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Abstract

Recently, text-guided scalable vector graphics (SVGs)
synthesis has shown promise in domains such as iconog-
raphy and sketch. However, existing text-to-SVG gen-
eration methods lack editability and struggle with visual
quality and result diversity. To address these limitations,
we propose a novel text-guided vector graphics synthesis
method called SVGDreamer. SVGDreamer incorporates
a semantic-driven image vectorization (SIVE) process that
enables the decomposition of synthesis into foreground ob-
jects and background, thereby enhancing editability. Specif-
ically, the SIVE process introduces attention-based primi-
tive control and an attention-mask loss function for effec-
tive control and manipulation of individual elements. Ad-
ditionally, we propose a Vectorized Particle-based Score
Distillation (VPSD) approach to address issues of shape
over-smoothing, color over-saturation, limited diversity,
and slow convergence of the existing text-to-SVG gener-
ation methods by modeling SVGs as distributions of con-
trol points and colors. Furthermore, VPSD leverages a re-
ward model to re-weight vector particles, which improves
aesthetic appeal and accelerates convergence. Extensive
experiments are conducted to validate the effectiveness of
SVGDreamer, demonstrating its superiority over baseline
methods in terms of editability, visual quality, and diver-
sity. Project page: https://ximinng.github.io/SVGDreamer-
project/

1. Introduction

Scalable Vector Graphics (SVGs) represent visual concepts
using geometric primitives such as Bézier curves, polygons,
and lines. Due to their inherent nature, SVGs are highly
suitable for visual design applications, such as posters and
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logos. Secondly, compared to raster images, vector images
can maintain compact file sizes, making them more efficient
for storage and transmission purposes. More importantly,
vector images offer greater editability, allowing designers to
easily select, modify, and compose elements. This attribute
is particularly crucial in the design process, as it allows for
seamless adjustments and creative exploration.

In recent years, there has been a growing interest in
general vector graphics generation. Various optimization-
based methods [4, 12, 19, 28, 34, 40, 41, 48] have been
proposed, building upon the differentiable rasterizer Dif-
fVG [14]. These methods, such as CLIPDraw [4] and
VectorFusion [12], differ primarily in their approach to
supervision. Some works [4, 19, 28, 34, 40, 41] com-
bine the CLIP model [23] with DiffVG [14], using CLIP
as a source of supervision. More recently, the signif-
icantly progress achieved by Text-to-Image (T2I) diffu-
sion models [20, 24, 26, 27, 37] has inspired the task of
text-to-vector-graphics. Both VectorFusion [12] and DiffS-
ketcher [48] attempted to utilize T2I diffusion models for
supervision. These models make use of the high-quality
raster images generated by T2I models as targets to opti-
mize the parameters of vector images. Additionally, the pri-
ors embedded within T2I models can be distilled and ap-
plied in this task. Consequently, models that use T2I for
supervision generally perform better than those using the
CLIP model.

Despite their impressive performance, existing T2I-
based methods have certain limitations. Firstly, the vector
images generated by these methods lack editability. Un-
like the conventional approach of creating vector graphics,
where individual elements are added one by one, T2I-based
methods do not distinguish between different components
during synthesis. As a result, the objects become entan-
gled, making it challenging to edit or modify a single ob-
ject independently. Secondly, there is still a large room
for improvement in visual quality and diversity of the re-
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sults generated by these methods. Both VectorFusion [12]
and DiffSketcher [48] extended the Score Distillation Sam-
pling (SDS) [22] to distill priors from the T2I models. How-
ever, it has been observed that SDS can lead to issues such
as color over-saturation and over-smoothing, resulting in a
lack of fine details in the generated vector images. Besides,
SDS optimizes a set of control points in the vector graphic
space to obtain the average state of the vector graphic corre-
sponding to the text prompt in a mode-seeking manner [22].
This leads to a lack of diversity and detailed construction in
the SDS-based approach [12, 48], along with absent text
prompt objects.

