenting an impediment to

*Corresponding Author

DNN implementation in resource-constrained contexts. Ac-
cordingly, prodigious efforts have been channeled towards
the evolution of model compression algorithms, encom-
passing model quantization [7, 29], network sparsity [8, 12],
and knowledge distillation [15, 41].

Notwithstanding the proficiency of these methods in
shrinking the size of DNNs, they typically necessitate a
model retraining phase via the full training set to recover the
performance. This could prove exceedingly burdensome in
situational contexts marked by constraints both in terms of
training resources and the accessibility of the dataset. To
circumvent this obstacle, researchers have developed post-
training compression methodologies, which efficiently tune
the compressed DNNs using a comparatively petite cali-
bration dataset. Most notable advancements to date have
predominantly revolved around Post-Training Quantization
(PTQ), where the quantized 8-bit model can reach perfor-
mance on par with its full-precision counterpart [10]. How-
ever, Post-Training Sparsity (PTS) has garnered relatively
little attention, notwithstanding the commensurate promi-
nence of sparsity in comparison with quantization for com-
pressing DNNs.

One possible interpretation implicates that network spar-
sity methods rely more heavily on weight retraining, w.r.t.,
iterative fine-tuning [12], or even training from scratch [8],
to recover the performance. Thereby, considerable chal-
lenges emerge when merely minimal calibration datasets
are accessible for such a retraining phase. A recently pro-
posed recipe, POT [18], sets a standard benchmark for
PTS, undertaking a layer-wise minimization of the output
discrepancy between sparse and dense weights via Mean
Square Error (MSE) loss. Despite its proficiency in preserv-
ing the performance at moderate pruning rates such as 50%,
POT encounters drastic performance loss at high sparsity
rates, particularly deteriorating to the random level at 90%
sparsity, where traditional sparsity methods still manage to
uphold performance. Therefore, the argument over the ne-
cessity for data efficiency and maintenance of performance

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5746

https://github.com/xjjxmu/UniPTS
https://github.com/xjjxmu/UniPTS

Layer 1

Layer 2

Layer N

Layer 1

Layer N

Layer 1

Layer 2

Layer N

Local Sparsity
Objective

Global Sparsity
Objective

... ...

Predefined
Sparsity Distribution

...

Layer 2

Finetuned Sparse Layer

Fixed Sparse Layer

Dynamic Sparse Structure

Fixed Dense Layer

Searched
Sparsity Distribution

layer index layer index

Fixed Sparse Structure

layer index

Figure 1. Comparison between POT and our UniPTS framework. Left shows that POT uses predefined sparsity distribution to obtain a
fixed sparse structure and retrains the pruned layer with the local sparsity objective. But UniPTS(Right) searches the optimal sparsity
distribution and leverages the global sparsity objective and dynamic sparsity training to explore optimal sparse structures.

within network sparsity persists as an unresolved matter so
far.

In this work, we present UniPTS as a practical remedy
to ameliorate this issue. As shown in Figure 1, UniPTS
is a hybrid approach, meticulously crafted by investigating
the failure of conventional sparsity methods in PTS scenar-
ios from three vantage points including the sparsity objec-
tive, sparsity distribution, and sparsity structure. These as-
pects collaboratively contribute to the performance reten-
tion of sparse networks [8, 11, 17, 19, 46]. In particu-
lar, we first amend the sparsity objective from layerwise
MSE [21, 33, 40] in POT [18] to a global Kullback-Leibler
divergence, with its log base adaptively evolves throughout
the training schedule. This not only fosters training acceler-
ation, but also augments supervision from dense networks
to sparse counterparts in a fluid manner. Subsequently,
we propose a novel evolutionary search algorithm to op-
timize the sparsity distribution, i.e., layerwise sparsity ra-
tios in PTS. The principle innovations fall into an excessive
sparsity allocation mechanism and a noise-disturbed fitness
evaluation, which guarantees a robust search for the opti-
mal solution while avoiding over-fitting to the small cali-
bration set. Under the constraints of the preceding sparsity
objective and sparsity distribution, we concludingly adopt
the concept of Dynamic Sparsity Training (DST) [8, 23, 24]
to comprehensively explore the sparsity structure in PTS
instead of retraining the pruned network in a fixed typol-
ogy [11, 19, 39].

In an expansive series of experiments spanning diverse
computer vision tasks, we substantiate the efficacy of our

proposed UniPTS. The empirical evidence underscores that
our method exhibits enhanced applicability to PTS, mate-
rializing a marked augmentation in performance, particu-
larly prominent at elevated sparsity rates. To illustrate, it
improves the performance of POT from a meager 3.9% to
a considerable 68.6% for pruning ResNet-50 at 90% spar-
sity ratio, even using less training time. Our work provides
fresh insights into boosting the performance of PTS and we
hope to encourage more research in probing the advantages
of network sparsity through a pragmatic perspective.

