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Fireworks being displayed for a crowd of people.

A dog wearing virtual reality goggles on the grass.

Time lapse at a fantasy landscape, 4k, high resolution.

A horse galloping through van Gogh’s ‘Starry Night’. A jeep car is moving on the road.

(a) Text-to-Video Generation

An AE86 car is moving on the road.

A jeep car is moving on the road, cartoon style.

A jeep car is moving in a forest, in Autumn.

(b) Text-guided Video Editing

Figure 1. Examples of our SimDA results: (a) The results of open-wild Text-to-Video Generation. (b) Text-guided video Editing results
using one text-video pair tuning.

Abstract

The recent wave of AI-generated content has witnessed
the great development and success of Text-to-Image (T2I)
technologies. By contrast, Text-to-Video (T2V) still falls
short of expectations though attracting increasing interest.
Existing works either train from scratch or adapt large T2I
model to videos, both of which are computation and re-
source expensive. In this work, we propose a Simple Dif-
fusion Adapter (SimDA) that fine-tunes only 24M out of
1.1B parameters of a strong T2I model, adapting it to video
generation in a parameter-efficient way. In particular, we
turn the T2I model for T2V by designing light-weight spa-

tial and temporal adapters for transfer learning. Besides,
we change the original spatial attention to the proposed
Latent-Shift Attention (LSA) for temporal consistency. With
a similar model architecture, we further train a video super-
resolution model to generate high-definition (1024× 1024)
videos. In addition to T2V generation in the wild, SimDA
could also be utilized in one-shot video editing with only 2
minutes tuning. Doing so, our method could minimize the
training effort with extremely few tunable parameters for
model adaptation.
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1. Introduction
Image generation stands on top of the recent AIGC wave.
It not only has a significant impact on the academic com-
munity but also achieves tremendous success in various
applications, such as computer graphics, art and culture,
medical imaging, etc. The approaches in this area mainly
include methods based on generative adversarial networks
(GANs) [29, 49–51, 84], auto-regressive transformers [20,
77, 125], and the latest diffusion models [17, 23, 38, 40, 58,
67, 68, 78, 79, 82, 91, 120]. Among them, diffusion mod-
els are the most popular owing to their strong controllabil-
ity, simple stability, and amazing realism. However, video
generation research lags behind due to challenges like the
scarcity of publicly available datasets, difficulty in model-
ing temporal information, and high training costs, hindering
progress in this area.

There have been several research endeavors dedicated to
exploring video synthesis [3, 9, 12, 15, 24, 27, 30, 31, 42,
48, 52, 55, 60, 62, 64, 70, 83, 89, 94, 100, 102, 107, 108,
121, 126]. In addition, some studies have employed popular
diffusion models for video generation [32, 41, 43, 61, 101,
106, 116, 122, 135, 137]. However, most of them involve
training models from scratch, which can be time-consuming
due to the complex video data. Early attempts were also
constrained by GPU memory or hardware limitations.

More recently, a small number of T2V (Text-to-
Video) approaches have emerged, aiming to fine-tune well-
established T2I (Text-to-Image) models [1, 8, 28, 39, 61,
104, 136]. They have incorporated temporal modeling
modules (e.g. Imagen video [39], Video LDM [8]) into
T2I models, which effectively accelerate the model con-
vergence. However, it should be noted that training such
models is still a challenging task due to the massive num-
ber of parameters (4B or even 16B) involved in the network
architecture.

In the NLP field, state-of-the-art results of various tasks
are generally achieved by adaptation from large pretrained
models (i.e., BERT [16], LLMs [14, 74, 76, 132]). How-
ever, with the advent of increasingly larger and more pow-
erful foundation models (e.g., GPT-4 with 100T parame-
ters), conducting full fine-tuning of the entire models has
become prohibitively expensive and infeasible in terms
of training cost and GPU storage. To address the is-
sue, numerous methods based on efficient fine-tuning have
emerged rapidly in NLP [44, 45, 53, 54] and computer vi-
sion [13, 69, 124, 128].