To address the aforementioned issues, we present a new
model called SVGDreamer for text-guided vector graph-
ics generation. Our primary objective is to produce vector
graphics of superior quality that offer enhanced editability,
visual appeal, and diversity. To ensure editability, we pro-
pose a semantic-driven image vectorization (SIVE) process.
This approach incorporates an innovative attention-based
primitive control strategy, which facilitates the decompo-
sition of the synthesis process into foreground objects and
background. To initialize the control points for each fore-
ground object and background, we leverage cross-attention
maps queried by text tokens. Furthermore, we introduce an
attention-mask loss function, which optimizes the graphic
elements hierarchically. The proposed SIVE process en-
sures the separation and editability of the individual ele-
ments, promoting effective control and manipulation of the
resulting vector graphics.

To improve the visual quality and diversity of the gen-
erated vector graphics, we introduce Vectorized Particle-
based Score Distillation (VPSD) for vector graphics refine-
ment. Previous works in vector graphics synthesis [11,
12, 48] that utilized SDS often encountered issues like
shape over-smoothing, color over-saturation, limited diver-
sity, and slow convergence in synthesized results [22, 48].
To address these issues, VPSD models SVGs as distribu-
tions of control points and colors, respectively. VPSD
adopts a LoRA [10] network to estimate these distribu-
tions, aligning vector graphics with the pretrained diffu-
sion model. Furthermore, to enhance the aesthetic appeal
of the generated vector graphics, we integrate ReFL [49]
to fine-tune the estimation network. Through this refine-
ment process, we achieve final vector graphics that exhibit
high editability, superior visual quality, and increased diver-
sity. To validate the effectiveness of our proposed method,
we perform extensive experiments to evaluate the model
across multiple aspects. In summary, our contributions can
be summarized as follows:
• We introduce SVGDreamer, a novel model for text-to-

SVG generation. This novel model is capable of gener-
ating high-quality vector graphics while preserving ed-
itability.

• We present the semantic-driven image vectorization
(SIVE) method, which ensures that the generated vec-
tor objects are separate and flexible to edit. Addition-
ally, we propose the vectorized particle-based score dis-
tillation (VPSD) loss to guarantee that the generated vec-
tor graphics exhibit both exceptional visual quality and a
wide range of diversity.

• We conduct comprehensive experiments to evaluate the
effectiveness of our proposed method. Results demon-
strate the superiority of our approach compared to base-
line methods. Moreover, our model showcases strong
generalization capabilities in generating diverse types of
vector graphics.

2. Related Work

2.1. Vector Graphics Generation

Scalable Vector Graphics (SVGs) offer a declarative format
for visual concepts expressed as primitives. One approach
to creating SVG content is to use Sequence-To-Sequence
(seq2seq) models to generate SVGs [1, 5, 16, 25, 43, 44,
46]. These methods heavily rely on dataset in vector form,
which limits their generalization ability and their capacity
to synthesize complex vector graphics. Instead of directly
learning an SVG generation network, an alternative method
of vector synthesis is to optimize towards a matching image
during evaluation time.

Li et al. [14] introduce a differentiable rasterizer that
bridges the vector graphics and raster image domains.
While image generation methods that traditionally operate
over vector graphics require a vector-based dataset, recent
work has demonstrated the use of differentiable renderers
to overcome this limitation [17, 25, 28, 30, 36, 38, 39, 48].
Furthermore, recent advances in visual text embedding
contrastive language-image pre-training model (CLIP) [23]
have enabled a number of successful methods for synthe-
sizing sketches, such as CLIPDraw[4], CLIP-CLOP [19],
and CLIPasso [40]. A very recent work VectorFusion [12]
and DiffSketcher [48] combine differentiable renderer with
text-to-image diffusion model for vector graphics genera-
tion, resulting in promising results in fields such as iconog-
raphy, pixel art, and sketch.