2. Related Work
2.1. Post-Training Model Compression

In quantization, various techniques have been developed to
reduce the training overhead and data requirement, known
as PTQ [10, 29]. However, existing methods often involve
time-consuming retraining processes when it comes to spar-
sity. POT [18] is proposed as a pioneering pipeline for PTS
to address this issue. POT suggests an iterative pruning to
obtain the sparse network. In order to mitigate bias intro-
duced by pruning, it follows a quantization methodology to
correct bias [28] and then fine-tunes the weights via the re-
construction of the feature map layer by layer. Although
POT offers an initial insight into PTS, its performance de-
grades a lot at a high sparsity rate.

2.2. Sparsity Distribution

Given a global sparsity rate, how to obtain an optimal layer-
wise sparsity is an essential problem. Existing solutions

5747

can be categorized into heuristic-based, optimization-based,
and search-based methods. Heuristic methods take ad-
vantage of the characteristics of each layer. For instance,
the Erdos-Renyi-Kernel (ERK) allocates per-layer sparsity
based on the number of parameters [8]. Such techniques
rely on empirical analysis and cannot guarantee the optimal
solution. Optimization-based methods learn the sparsity
distribution by optimizing a pruning threshold or learnable
masks [17, 30]. Search-based methods aim to discover the
optimal sparsity distribution via reinforcement learning [14]
or evolutionary algorithms [26]. These methods iteratively
explore different sparsity configurations and evaluate their
performance. These two kind of methods integrate the task
objective with sparsity distribution and provide a flexible
framework for sparsity allocation. However, most of them
rely on regularization to meet the requirement of the global
sparsity and need to tune hyperparameters delicately. We
design an efficient evolutionary search for the optimal spar-
sity distribution. It can meet the requirement about the
global sparsity without tuning hyperparameters and allevi-
ate overfitting in PTS.

2.3. Dynamic Sparsity Training

Traditional network sparsity involves two steps: pruning
and fine-tuning. Static sparsity training means that the
sparse structure of the network remains unchanged after
pruning and only the preserved weights are fine-tuned. Rep-
resentative works of this type of method include one-shot
pruning [19] and gradual pruning [12]. Dynamic sparsity
training represents that model’s weights are dynamically
pruned and regrow during fine-tuning. Evci et al. [8] sug-
gested the magnitude as the criterion for pruning and the
gradient as the criterion for regrowth. In our paper, we find
the traditional sparse training is not suitable for PTS, and
modify both sparsity objective and training strategy.

3. Method
3.1. Background

Primarily, we elucidate the fundamental concepts of net-
work sparsity. Given the dense weights W, network spar-
sity can be conceptualized as applying a binary mask M to
W. A zero element within M signifies the removal of a spe-
cific weight, whereas non-zero elements indicate preserva-
tion. The zero-masked weights alter network outputs, which
consequently results in negligible performance degradation
in sparse networks, particularly at high sparsity rates [8, 11].

To preserve the functionality of sparse networks, re-
searchers have explored enhancing sparse networks from
various perspectives including: 1) Employing training data
to fine-tune the sparse network, with minimizing the dis-
crepancy between the ground-truth labels and network out-
puts as the sparsity objective [12]; 2) Determining the spar-

sity distribution across all layers, i.e., the relative sparsity
ratio for each individual layer [17, 26, 30]; 3) Exploring
the sparsity structure by modeling sparsity training to op-
timize the binary mask M, therefore determining the re-
moved weights for each layer [23, 24, 46].

Albeit a plethora of methods proposed, they all necessi-
tate substantial volumes of training data and computational
costs. In scenarios characterized by limited resources, it
becomes imperative to recover the performance of sparse
networks solely through restrained quantities of data, re-
ferred to as Post-Training Sparsity (PTS) [18]. Regrettably,
existing pruning methods demonstrate a deficit in scalabil-
ity within post-training scenarios, enduring severe perfor-
mance declines compared with full-data utilization. Actu-
ally, the requirement for proficient and high-performing net-
work sparsity reveals an unresolved dilemma in the current
landscape.

3.2. UniPTS

In this section, we examine the underlying reasons for the
failure of conventional sparsity methods in data-constrained
scenarios and subsequently propose innovative UniPTS, a
unified framework to ameliorate their shortcomings and
achieve proficient PTS. Our efforts are articulated across the
previously mentioned three dimensions – sparsity objective,
sparsity distribution, and sparsity structure – that are inte-
gral to recovering the performance of sparse networks.