In this work, we propose a parameter-efficient video dif-
fusion model, namely Simple Diffusion Adapter (SimDA),
that fine-tunes the large T2I (i.e. Stable Diffusion [79])
model for improved video generation. We only add 2%
parameters compared to the T2I model. During training,
we freeze the original T2I model, and only tune the newly
added modules. We further propose a Latent-Shift Attention

(LSA) to replace the original spatial attention, which signif-
icantly improves the temporal modeling capability and re-
tains consistency without adding new parameters. To this
end, our model demands less than 8GB GPU memory for
training with a resolution of 16 × 256 × 256, while the
inference time speeds up by 39× compared to the auto-
regressive method CogVideo [42]. Besides, we turn an im-
age super resolution framework into the video counterpart
with similar architecture, which allows generating high-
definition videos of 1024 × 1024. Our model can also be
extended to the recently popular diffusion-based video edit-
ing [110], achieving significant 3× faster training while re-
taining comparable results, as evidenced by the editing ex-
amples presented in Fig 1 (b). In conclusion, the contribu-
tions of this work can be summarized as follows:
• We explore the simple adaptation from image diffusion

to video diffusion, exhibiting that tuning extremely few
parameters can achieve surprisingly good results.

• With the helpful light-weight adapters and the proposed
latent-shift attention, our method can effectively model
the temporal relations with negligible cost.

• Our diffusion adapter could be extended to text-guided
video super-resolution and video editing, significantly fa-
cilitating the model training.

• SimDA significantly alleviates the training cost and
speeds up the inference time, while remaining competi-
tive results compared to other methods.

2. Related Work
Text-to-Video Generation Similar to the advancements in
Text-to-Image (T2I) generation [18, 71, 79, 130], early ap-
proaches for Text-to-Video (T2V) generation [55, 64, 70]
were based on Generative Adversarial Networks (GANs)
and primarily applied to domain-specific videos such as
simple human actions [92] or clouds moving [117].

Recently, T2V methods are most based on fine tuning the
T2I [78, 79] diffusion models. For instance, Make-A-Video
[88] proposes fine-tuning a pretrained DALLE2 [78] model
solely on video data to learn motion patterns, enabling T2V
generation without explicitly training on text-video pairs.
Video Diffusion Models [41] and Imagen Video [39] per-
form joint text-image and text-video training, treating im-
ages as independent frames and disabling temporal layers
in the U-Net [80] architecture. Besides, Video LDM [8],
Latent-Shift [1], VideoFactory [104], MagicVideo [136]
and our methods utilize the popular open-sourced T2I Sta-
ble Diffusion [79] model. While the progress in video
generation is impressive, the parameters of video genera-
tion can be highly large. As shown in Table 1, Make-A-
Video [88] requires six models and 9.7B parameters and
Imagen Video [39] utilizes eight models with 16.3B param-
eters, which limits the training efficiency of T2V models.
Text guided Video Editing In the realm of content gen-
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eration, an alternative avenue is the manipulation of ex-
isting images [10, 37, 63, 98] and videos [6, 21, 59, 73,
87, 110, 115, 123, 134] using textual input as a means of
control, rather than relying solely on unbridled text-based
generation. SDEdit [63] introduces noise to images and
then reconstructs them for the purpose of editing. Prompt-
to-prompt [37] and Plug-and-Play [98] modify the cross-
attention map by altering the textual description, thus influ-
encing the editing process. When it comes to video edit-
ing, Tune-A-Video [110] fine-tunes the T2I model on a
single video, enabling the generation of new videos with
similar motion patterns. Video-P2P [59] and FateZero [73]
extend the concept of Prompt-to-prompt editing to videos.
Text2Live [6] divides videos into layers and enables sepa-
rate editing of each layer based on text. MotionEditor [97]
edits the motion of human while keeping the background.
Parameter-Efficient Transfer Learning In NLP, parame-
ter efficient fine-tuning [33, 44, 45, 53, 54, 93, 127] were
initially proposed to address the heavy computation of full
fine-tuning LLMs for various downstream tasks. These
techniques aim to reduce the number of trainable parame-
ters, thereby lowering computation costs, while still achiev-
ing or surpassing the performance of full fine-tuning. Re-
cently, parameter-efficient transfer learning has also been
explored in the field of computer vision [4, 13, 22, 26, 46,
47, 69, 95, 112, 113, 124, 128]. These methods mainly fo-
cus on adapting models within simple classification or de-
tection tasks. In contrast, our approach focuses on adapting
a T2I model for T2V generation task.
Temporal Shift Module TSM [56] pioneered the introduc-
tion of the temporal shift module for action recognition, em-
ploying a partial channel shift along the temporal dimen-
sion. This approach seamlessly integrates temporal cues
from both preceding and succeeding frames into the cur-
rent frame without incurring additional computational over-
head. Subsequently, TokShift [129] implemented channel
shifting along the temporal dimension for transformer ar-
chitectures [19, 133]. TPS [111] further shifted patches in-
stead of channels to model the temporal correlations. How-
ever, such direct patch shifting would lead to inconsis-
tency in generation tasks. Additionally, Latent-shift [1] and
TSB [66] adapted shift module as TSM [56] within convo-
lution blocks for video generation tasks. In this work, our
latent-shift attention (LSA) employs the patch-level shifting
manner. In contrast to TPS, we further propose to involve
all tokens in the current frame as the keys and values, which
guarantees temporal consistency during generation and sig-
nificantly improves the video quality.