2.2. Text-to-Image Diffusion Model

Denoising diffusion probabilistic models (DDPMs) [8, 31,
33, 35], particularly those conditioned on text, have shown
promising results in text-to-image synthesis. For exam-
ple, Classifier-Free Guidance (CFG) [7] has improved vi-
sual quality and is widely used in large-scale text condi-
tional diffusion model frameworks, including GLIDE [20],
Stable Diffusion [26], DALL·E 2 [24], Imagen [27] and
DeepFloyd IF [37]. The progress achieved by text-to-image
diffusion models [20, 24, 26, 27] also promotes the devel-
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“A painting of  a Chinese temple 
with mountains in the 

background”; Iconography

“A poster of  the great wall, teal 
and orange color scheme, autumn 

colors”; Iconography

“Sydney opera house, 
oil painting, by Van Gogh”;

Iconography

“A colorful German shepherd”;
Iconography

“Seascape. Ship on the high seas. 
Storm. High waves”; Iconography

“A portrait of  an astronaut. the 
logo, MS_emoji_style”;

Iconography

“Darth Vader with lightsaber”; Pixelart

“An airplane”; Sketch“Abstract Vincent van 
Gogh Oil Painting 

Elephant”; Painting

“Polar bear”; Low-poly

“Black and white, 
simple horse flash 

tattoo”; Ink

“A portrait of  an astronaut. the 
logo, MS_emoji_style, Van Gogh 

style”; Iconography

“Pikachu, childish and fun”; Pixelart

“The image captures the 
essence of  Vincent van 

Gogh, colorful world he 

painted”; Painting

“Big Wild Goose 
Pagoda”; Ink

“Scarlet macaw”; Low-poly“Bald eagle”; Low-poly

“A speeding 
Lamborghini”; Sketch

“Sonic”; Pixelart

“Wolf. flat 2d vector.”; Low-poly

“A detailed illustration of  a castle on 
a floating iceberg in a 360-degree 

snowstorm”; Iconography

Figure 1. Given a text prompt, SVGDreamer can generate a variety of vector graphics. SVGDreamer is a versatile tool that can work with
various vector styles without being limited to a specific prompt suffix. We utilize various colored suffixes to indicate different styles. The
style is governed by vector primitives.
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opment of a series of text-guided tasks, such as text-to-
3D [22]. In this work, we employ Stable Diffusion model
to provide supervision for text-to-SVG generation.

2.3. Score Distillation Sampling

Recent advances in natural image modeling have sparked
significant research interest in utilizing powerful 2D pre-
trained models to recover 3D object structures [15, 18, 21,
22, 42, 45]. Recent efforts such as DreamFusion [22],
Magic3D [15] and Score Jacobian Chaining [42] explore
text-to-3D generation by exploiting a score distillation sam-
pling (SDS) loss derived from a 2D text-to-image diffusion
model [26, 27] instead, showing impressive results. The
development of text-to-SVG [12, 48] was inspired by this,
but the resulting vector graphics have limited quality and
exhibit a similar over-smoothness as the reconstructed 3D
models. Wang et al. [45] extend the modeling of the 3D
model as a random variable instead of a constant as in SDS
and present variational score distillation to address the over-
smoothing issues in text-to-3D generation.

3. Methodology

In this section, we introduce SVGDreamer, an optimization-
based method that creates a variety of vector graphics based
on text prompts. We define a vector graphic as a set of paths
{Pi}ni=1 and color attributes {Ci}ni=1. Each path consists
of m control points Pi = {pj}mj=1 = {(xj , yj)}mj=1 and
one color attribute Ci = {r, g, b, a}i. We optimize an SVG
by back-propagating gradients of rasterized images to SVG
path parameters ✓ = {Pi, Ci}ni=1 via a differentiable ren-
derer R(✓) [14].

Our approach leverages the text-to-image diffusion
model prior to guide the differentiable renderer R and op-
timize the parametric graphic path ✓, resulting in the syn-
thesis of vector graphs that match the description of the
text prompt y. As illustrated in Fig. 2, our pipeline con-
sists of two parts: semantic-driven image vectorization and
SVG synthesis through VPSD optimization. The first part
is Semantic-driven Image VEctorization (SIVE), consist-
ing of two stages: primitive initialization and semantic-
aware optimization. We rethink the application of attention
mechanisms in synthesizing vector graphics. We extract the
cross-attention maps corresponding to different objects in
the diffusion model and apply it to initialize control points
and consolidate object vectorization. This process allows us
to decompose the foreground objects from the background.
Consequently, the SIVE process generates vector objects
which are independently editable. It separates vector ob-
jects by aggregating the curves that form them, which in
turn simplifies the combination of vector graphics.