3.2.1 Base-Decayed Sparsity Objective

In traditional literature, the sparsity objective simply falls
into fine-tuning the sparse network using training data, cost
of which is basically the same as pre-training a dense net-
work. As a pioneering pipeline for PTS, POT [18] utilizes
the mean-squared error (MSE) loss as the training objective
and fine-tunes per-layer weights independently:

LMSE = ||Yl − Ŷl||2, (1)

where Yl and Ŷl denote the l-th layer outputs of dense and
sparse layers, respectively. This supervision enables POT to
effectively recover performance at moderate sparsity rates;
however, its performance at high sparsity levels falls sig-
nificantly behind traditional fine-tuning with full training
data [38, 46].

The above layer-wise MSE is a localized metric that, if
not well optimized, gradually gathers bias towards the final
task prediction. An increasing sparsity rate challenges the
match of individual values of Yl and Ŷl, and gives rise
to expanded bias. This analysis correlates with the phe-
nomenon that POT drastically declines to randomized per-
formance when confronted with a 90% sparsity rate.

Given this, we choose to globally optimize the final pre-
diction probability distributions Z from the dense output

5748

Base-Decayed KD

Dense Network

Sparse Network

z

�

Optimal sparsity distribution

Revive

Update

Prune0.5 0.8 0.2

Select

MutationCrossover

Figure 2. Overview about our method. Left:An overview of our method to search for sparsity distribution. We use evolutionary search to
deal with the vast solution space. Right:We provide intuition for the training process. After finding optimal sparsity distribution, we use
base-decayed KD loss and dynamic sparse training to retrain the pruned network.

and Ẑ from the sparse output, and propose a base-decayed
sparsity objective. Kullback-Leibler divergence is used to
quantify the difference between Z and Ẑ:

LKL =

C∑
j=1

Zj loge Zj/Ẑj , (2)

where C represents the total number of target classes. Our
principal impetus is to calibrate knowledge density trans-
ferred from the dense network to the sparse network, so
as to avoid a sudden performance collapse at high sparsity
rates. From Eq. (2), it is apparent that the intensity of super-
vision correlates to the base of log operation. We are deep
in thought for the case of a high sparsity rate: there has a
substantial gap between the dense and sparse outputs in the
early training stage, propelling training instability; as train-
ing proceeds, learning from the dense network results in a
rapid decline of the KL loss, which however, brings about
a very small gradient and further insufficient training. Con-
sequently, it is challenging to recover from the optimizing
after-sparsified weights. Therefore, we propose to decay
the base of log operation throughout the training process to
adapt the loss scale as:

LDKL =

C∑
j=1

Zj loge·γt Zj/Ẑj , (3)

where γ < 1 represents the decay rate and t is the current
training epochs.

As the base decreases, our base-decayed sparsity objec-
tive appropriately attenuates and amplifies loss scale dur-
ing training. Therefore, it promotes an efficient knowledge
transferring from dense to sparse networks. It is important
to highlight that our sparsity objective is significantly more
efficient compared to the layer-wise MSE, as it fine-tunes
the sparse networks in a global manner, eliminating the ne-
cessity for iterative retraining of each layer.

3.2.2 Reducing-Regrowing Sparsity Distribution

We proceed with the sparsity distribution issue. Current
cutting-edge methods mainly hinge on an automatic differ-
entiable training [17, 43, 46], which, however, becomes in-
feasible in the data-limited PTS. Given this, we resort to ex-
ploiting evolutionary algorithms, efficacy of which has been
well verified in structured network sparsity [22, 26].

Denote W = {Wl}Ll=1 as L-layer pre-trained model
with weights and R = {rl}Ll=1 as the sparsity distribu-
tion candidate where rl signifies the sparsity rate of the l-th
layer. Generally, as displayed in Figure 2, an evolution-
ary algorithm generally initiates a set of individuals, each
of which possesses a fitness score to measure the perfor-
mance of its sparsity distribution. The core of evolutionary
algorithm is then to evolve these individuals from a series
of crossover and mutation operations, and finally to pick up
the one with best fitness. Algorithm 1 gives a comprehen-
sive description of how to calculate the fitness. Despite the
success of these methods in structured sparsity [20, 22], a

5749

Algorithm 1 Fitness Calculation.
Input: L-layer pre-trained model with weights W =
{Wl}Ll=1; Sparsity candidate R = {rl}Ll=1.; Calibration
set D; Global sparsity rate P ; Excessive sparsity rate Pe;
Output: Fitness of candidate R ;
1: ▷ Model Sparsification.
2: Residual = (Pe − P)× numel(W) ▶ excessively spar-

sifying weights.
3: T = softmax(R) × Residual ▶ regrow weights.
4: Sparsity = {Pe −Tl/numel(Wl)}
5: Ŵ = Prune(W, Sparsity)
6: ▷ Calibrate BN Statistics with Noisy Samples.
7: µ, σ← 0 ▶ reset statistics.
8: for Batch Data in D do
9: Noisy Batch Data = Batch Data + Gaussian Noise

10: output = Ŵ(batch)
11: end for
12: ▷ Evaluate Calibration Accuracy as Fitness.
13: fitness← validate(D,Ŵ)
14: return fitness;

direct application in PTS encounters two dilemmas, as we
analyze and address our uniques below.