3. Method
In this section, we first introduce the preliminaries of Latent
Diffusion Model [79] in Sec. 3.1. The pipeline of SimDA
is described in Sec. 3.2. Then we detail the proposed spa-

tial and temporal adapters as well as latent-shift attention
in Sec. 3.3. Finally, we introduce the super resolution and
text-guided video editing model in Sec. 3.4.

3.1. Preliminaries of Stable Diffusion

In this subsection, we introduce the preliminaries of Stable
Diffusion [79] model. It is a latent diffusion model that op-
erates in the latent space of an autoencoder D(E(·)), where
E is the encoder and D is the decoder. In this model, for an
image I with its corresponding latent feature x0 = E(I),
the diffusion forward process involves iteratively adding
noise to the latent space,

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (1)

where t ∈ {1, ..., T} is the time step, q(xt|xt−1) is the
conditional density of xt given xt−1, I is identity matrix,
and αt is hyperparameter. Alternatively, we can directly
sample xt at any time step from x0 with,

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt =
∏t

i=1 αi.
In the diffusion backward process, a U-Net denoted as

ϵθ is trained to predict the noise in the latent space, aiming
to iteratively recover x0 from xT . In this process, as the
diffusion progresses and approaches a large value of T , x0

is completely disrupted and the latent representation xT ap-
proximates a standard Gaussian distribution. Consequently,
the U-Net ϵθ is trained to infer meaningful and valid x0

from random Gaussian noises. The training object can be
simplified as,

Ex,ϵ∼N (0,I),t[||ϵ− ϵθ(xt, c, t)||22], (3)

where c is the embedding of condition text.
During the inference stage, it samples a valid latent rep-

resentation x0 from the standard Gaussian noise xT =
zT , zT ∼ N (0, I) using DDIM [90] sampling. Then, the
model can decode x0 using the decoder D to generate the
final image I = D(x0). This process could generate di-
verse and high-quality images based on the sampled latent
representations. In contrast, our method focuses on more
challenging high-quality video generation.

3.2. Pipeline

SimDA, as shown in Fig. 2, is built upon the previously
introduced Stable Diffusion [79]. For a video clip with t
frames, denoted as {Ii}ti=1, we first pass it through a pre-
trained encoder E to obtain the corresponding latent feature
{xi}ti=1. We then input the latent features to the forward
diffusion process, where noise is incrementally added to
the latents. In the backward diffusion process, we utilize
an inflated U-Net architecture to predict the noise for the
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Figure 2. Pipeline of our Parameter-Efficient Text-to-Video Framework. We utilize the pre-trained auto-encoder as in Stable Diffusion [79]
to obtain latent representation. During training, we only update the parameters of the newly added adapter module, highlighted in yellow.
The parameters of other modules are frozen, highlighted in blue.

Table 1. Model size and inference speed comparisons. The speed is measured in seconds on one A100 (80GB) GPU. The majority of
results are sourced from [1].