In Sec. 3.2, we propose the Vectorized Particle-based
Score Distillation (VPSD) to generate diverse high-quality
text-matching vector graphics. VPSD is designed to model

the distribution of vector path control points and colors for
approximating the vector parameter distribution, thus ob-
taining vector results of diversity.

3.1. SIVE: Semantic-driven Image Vectorization

Image rasterization is a mature technique in computer
graphics, while image vectorization, the reverse path of ras-
terization, remains a major challenge. Given an arbitrary in-
put image, LIVE [17] recursively learns the visual concepts
by adding new optimizable closed Bézier paths and opti-
mizing all these paths. However, LIVE [17] struggles with
grasping and distinguishing various subjects within an im-
age, leading to identical paths being superimposed onto dif-
ferent visual subjects. And the LIVE-based method [12, 17]
fails to represent intricate vector graphics consisting of
complex paths. We propose a semantic-driven image vec-
torization method to address the aforementioned issue. This
method consists of two main stages: primitive initializa-
tion and semantic-aware optimization. In the initialization
stage, we allocate distinct control points to different regions
corresponding to various visual objects with the guidance
of attention maps. In the optimization stage, we introduce
an attention-based mask loss function to hierarchically op-
timize the vector objects.

3.1.1 Primitive Initialization

Vectorizing visual objects often involves assigning numer-
ous paths, which leads to object-layer confusion in LIVE-
based methods. To address this issue, we suggest organizing
vector graphic elements semantically and assigning paths to
objects based on their semantics. We initialize O groups of
object-level control points according to the cross-attention
map corresponding to different objects in the text prompt.
And we represent them as the foreground Mi

FG, where i in-
dicates the i-th token in the text prompt. Correspondingly,
the rest will be treated as background. Such design allows
us to represent the attention maps of background and fore-
ground as,

MBG = 1� (
OX

i=1

Mi

FG);

Mi

FG = softmax(QKT

i )/
p
d

(1)

where MBG indicates the attention map of the background.
Mi

FG indicates cross-attention score, where Ki indicates
i-th token keys from text prompt, Q is pixel queries fea-
tures, and d is the latent projection dimension of the keys
and queries.

Then, inspired by DiffSketcher [48], we normalize the
attention maps using softmax and treat it as a distribution
map to sample m positions for the first control point pj=1

of each Bézier curve. The other control points ({pj}mj=2) are
sampled within a small radius (0.05 of image size) around
pj=1 to define the initial set of paths.
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Text Prompt:
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suit walking across a 
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the background. vector 
art. linear color."
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Synthesis through VPSD optimization

Semantic-driven Image Vectorization

Synthesis through VPSD optimization

Figure 2. Overview of SVGDreamer. The method consists of two parts: semantic-driven image vectorization (SIVE) and SVG synthesis
through VPSD optimization. The result obtained from SIVE can be used as input of VPSD for further refinement.

3.1.2 Semantic-aware Optimization

In this stage, we utilize an attention-based mask loss to sep-
arately optimize the objects in the foreground and back-
ground. This ensures that control points remain within their
respective regions, aiding in object decomposition. Namely,
the hierarchy only exists within the designated object and
does not get mixed up with other objects. This strategy fu-
els the permutations and combinations between objects that
form different vector graphics, and enhances the editability
of the objects themselves.

Specifically, we convert the attention map obtained dur-
ing the initialization stage into reusable masks M̂ =
{{M̂FG}Oo=1,M̂BG}, O foregrounds and one background
mask in total. We do this by setting the attention score to 1
if it is greater than the threshold value, and to 0 otherwise.

LSIVE =
OX

i

⇣
M̂i � I � M̂i � x

⌘2
(2)

where I is the target image, M̂ is mask, x = R(✓) is the
rendering.