First, colossal search space results from sparsifying
weights, posing a challenge to ensure that the distribution
candidate meets the desired global sparsity P . To address
this, we propose a reducing-and-regrowing sparsification
method in Lines 2 – 8 of Algorithm 1 to obtain the sparse
model Ŵ. Specifically, we introduce another sparsification
Pe > P at every layer so as to reduce the search space first.
Then, we further regrow the excessive sparsified weights
using the evolutionary algorithm at a rate of Pe − P .

Second, assessing the fitness of a sparsity distribution
candidate is also challenging, as evaluations easily lead to
overfitting of the optimal structure to the calibration data,
raising a difficulty to assess the fitness of a distribution can-
didate. Inspired by EagleEye [20], as shown in Lines 10–
16 of Algorithm 1, for a sparse model with specific spar-
sity candidate, we recalculate the mean µ and variance σ of
batch normalization layers on the calibration setD, and then
choose the performance of the sparse network on the cali-
bration set as the fitness vale of the sparsity candidate. To
avoid the overfitting risk, we apply random Gaussian noise
to the input samples prior to evaluating fitness.

3.2.3 Sparsity Training

The training of our UniPTS is to derive the final status of
the binary mask M called sparsity structure under the con-
straints of the proposed: 1) base-decayed sparsity objective;
2) reducing-regrowing sparsity distribution.

Predominant DST methods leverage manually desig-
nated metrics like magnitude of weight gradients [8] to pro-
ceed weight pruning and regrowing at intervals. However,
within the scope of PTS, gradients lack reliability when de-
termining essential weights, a consequence instigated by the
limited quality and quantity of accessible data. We therefore
consider the weight magnitude as the metric for pruning and
regrowing. Given weights of the l-th layer Wl and the cor-
responding sparsity rate rl, the mask Ml during training can
be derived as:

Ml
i,j =

{
1 if |Wl

i,j | > TopK(|Wl|,
⌊
(1− rl)× S

⌋
),

0 otherwise,
(4)

where |·| is the absolute function and ⌊·⌋ is the floor op-
eration. S = numel(Wl) is the number of parameters
and TopK(|Wl|,

⌊
(1− rl)× S

⌋
) returns

⌊
(1− rl)× S

⌋
largest value within |Wl|. Then, the forward output Ŷl is
derived as:

Ŷl = (Wl ⊙Ml)Ŷl−1, (5)

where ⊙ denotes the Hadamard product.
Meanwhile, conventional DST methods commonly em-

ploy a periodic update sparsity structure, which means M
will be updated every ∆T training iterations. For PTS, we
propose to use an iteration-wise sparse training strategy i.e.,
∆T = 1, as a periodic update may result in overfitting to
a small amount of data. During training, we employ the
Straight-Through Estimator [1] to approximate the gradi-
ent of pruned and unpruned weights during the backpropa-
gation In this manner, the pruned weights are not reliant on
the magnitude reduction of unpruned weights but can poten-
tially recover through their own gradient, since both pruned
and unpruned weights are subject to gradient updates.

Although such dynamic training enhances the diversity
of sparse structures, it also aggravates fluctuation. Follow-
ing [45], we modify the parameter update formula to pre-
vent excessive fluctuation of the sparse structure and mit-
igate training instability issues. Specifically, a weight up-
date mechanism is used to decay the magnitude of pruned
weights by a certain proportion as:

Wl,t+1
i,j =



Wl,t
i,j − β ∗ ∂L

∂Wl,t
i,j

, if |Wl,t
i,j | >

TopK(|Wl,t|,
⌊
(1− rl)× S

⌋
),

Wl,t
i,j − β ∗ ∂L

∂Wl,t
i,j

− α ∗Wl,t
i,j , otherwise,

(6)
where t denotes iterations, β represents the learning rate,
and α is the decay proportion. This adjustment can play a
role in controlling the variation of the sparse structure by
limiting the magnitude of the pruned weight. Such that, our
sparse training process for PTS can explore sufficient sparse
structures while maintaining training stability.

5750

Table 1. Image classification results on ImageNet-1K.