Method Parameters (Billion) Speed (s)T2V Core Auto Encoder Text Encoder Prior Model Super Resolution Frame Interpolation Overall Tuned

CogVideo [42] 7.7 0.10 − − − 7.7 15.5 15.5 434.53
Make-A-Video [88] 3.1 − 0.12 1.3 1.4 + 0.7 3.1 9.72 9.72 −
Imagen Video [39] 5.6 − 4.6 − 1.2 + 1.4 + 0.34 1.7 + 0.78 + 0.63 16.25 16.25 −
Video LDM [8] 1.51 0.08 0.12 − 0.98 1.51 4.20 2.65 −
Latent-VDM [1] 0.92 0.08 0.58 − − − 1.58 0.92 28.62
Latent-Shift [1] 0.88 0.08 0.58 − − − 1.53 0.88 23.40
LVDM [35] 0.96 0.08 0.12 − − − 1.16 1.04 21.23
SimDA (Ours) 0.88 0.08 0.12 − − − 1.08 0.025 11.20

noisy video latents. Specifically, for the Convolution block,
we inflate the 2D ResNet [34] block to a 3D block to ac-
commodate video inputs. Additionally, we incorporate a
lightweight Temporal Adapter module for temporal model-
ing. In the Attention block, we employ a latent-shift atten-
tion mechanism for spatial self-attention and introduce two
spatial adapter modules to facilitate the transfer of video in-
formation. Further details are presented in Sec. 3.3. During
inference, we employ DDIM [90] sampling to progressively
denoise the latent representation sampled from a standard
Gaussian distribution. Finally, we utilize a pre-trained de-
coder D to reconstruct the video from the denoised latent.

3.3. Modeling

In this section, we describe the proposed Spatial Adapter,
Temporal Adapter, and Latent-Shift Attention in detail,
which are the key components of our model.
Spatial Adapter The large-scale text-image pre-trained T2I
model exhibits significant transferability, as evidenced by

its remarkable accomplishments in tasks such as personal-
ized T2I generation [65, 81] and image editing [37, 131].
Consequently, we believe that employing a lightweight fine-
tuning approach can effectively harness spatial informa-
tion in the realm of video generation. Inspired by effi-
cient fine-tuning techniques in NLP [45, 54] and vision
tasks [13, 124], we adopt adapters due to their simplicity.

In our T2V framework, we design two types of spa-
tial adapters (i.e., Attention Adapter and FFN Adapter) for
transferring video spatial information. As shown in the bot-
tom right of Fig. 2, both adapters employ a bottleneck archi-
tecture consisting of two fully connected (FC) layers with
an intermediate activation layer. The first FC layer maps
the input to a lower-dimensional space, while the second
FC layer maps it back to the original dimensional. For-
mally, for an input feature matrix X ∈ RN×d, the spatial
adapter could be written as:

S-Adapter(X) = X+Wup(GELU(Wdown(X))), (4)
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Figure 3. The overview of Temporal Latent-shift Attention mod-
ule. It is noted that the Latent-shift attention is performed on latent
space, but the visualization overview is shown on the image level
for clear presentation.

where Wup and Wdown are the learnable matrix with di-
mension d× l and l× d, l < d. To preserve the structure of
the original network and the pretrained weights, we initial-
ize the second FC layer Wdown with zeros. To adapt to the
spatial features of videos, we incorporate the adapter after
the latent-shift attention layer. Additionally, we observe that
adding an adapter to the feed-forward network (FFN) also
helps the network transfer spatial information to videos. We
will provide examples in Sec. 4.4. During training, all lay-
ers of the attention block are fixed, and only the adapters are
updated.
Temporal Adapter While the spatial adapter effectively
transfers spatial information to video, modeling temporal
information is crucial for T2V generation tasks. Previous
approaches incorporate temporal convolution [11, 85, 86]
or temporal attention [8, 88, 104] modules to capture tem-
poral relationships. Although these modules are effective in
modeling temporal dynamics, they often come with a huge
number of parameters and high-dimensional input feature,
resulting in significant computational and training costs.