3.2. Vectorized Particle-based Score Distillation

While vectorizing a rasterized diffusion sample is lossy, re-
cent techniques [12, 48] have identified the SDS loss [22]
as beneficial for our task of generating vector graphics. To
synthesize a vector image that matches a given text prompt
y, they directly optimize the parameters ✓ = {Pi, Ci}ni=1

of a differentiable rasterizer R(✓) via SDS loss. At each
iteration, the differentiable rasterizer is used to render a
raster image x = R(✓), which is augmented to obtain a
xa. Then, the pretrained latent diffusion model (LDM) ✏�
uses a VAE encoder [3] to encode xa into a latent represen-
tation z = E(xa), where z 2 R(H/f)⇥(W/f)⇥4 and f is the
encoder downsample factor. Finally, the gradient of SDS is
estimated by,

r✓LSDS(�,x = R(✓)) ,

Et,✏,a


w(t)(✏�(zt; y, t)� ✏)

@z

@xa

@xa

@✓

� (3)

where w(t) is the weighting function. And noised to form
zt = ↵txa + �t✏.

Unfortunately, SDS-based methods often suffer from is-
sues such as shape over-smoothing, color over-saturation,
limited diversity in results, and slow convergence in synthe-
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Figure 3. The process of VPSD.

sis results [11, 12, 22, 48]. Inspired by the principled vari-
ational score distillation framework [45], we propose vec-
torized particle-based score distillation (VPSD) to address
the aforementioned issues. Instead of modeling SVGs as a
set of control points and corresponding colors like SDS, we
model SVGs as the distributions of control points and colors
respectively. In principle, given a text prompt y, there exists
a probabilistic distribution µ of all possible vector shapes
representations. Under a vector representation parameter-
ized by ✓, such a distribution can be modeled as a proba-
bilistic density µ(✓|y). Compared with SDS that optimizes
for the single ✓, VPSD optimizes for the whole distribution
µ, from which we can sample ✓. Motivated by previous
particle-based variational inference methods, we maintain
k groups of vector parameters {✓}ki=1 as particles to esti-
mate the distribution µ, and ✓(i) will be sampled from the
optimal distribution µ

⇤ if the optimization converges. This
optimization can be realized through two score functions:
one that approximates the optimal distribution with a noisy
real image, and one that represents the current distribution
with a noisy rendered image. The score function of noisy
real images can be approximated by the pretrained diffu-
sion model [26] ✏�(zt; y, t). The score function of noisy
rendered images is estimated by another noise prediction
network ✏�est(zt; y, p, c, t), which is trained on the rendered
images by {✓}ki=1. The gradient of VPSD can be formed as,

r✓LVPSD(�,�est,x = R(✓)) ,

Et,✏,p,c


w(t)(✏�(zt; y, t)� ✏�est(zt; y, p, c, t))

@z

@✓

� (4)

where p and c in ✏�est indicate control point variables and
color variables, the weighting function w(t) is a hyper-
parameter. And t ⇠ U(0.05, 0.95).

In practice, as suggested by [45], we parameterize ✏� us-
ing a LoRA (Low-rank adaptation [10]) of the pretrained
diffusion model. The rendered image not only serves to cal-
culate the VPSD gradient but also gets updated by LoRA,

Llora = Et,✏,p,c k✏�est(zt; y, p, c, t)� ✏k22 (5)

where ✏ is the Gaussian noise. Only the parameters of the
LoRA model will be updated, while the parameters of other

diffusion models will remain unchanged to minimize com-
putational complexity.

In [45], only randomly selected particles update the
LoRA network in each iteration. However, this approach
neglects the learning progression of vector particles, which
are used to represent the optimal SVG distributions. Fur-
thermore, these networks typically require numerous iter-
ations to approximate the theoretical optimal distribution,
resulting in slow convergence. In VPSD, we introduce a
Reward Feedback Learning method, as Fig. 3 illustrates.
This method leverages a pre-trained reward model [49]
to assign reward scores to samples collected from LoRA
model. Then LoRA model subsequently updates from these
reweighted samples,

Lreward = �Ey [ (r(y, g�est(y)))] (6)

where g�est(y) denotes the generated image of µ model with
parameters �est corresponding to prompt y, and r represents
the pretrained reward model [49],  represents reward-to-
loss map function implemented by ReLU, and � = 1e �
3. We used the DDIM [32] to rapidly sample k samples
during the early iteration stage. This method saves 2 times
the iteration step for VPSD convergence and improves the
aesthetic score of the SVG by filtering out samples with low
reward values in LoRA.

Our final VPSD objective is then defined by the weighted
average of the three terms,

min
✓

r✓LVPSD + Llora + �rLreward (7)

where �r indicates reward feedback strength.