Top-1 Accuracy (%)

Model Dense Top-1 Accuracy (%) Sparsity Rate (%) POT RigL STR UniPTS

ResNet-18 69.76

50 69.22 69.18 33.70 69.30
60 68.31 68.64 32.59 68.51
70 65.91 67.46 30.52 68.01
80 56.21 65.26 28.58 66.35
90 14.15 58.17 25.88 61.47

ResNet-50 76.12

50 75.69 73.92 53.22 75.76
60 74.36 73.20 50.10 75.37
70 69.96 71.87 49.22 74.73
80 48.04 69.33 48.32 73.10
90 3.90 61.68 30.24 68.60

MobileNet-V2 72.05

50 69.25 66.57 30.96 69.80
60 63.39 64.75 20.57 68.01
70 47.07 60.72 14.62 64.93
80 9.13 52.19 9.40 59.47
90 0.2 30.44 5.32 42.46

4. Experiments

4.1. Settings

Datasets and networks. For ease of comparison, our ex-
periments follow POT [18] which included image classi-
fication using CNNs on the ImageNet-1K [5] and object
detection using Faster-RCNN [34] and SSD [25] on PAS-
CAL VOC [9]. For image classification, we engage 10240
images from the ImageNet-1K training set to train sparse
ResNet-18, ResNet-50 [13] and MobileNet-V2 [35]. For
ResNet-18/50, the initial learning rate is 0.01 and the weight
decay is 1 × 10−4. For MobileNet-V2, the initial learning
rate is 0.05 and the weight decay is 4×10−5. For object de-
tection, we use VGGNet-16 [37] as the backbone for Faster-
RCNN and MobileNet-V1 [16] for SSD. We randomly se-
lect 10240 images from the training set which is composed
of VOC2007 training set and VOC2012 training set. The
stochastic gradient descent (SGD) optimizer is leveraged
for training sparse networks with 16000 iterations. Uni-
formly across all networks, we implement a batch size of
64 and a cosine learning rate routine [27].

Implementation details. We implement UniPTS using
Pytorch [32] and all experiments are conducted on a sin-
gle NVIDIA RTX 3090. In particular, for the base-decayed
sparsity objective in Eq. (3), we set the decay rate γ to 0.99.
For the reducing-regrowing sparsity distribution, the exces-
sive sparsity rate Pe is set as (P+5)%. For sparsity training
in Eq. (6), the decay proportion α is set as 3× 10−5.

Baselines. We evaluate our proposed UniPTS in com-
parison to the sole established PTS technique, POT [18]. In
addition, we also compare the results of RigL [8], a classi-
cal sparse training method, and STR [17], a differentiable

search method for sparsity distribution, in the context of
post-training implementation, to provide a more exhaustive
comparison.

4.2. Main Results

Image classification. Firstly, we report the quantitative re-
sults of various methods for pruning networks on image
classification task, as outlined in Table 1. Comparatively,
UniPTS consistently outperforms POT across all settings,
with the accuracy gap widening as the sparsity rate in-
creases. For instance, UniPTS is capable of boosting the
accuracy of POT from a mere 3.9% to 68.60%, and that
of MobileNet-V2 from 0.2% to 42.46% at a sparsity rate
of 90%. Moreover, we contrast UniPTS with conventional
sparsity methods on PTS scenario. Predicated upon our
Post-training design, UniPTS consistently surpasses tradi-
tional methods across all sparsity rates. The poor perfor-
mance of STR underscore the fact that traditional differ-
entiable training for sparsity distribution is impractical in
data-limited PTS scenarios, thereby supporting our design
for reducing-regrowing sparsity distribution. Furthermore,
results from RigL reveal the significance of dynamic sparse
training for PTS at high sparsity rates, reinforcing our de-
sign for sparse training.

Object Detection. Moving beyond fundamental image
classification benchmarks, we exploit the generalization ca-
pacity of UniPTS within the object detection task. Ta-
ble 2 compares our proposed UniPTS to POT for pruning
Faster-RCNN [34] and SSD [25] on PASCAL VOC [9]
at 90% sparsity. Notably, UniPTS yields robust perfor-
mance improvement of 3.3 and 3.4 mAP for pruning Faster-
RCNN [34] and SSD [25], respectively. Given these favor-

5751

able outcomes, the robustness and efficacy of UniPTS in
object detection tasks are incontrovertibly confirmed.

Table 2. Object detection results at 90% sparsity rate.