To address this issue, we utilize the temporal adapter
module for temporal modeling as [69, 128]. In contrast to
conventional spatial adapter modules, the temporal adapter
module employs depth-wise 3D convolution instead of an
intermediate activation layer [36]. The temporal adapter
could be formally written as:

T-Adapter(X) = X+Wup(3D-Conv(Wdown(X))).
(5)

By utilizing 3D convolutions in lower-dimensional input,
our approach significantly alleviates the complexity of tem-
poral modeling. As a result, our method achieves efficient
memory usage during training and exhibits the fastest infer-
ence speed among competitive approaches, as demonstrated
in Table 1.
Temporal Latent-Shift Attention In the original T2I
framework, the attention block of the U-Net only performs
self-attention for individual frames, neglecting the informa-
tion from other frames. While joint-space-time attention, as
demonstrated in [2, 7, 96, 114], can effectively model tem-

DDIM
inversion Denoising

a jeep car is 
moving on the road

a Porsche sports car is
moving on the road

Figure 4. During inference, we sample a novel video from the
latent noise inverted from the input video, guided by an edited
prompt (e.g., “a Porsche sports car is moving on the road”).

poral dependencies, it introduces a quadratic complexity in
terms of attention calculation. For a video with L frames
and N tokens, the complexity of global spatial-temporal at-
tention becomes O(L2N2). To address this issue, we pro-
pose a latent-shift attention module as shown in Fig. 3. In
addition to considering tokens within the current frame, we
further conduct a patch-level shifting operation along the
temporal dimension to shift tokens from the preceding T
frames onto the current frame, thereby composing a new
latent feature frame. We concatenate the latent feature of
the current frame with the temporally shifted latent feature,
forming the keys and values for attention calculation. The
latent-shift attention can be formally written as:

Q = Wq(xzi), (6)

K = Wk[xzi ,xzshift
], (7)

V = Wv[xzi ,xzshift
], (8)

where xzi denotes the query frame and [·] means concate-
nate. This approach reduces the complexity of attention to
O(2LN2), significantly lowering the computational burden
compared to global attention. Moreover, it allows the model
to learn the relationships between adjacent frames, ensuring
better temporal consistency in video generation.

3.4. Super Resolution and Editing Models

Super Resolution (SR) Due to constraints of limited GPU
memory and the lack of high-resolution video-text datasets,
most existing methods [1, 8, 35], including ours, are only
able to generate images at a resolution of 256 × 256. To
overcome this limitation and generate higher-resolution out-
puts, we adopt a two-stage training approach similar to cas-
caded Diffusion Models [40]. In the first stage, we gener-
ate videos with a 256 × 256 resolution using our SimDA
methods. In the second stage, we employ an LDM up-
sampler [79] to enhance the resolution of the videos to
1024×1024. We incorporate noise augmentation and noise
level conditioning, and train a super-resolution model using
the following equation:

Ex,ϵ∼N (0,I),t[||ϵ− ϵθ([xt,xlow], c, t)||22], (9)

where xlow is the low-resolution video, we concatenate it
with xt frame by frame following Video LDM [8]. The ar-
chitecture of SR is similar to T2V model in the first stage,
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Figure 5. Text-to-Video generation comparison on the user study evaluation set.

Table 2. Text-to-Video generation comparison on MSR-VTT [118] dataset. We report the Fréchet Video Distance (FVD) scores and
CLIPSIM scores.

Method Training Data Resolution Zero-shot Params(B) FVD(↓) CLIPSIM(↑)

GODIVA [108] MSR-VTT 128x128 No - - 0.2402
NÜWA [109] MSR-VTT 128x128 No 0.87 - 0.2439

Make-A-Video [88] WebVid-10M + HD-VILA-10M 256x256 Yes 9.72 - 0.3049
VideoFactory [104] WebVid-10M + HD-VG-130M 256x256 Yes 2.04 - 0.3005

LVDM [35] WebVid-2M 256x256 Yes 1.16 742 0.2381
MMVG [25] WebVid-2.5M 256x256 Yes - - 0.2644

CogVideo [42] WebVid-5.4M 256x256 Yes 15.5 1294 0.2631
ED-T2V [57] WebVid-10M 256x256 Yes 1.30 - 0.2763