3.3. Vector Representation Primitives

In addition to text prompts, SVGDreamer provides a vari-
ety of vector representations for style control. These vec-
tor representations are achieved by limiting primitive types
and their parameters. Users can control the art style gen-
erated by SVGDreamer by modifying the input text or by
constraining the set of primitives and parameters. We ex-
plore six settings: 1) Iconography is the most common
SVG style, consists of several paths and their fill colors.
This style allows for a wide range of compositions while
maintaining a minimalistic expression. We utilize closed
form Bézier curves with trainable control points and fill col-
ors. 2) Sketch is a way to convey information with minimal
expression. We use open form Bézier curves with trainable
control points and opacity. 3) Pixel Art is a popular video-
game inspired style, frequently used for character and back-
ground art. We use square SVG polygons with fill colors. 4)
Low-Poly is to consciously cut and pile up a certain number
of simple geometric shapes according to the modeling laws
of objects. We use square SVG polygons with trainable con-
trol points and fill colors. 5) Painting is a means of approx-
imating the painter’s painting style in vector graphics. We
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Figure 4. Qualitative comparison of different methods. Note that DiffSketcher was originally designed for vector sketch generation;
therefore, we re-implemented it to generate RGB vector images.

use open form Bézier curves with trainable control points,
stroke colors and stroke widths. 6) Ink and Wash Painting

is a traditional Chinese art form that utilizes varying con-
centrations of black ink. We use open form Bézier curves
with trainable control points, opacity, and stroke widths.

4. Experiments

4.1. Qualitative Evaluation

Figure 4 presents a qualitative comparison between SVG-
Dreamer and existing text-to-SVG methods. Compared to
CLIPDraw [4], SVGDreamer synthesizes SVGs with higher
fidelity and detail. We also compare our work with SDS-
based methods [12, 48], emphasizing our ability to ad-
dress issues such as shape over-smoothing and color over-
saturation. As shown in the fifth column, SIVE achieves
semantic decoupling but cannot overcome the inherently
smooth nature of SDS. As observed in the last two columns,
our approach demonstrates superior detail compared to the
SDS-based approach, regardless of whether the model was
optimized from scratch or through the entire process. Con-
sequently, this leads to a higher aesthetic score.

4.2. Quantitative Evaluation

To demonstrate the effectiveness of our proposed method,
we conducted comprehensive experiments to evaluate the
model across various aspects, including Fréchet Inception
Distance (FID) [6], Peak Signal-to-Noise Ratio (PSNR) [9],
CLIPScore [23], BLIPScore [13], Aesthetic score [29] and
Human Performance Score [47] (HPS). Table 1 presents a
comparison of our approach with the most representative
text-to-SVG methods, including CLIPDraw [4], VectorFu-
sion [12], and DiffSketcher [48]. We conducted a quantita-
tive evaluation of the six styles identified in Sec. 3.3, with
each style comprising 10 unique prompts and 50 synthe-
sized SVGs per prompt. For diversity evaluation of vec-
tor graphics and fill color saturation, we used SD sam-
pling results as a Ground Truth (GT) and calculated FID
and PSNR metrics respectively. The quantitative analysis

in the first two columns indicates that our method surpasses
other methods in terms of FID and PSNR. This suggests
that our method offers a greater range of diversity compared
to SDS-based synthesis [12, 48]. To assess the consistency
between the generated SVGs and the provided text prompts,
we used both CLIPScore and BLIPScore. To measure the
perceptual quality of synthetic vector images, we measure
aesthetic scores using the LAION aesthetic classifier [29].
Besides, we use HPS to evaluate our approach from a hu-
man aesthetic perspective.

4.3. Ablation Study

4.3.1 SIVE v.s. LIVE [17]

LIVE [17] offers a comprehensive image vectorization pro-
cess that optimizes the vector graph in a hierarchical, layer-
wise fashion. However, as Fig. 6 illustrates, LIVE struggles
to accurately capture and distinguish between various sub-
jects within an image, which can result in the same paths
being superimposed on different visual subjects. When
tasked with representing complex vector graphics requiring
a greater number of paths, LIVE tends to superimpose path
hierarchies across different objects, complicating the SVG
representation and making it difficult to edit. The resulting
SVGs often contain complex and redundant shapes that can
be inconvenient for further editing.