Model Method mAP

Faster-RCNN POT 51.29
Faster-RCNN UniPTS 54.59

SSD POT 57.02
SSD UniPTS 64.42

N:M sparsity. In light of the likely demand for practical
acceleration, we also appraise performance on the recently
developed N:M semi-structured sparsity [44, 45], which
stipulates at most N non-zero components within M con-
secutive weights to achieve expeditious inference aided by
the N:M sparse tensor core [31]. The comparisons between
UniPTS and POT on 2:4, 4:8 and 2:8 sparsity patterns are
depicted in Table 3. It is evident that UniPTS can adeptly
adapt to structured N:M sparsity. Regardless of the spar-
sity pattern, our method persistently supersedes POT by a
noticeable margin.
Table 3. Comparison between POT and UniPTS for N:M sparsity.

Sparse Pattern

Model Method 2:4 4:8 2:8

ResNet-18 POT 66.52 67.33 54.43
UniPTS 67.86 68.30 63.98

ResNet-50 POT 73.64 74.53 47.24
UniPTS 74.83 75.14 71.46

MobileNet-V2 POT 67.02 67.53 9.02
UniPTS 68.78 69.17 58.36

Pruning efficiency. Moreover, we assess the pruning
efficacy contrasting our proposed UniPTS and POT, delin-
eated in Table 4. Compared to POT, UniPTS obviously
holds an absolute advantage in the trade-off between prun-
ing speed and accuracy. It is also worth noting that supplant-
ing the search phase for sparsity distribution with the imme-
diate application of the ERK budget [8] attenuates pruning
time to an exponential magnitude. Though this precipitates
a modest decline in accuracy, it engenders an auxiliary al-
ternative for users navigating scenarios characterized by re-
source scarcity.

4.3. Ablation Study

In this section, we investigate the efficacy of each compo-
nent in our method. To better understand the impact of these
components on the overall performance, we conduct abla-
tion experiments by replacing each component individually
and show the performance on ImageNet-1K.

Sparsity objective. We first investigate the effect of our
proposed base-decayed sparsity objective. In Table 5, we

Table 4. Time cost for pruning at 90% sparsity on ImageNet-1K.
UniPTS* use ERK instead of searching sparsity distribution.

Model Method Time Top-1
cost (min) Accuracy(%)

ResNet-18
POT 140 14.15

UniPTS* 25 61.24
UniPTS 260 61.47

ResNet-50
POT 484 3.90

UniPTS* 58 66.97
UniPTS 317 68.60

MobileNet-V2
POT 536 0.2

UniPTS* 96 40.59
UniPTS 357 42.46

examine the performance under five object variants includ-
ing: 1) global MSE: instead of layer-wise MSE like POT,
we try global MSE between Z and Ẑ. 2) cross entory (CE):
we use task relevant loss as sparsity objective and fine-tune
the sparse network. 3) normal KL: we calculate the loss
based on Eq. (2); 4) dynamic temperature: we introduce a
dynamic temperature to smooth prediction probability; 5)
dynamic base: we calculate the loss based on Eq. (3); As
can be observed, our proposed base-decayed sparsity ob-
jective far surpasses other variants.

Table 5. Effect of sparsity objective when pruning ResNet-50 on
ImageNet-1K.

Model Strategy Top-1 Accuracy (%)

ResNet-50 global MSE 13.07
ResNet-50 CE 38.99

ResNet-50 normal KL 64.47
ResNet-50 dynamic temperature 64.54
ResNet-50 dynamic base 68.64

Sparsity distribution. To assess the effect of our pro-
posed sparsity distribution search, we execute a compar-
ative study involving alternative methods for determining
the sparsity distribution. These include heuristic design
based on ERK [8] and the learnable sparsity distribution de-
rived from STR [17]. Table 6 illustrates that our searched
sparsity distribution yields the highest performance, with
the margin of improvement escalating as the sparsity rate
increases. In addition, we extend this searched sparsity
distribution to POT. As shown in Table 7, the searched
sparsity distribution can also contribute to improved perfor-
mance in POT. As such, the effectiveness of our proposed
sparsity distribution searching is validated. We visualize
the sparsity distribution across different layers obtained by
each method, as shown in Fig. 3. Notably, the learnable
method proved to be ineffective, as it merely maintained
a nearly uniform sparsity rate across all layers. In con-
trast, UniPTS effectively identified elegant layer-wise spar-

5752

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

sit
y

ResNet-18

ERK
Searched
Learnable

1 6 11 16 21 26 31 36 41 46 51
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

sit
y

ResNet-50

ERK
Searched
Learnable

Figure 3. Sparsity distribution obtained by different methods.

sity rates (e.g., preserving more weights for the initial lay-
ers), thereby demonstrating its superior capability.

Table 6. Effect of sparsity distribution when pruning ResNet-50
on ImageNet-1K using UniPTS.