MagicVideo [136] WebVid-10M 256x256 Yes - 998 -
Video-LDM [8] WebVid-10M 256x256 Yes 4.20 - 0.2929

VideoComposer [105] WebVid-10M 256x256 Yes 1.85 580 0.2932
Latent-Shift [1] WebVid-10M 256x256 Yes 1.53 - 0.2773

VideoFusion [61] WebVid-10M 256x256 Yes 1.83 581 0.2795

SimDA (Ours) WebVid-10M 256x256 Yes 1.08 456 0.2945

we change the original U-Net block by adding Spatial and
Temporal Adapters as described in Sec. 3.3 and only fine-
tune the newly added modules.

Text-guided Video Editing In addition to performing T2V
generation, our method could turn into one-shot tuning for
text-guided video editing following Tune-A-Video [110].
The training pipeline of editing model is the same as our
T2V method. However, for the inference stage, we adopt
the DDIM inversion latents instead of random noisy latents
together with edited prompt for novel video generation as
shown in Fig. 4. By doing so, the pixel-level information
control could remain in the inversion latent as demonstrated
in [110]. Owing to the light-weight module and efficient
pipeline of our method, SimDA needs fewer training steps
(200 steps compared to 500 steps) and thus the training time
and inference time is much faster than Tune-A-Video [110].

4. Experiments

4.1. Implementation Details

Our T2V method is composed of two-stage models. The
first model predicts video frames with a resolution 256×256
(with a latent size of 32× 32), while the second model is a
4× upsampler, producing a resolution of 1024× 1024. We
train the general T2V model on WebVid-10M [5] dataset
following [1, 8]. We follow previous methods [1, 104, 136]
to report the CLIP score [75] and FVD (Fréchet Video Dis-
tance) score [99] on MSR-VTT [118]. Besides, we com-
pare the FVD score and CLIP score on the evaluation set
of WebVid [5] as in VideoFactory [104]. We also com-
pare the parameter scale and inference speed of our method
with some open-sourced methods [1, 35, 61]. Finally, we
also provide a user study between our work and VDM [41],
Latent-shift [1], Video-Fusion [61] and LVDM [35].
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4.2. Evaluation on Text-to-Video Generation

To fully evaluate the generation performance of our SimDA,
we conduct automatic evaluations on two distinct datasets:
WebVid [5] (Val), which shares the same domain as the
training data and MSR-VTT [118] in a zero-shot setting.
Evaluation on MSR-VTT As shown in Table 2, we evalu-
ate CLIPSIM [75] and FVD [99] on the widely used video
generation benchmarks, MSR-VTT [118]. We randomly
select one text prompt per example from MSR-VTT [118]
and generate a total of 2,990 videos. Despite being a zero-
shot setting, our method achieves an average CLIPSIM of
0.2945 that surpasses most of the competitors, indicating
a strong semantic alignment between the generated videos
and the input text. Though Make-A-Video [88] and Vide-
oFactory [104] offer higher CLIP scores, they utilize addi-
tional large-scale HD-VILA [119] datasets for training.
Evaluation on WebVid As shown in Table 3, we create a
validation set consisting of 4,476 randomly extracted text-
video pairs from WebVid-10M. These pairs are not included
in the training data following [104]. We conduct evalua-
tions on this validation set and obtain impressive results.
Our method achieves an FVD score of 363.98 and a CLIP-
SIM score of 0.3054. These scores are significantly higher
than those achieved by existing methods such as Mod-
elScope [103] and LVDM [35]. Besides, our method shows
competitive results compared to VideoFactory [104] which
is trained with much larger datasets. These results clearly
demonstrate the superiority of our approach.
Human Evaluation In order to address the limitations of
existing metrics and assess the performance of our SimDA
from a human perspective, we conduct an extensive user
study. The study involves comparing our method with
four state-of-the-art methods. Specifically, we select two
publicly available models, namely ModelScope [103] and
LVDM [35]. Additionally, we consider two methods with
similar scale parameters, VDM [41] and Latent-shift [1],
which only showcase some samples on their websites.