In contrast, SIVE is capable of generating succinct
SVG forms with semantic-driven structures that align more
closely with human perception. SIVE efficiently assigns
paths to objects, enabling object-level vectorization.

4.3.2 VPSD v.s. LSDS [11, 12] v.s. ASDS [48]

The development of text-to-SVG [12, 48] was inspired by
DreamFusion [22], but the resulting vector graphics have
limited quality and exhibit a similar over-smoothness as the
DreamFusion reconstructed 3D models. The main distinc-
tion between ASDS and LSDS lies in the augmentation of
the input data. As demonstrated in Table 1 and Fig. 4, our
approach demonstrates superior performance compared to
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Table 1. Quantitative comparison of different methods.

Method / Metric FID [6]# PSNR [9]" CLIPScore [23]" BLIPScore [13]" Aesthetic [29]" HPS [47]"
CLIPDraw [4] 160.64 8.35 0.2486 0.3933 3.9803 0.2347
VectorFusion (scratch) [12] 119.55 6.33 0.2298 0.3803 4.5165 0.2334
VectorFusion [12] 100.68 8.01 0.2720 0.4291 4.9845 0.2450
DiffSketcher(RGB) [48] 118.70 6.75 0.2402 0.4185 4.1562 0.2423

SVGDreamer (from scratch) 84.04 10.48 0.2951 0.4311 5.1822 0.2484
+Reward Feedback 83.21 10.51 0.2988 0.4335 5.2825 0.2559

SVGDreamer 59.13 14.54 0.3001 0.4623 5.5432 0.2685

SPACEMAN PORTRAITS
By SVGDeamer

SuperHorses PORTRAITS
By SVGDeamer

Figure 5. Examples of vector assets created by our SVGDreamer.

LIVE 
(GlyphControl,

raster-to-vector)

SIVE 
(Ours)

Layer 1 Layer 1+2 Layer 1+2+3+4

Background Foreground 1 Foreground 2Vector result

Raster image Layer 1+2+3

Glyph

Figure 6. Comparison of LIVE vectorization with SIVE. In the
first row, ”Foreground 1” and ”Foreground 2” refer to Astronaut
and Plants, respectively. Glyphs have been added manually and
were not produced by our method. In the LIVE setup, we fol-
low the protocol outlined in VectorFusion [12], which represents
a vector image with 128 paths distributed across four layers, with
32 paths in each layer.

the SDS-based approach in terms of FID. This indicates that
our method is able to maintain a higher level of diversity
without being affected by mode-seeking disruptions. Addi-
tionally, our approach achieves a higher PSNR compared to
the SDS-based approach, suggesting that our method avoids
the issue of supersaturation caused by averaging colors.

4.4. Applications of SVGDreamer

Our proposed tool, SVGDreamer, is capable of generating
vector graphics with exceptional editability. Therefore, it
can be utilized to create vector graphic assets for poster and

logo design. As shown in Fig. 5, all graphic elements in
the two poster examples are generated by our SVGDreamer.
Designers can easily recombine these elements with glyph
to create unique posters. Additional examples of posters
and logo designs can be found in Supplementary.

5. Conclusion

In this work, we have introduced SVGDreamer, an in-
novative model for text-guided vector graphics synthesis.
SVGDreamer incorporates two crucial technical designs:
Semantic-Driven Image Vectorization (SIVE) and Vector-
ized Particle-Based Score Distillation (VPSD). These em-
power our model to generate vector graphics with high
editability, superior visual quality, and notable diversity.
SVGDreamer is expected to significantly advance the ap-
plication of text-to-SVG models in the design field.
Limitations. The editability of our method, which depends
on the text-to-image (T2I) model used, is currently lim-
ited. However, future advancements in T2I diffusion mod-
els could enhance the decomposition capabilities of our ap-
proach, thereby extending its editability. Moreover, explor-
ing ways to automatically determine the number of control
points at the SIVE object level is valuable.
Acknowledgement. This work is supported by the CCF-
Baidu Open Fund Project and Young Elite Scientists Spon-
sorship Program by CAST.
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