Model Method Sparsity(%) Top-1 Accuracy (%)

ResNet-50 ERK 90.00 66.97
ResNet-50 Learnable 89.75 64.48
ResNet-50 Searched 90.15 68.60

ResNet-50 ERK 80.00 71.53
ResNet-50 Learnable 79.94 71.86
ResNet-50 Searched 80.13 73.10

ResNet-50 ERK 70.00 73.44
ResNet-50 Learnable 69.95 74.19
ResNet-50 Searched 70.17 74.74

Table 7. Effect of sparsity distribution when pruning ResNet-50
on ImageNet-1K using POT.

Model Method Sparsity(%) Top-1 Accuracy (%)

ResNet-50 L2-norm 90.00 3.88
ResNet-50 Searched 90.15 5.07

ResNet-50 L2-norm 80.00 48.07
ResNet-50 Searched 80.13 50.85

ResNet-50 L2-norm 70.00 69.95
ResNet-50 Searched 70.17 70.92

Sparsity Training. For sparsity training, we first inves-
tigate the effect of the decay factor α in Eq. (6). Figure 4
plots accuracy of pruned ResNet-50 at a sparsity rate of 90%
with different α adopted. It is intuitive that α indicates the
degree of pruned weight decay, where α = 0 indicates that
pruned weights are updated exactly according to their gradi-
ent, and α ̸= 0 indicates pruned weights will decay to avoid
reviving. With α increasing, the accuracy increases first and
then decreases. A large α will lead to limited sparse struc-
tures. And a suitable α can constrain fluctuation and im-
prove the performance.

Furthermore, investigate the influence of the update in-
terval ∆T for the pruning masks. Figure 4 shows the
performance of UniPTS under different intervals ∆T ∈
[1, 10, 100, 1000]. As can be observed, the best accuracy is

0.0 0.2 0.4 0.6 0.8 1.0
×10 4

58

60

62

64

66

68

To
p-

1
Ac

cu
ra

cy
(%

)

T=1
T=10
T=100
T=1000

Figure 4. Performance influence of the sparse training strategy.

consistently obtained when the pruning mask is updated ev-
ery iteration, i.e., ∆T = 1. Furthermore, as ∆T increases,
performance gradually declines. For instance, the accu-
racy drops from 66.86% to 57.51% when α equals 0 and
the interval increases from 100 to 1000. This phenomenon
appears to be in contrast with traditional practice in DST,
where a larger interval yields better accuracy. Nonetheless,
in the context of PTS, longer intervals imply that the learned
mask will depend on the entirety of the validation set, lead-
ing to overfitting.

5. Conclusion
In this paper, we focus on mitigating the performance gap
between PTS and traditional network sparsity. We advance
UniPTS, a unified framework comprising a base-decayed
sparsity objective, a reducing-regrowing sparsity distribu-
tion, and a dynamic sparse training on the basis of the two
preceding aspects to optimize the sparsity structure. Exten-
sive experiments across a panoply of computer vision tasks
demonstrate the effectiveness of UniPTS, which surpasses
prior works by a significant margin, especially at high spar-
sity rates. Our work engenders new insights into enhancing
the performance of PTS and we hope to stimulate further re-
search into exploring the benefits of network sparsity from
a more pragmatic perspective.

Acknowledgement
This work was supported by National Science and Tech-
nology Major Project (No. 2022ZD0118202), the Na-
tional Science Fund for Distinguished Young Scholars
(No.62025603), the National Natural Science Foundation
of China (No. U21B2037, No. U22B2051, No. 62176222,
No. 62176223, No. 62176226, No. 62072386, No.
62072387, No. 62072389, No. 62002305 and No.
62272401), and the Natural Science Foundation of Fujian
Province of China (No.2021J01002, No.2022J06001).

5753

References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 5

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in Neural
Information Processing Systems (NeurIPS), 33:1877–1901,
2020. 1

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High
quality object detection and instance segmentation. IEEE
transactions on pattern analysis and machine intelligence
(TPAMI), 43(5):1483–1498, 2019. 1

[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 1

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 248–255, 2009. 6

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[7] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. arXiv preprint
arXiv:1902.08153, 2019. 1

[8] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning
(ICML), pages 2943–2952, 2020. 1, 2, 3, 5, 6, 7

[9] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International Journal of Computer
Vision (IJCV), 88:303–338, 2010. 6

[10] Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley,
Georgios Georgiadis, and Joseph H Hassoun. Post-training
piecewise linear quantization for deep neural networks. In
European Conference on Computer Vision (ECCV), pages
69–86, 2020. 1, 2

[11] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018. 2, 3

[12] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both weights and connections for efficient neural net-
work. Advances in Neural Information Processing Systems
(NeurIPS), 28, 2015. 1, 3

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 6

[14] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-

celeration on mobile devices. In European Conference on
Computer Vision (ECCV), pages 784–800, 2018. 3

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 6

[17] Aditya Kusupati, Vivek Ramanujan, Raghav Somani,
Mitchell Wortsman, Prateek Jain, Sham Kakade, and Ali
Farhadi. Soft threshold weight reparameterization for learn-
able sparsity. In International Conference on Machine
Learning (ICML), pages 5544–5555, 2020. 2, 3, 4, 6, 7

[18] Ivan Lazarevich, Alexander Kozlov, and Nikita Malinin.
Post-training deep neural network pruning via layer-wise
calibration. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 798–805, 2021. 1, 2, 3,
6

[19] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on connec-
tion sensitivity. arXiv preprint arXiv:1810.02340, 2018. 2,
3

[20] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Ea-
gleeye: Fast sub-net evaluation for efficient neural net-
work pruning. In European Conference on Computer Vision
(ECCV), pages 639–654, 2020. 4, 5

[21] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing
the limit of post-training quantization by block reconstruc-
tion. arXiv preprint arXiv:2102.05426, 2021. 2

[22] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang,
Yongjian Wu, and Yonghong Tian. Channel pruning via au-
tomatic structure search. arXiv preprint arXiv:2001.08565,
2020. 4

[23] Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hay-
den KH So. Dynamic sparse training: Find efficient sparse
network from scratch with trainable masked layers. arXiv
preprint arXiv:2005.06870, 2020. 2, 3

[24] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atash-
gahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pechenizkiy,
Zhangyang Wang, and Decebal Constantin Mocanu. Sparse
training via boosting pruning plasticity with neuroregener-
ation. Advances in Neural Information Processing Systems
(NeurIPS), 34:9908–9922, 2021. 2, 3

[25] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European Con-
ference on Computer Vision (ECCV), pages 21–37, 2016. 6

[26] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 3296–3305, 2019. 3, 4

[27] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations (ICLR), 2017. 6

5754

[28] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction, 2019. 2

[29] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International
Conference on Machine Learning (ICML), pages 7197–
7206, 2020. 1, 2

[30] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu
Wang, and Huazhong Yang. Dsa: More efficient budgeted
pruning via differentiable sparsity allocation. In European
Conference on Computer Vision (ECCV), pages 592–607,
2020. 3

[31] Nvidia. Nvidia a100 tensor core gpu architecture.
https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-ampere-
architecture-whitepaper.pdf, 2020. 7

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 8026–8037, 2019. 6

[33] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by gen-
erative pre-training. 2018. 1, 2

[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 6

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4510–4520, 2018. 6

[36] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

[37] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In International
Conference on Machine Learning (ICML), 2015. 6

[38] Kai Sheng Tai, Taipeng Tian, and Ser Nam Lim. Spartan:
Differentiable sparsity via regularized transportation. Ad-
vances in Neural Information Processing Systems (NeurIPS),
35:4189–4202, 2022. 3

[39] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking
winning tickets before training by preserving gradient flow.
arXiv preprint arXiv:2002.07376, 2020. 2

[40] Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and
Fengwei Yu. Qdrop: Randomly dropping quantization for
extremely low-bit post-training quantization. arXiv preprint
arXiv:2203.05740, 2022. 2

[41] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin
Xiao, Jianlong Fu, and Lu Yuan. Tinyvit: Fast pretraining
distillation for small vision transformers. In European Con-
ference on Computer Vision (ECCV), pages 68–85, 2022. 1

[42] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep

neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1492–1500, 2017. 1

[43] Yuxin Zhang, Mingbao Lin, Chia-Wen Lin, Jie Chen,
Yongjian Wu, Yonghong Tian, and Rongrong Ji. Carrying
out cnn channel pruning in a white box. IEEE Transactions
on Neural Networks and Learning Systems (TNNLS), 2022.
4

[44] Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke
Li, Fei Chao, Yongjian Wu, and Rongrong Ji. Learning best
combination for efficient N:M sparsity. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2022. 7

[45] Aojun Zhou, Junnan Zhu Yukun Ma, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learn-
ing n:m fine-grained structured sparse neural networks from
scratch. In International Conference on Learning Represen-
tations (ICLR), 2021. 5, 7

[46] Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang.
Effective sparsification of neural networks with global spar-
sity constraint. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3599–3608, 2021. 2, 3,
4

5755

https://www.nvidia.com/content/dam/en- zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en- zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en- zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

	. Introduction
	. Related Work
	. Post-Training Model Compression
	. Sparsity Distribution
	. Dynamic Sparsity Training

	. Method
	. Background
	. UniPTS
	Base-Decayed Sparsity Objective
	Reducing-Regrowing Sparsity Distribution
	Sparsity Training

	. Experiments
	. Settings
	. Main Results
	. Ablation Study

	. Conclusion