For each case, participants were provided with two video
samples, one is generated by our method and the other is
from a competitor. They were then asked to compare the
two samples in terms of video quality and text-video simi-
larity. To ensure fairness in the comparisons, we also report
the ratio of network parameters compared to ours. The re-
sults, along with the parameter ratios, are presented in Ta-
ble 4. The user study approach allows us to gain in-depth
insights into the subjective evaluation of our method.
Qualitative Results The visualization of T2V generation
results are shown in Fig. 1(a). Besides, we show the com-
parison results in Fig. 5. More examples can be found in
our supplementary material.
Parameter Size and Inference Speed We conduct a com-
parison of the number of parameters and inference speed,

Table 3. Text-to-video generation on the validation set of Web-
Vid [5]. We report the FVD and CLIPSIM scores.

Method Params(B) FVD(↓) CLIPSIM(↑)

LVDM [35] 1.16 455.53 0.2751
ModelScope [103] 1.83 414.11 0.3000
VideoFactory [104] 2.04 292.35 0.3070

SimDA (Ours) 1.08 363.98 0.3054

Table 4. User preference is depicted as a percentage indicating the
proportion of individuals favoring our method over the compared
approach. Param Ratio means the ratio of the network parameter
v.s. Ours.

Sample Method Param Ratio Quality Faithfulness

Open
Website

VDM [41] 0.83× 85.2% 81.4%

Latent-Shift [1] 1.41× 81.5% 79.3%

Pretrained
Model

ModelScope [103] 1.69× 78.3% 79.5%

LVDM [35] 1.07× 83.4% 84.7%

and the results are presented in Table 1. For the speed
comparison, we select CogVideo [42], Latent-Shift [1] and
LVDM [35]. SimDA, on the other hand, stands out as it is
significantly smaller than previous works and exhibits faster
inference speed compared to other methods. Despite having
fewer parameters, SimDA achieves superior performance
in various benchmarks when compared to other methods.
This validation further highlights our advantages in terms
of model efficiency and performance.

4.3. Evaluation on Text-guided Video Editing

Following the methodology of previous studies [110], we
employ CLIP score [75] and a user study to evaluate the
performance of different methods in terms of frame consis-
tency and textual alignment.

First, we calculate the CLIP image embedding for all
frames in the edited videos to measure frame consistency.
The average cosine similarity between pairs of video frames
is reported. Additionally, to assess textual faithfulness, we
compute the average CLIP score between frames of the out-
put videos and the corresponding edited prompts. A to-
tal of 15 videos from the dataset [72] were selected and
edited based on object, background and style, resulting in
75 edited videos for each model. The average results, pre-
sented in Table 5, highlight our method’s exceptional ability
to achieve semantic alignment.

Secondly, we conduct a user study involving videos and
text prompts. Participants were asked to vote for the edited
videos that exhibited the best temporal consistency and
those most accurately matched the textual description. Ta-
ble 5 demonstrates that our method, SimDA, receives the
highest number of votes in both aspects, indicating superior
editing quality and a strong preference from users in practi-
cal scenarios.
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Table 5. Quantitative comparison with evaluated baseline [110]. The “Training” refers to the process of optimization, and “Memory” refers
to the GPU memory.

Method Frame consistency Textual alignment Runtime [min] Memory [Gib] Params [Mb]
CLIP Score↑ User Vote↑ CLIP Score↑ User Vote↑ Training↓ Inference↓ Training↓ Inference↓ Tuned↓

Tune-A-Video [110] 94.1 31.2% 31.8 39.5% 9.3 0.8 31.3 11.4 74.4
SimDA(Ours) 94.9 68.8% 31.9 60.5% 2.5 0.4 28.6 8.8 24.9

w/o TA

w/o LSA

w/o FA

Ours

w/o AA

w/o SA

Mixer in a bowl to beat the milk and egg 
on a black table, slow motion.

Figure 6. Ablation of T2V generation results. TA, SA, AA, FA
and LSA refer to Temporal Adapter, Spatial Adapter, Attention
Adapter, FFN Adapter and Latent-Shift Attention.

4.4. Ablation Study

Here we discuss the effect of each module. We perform ex-
periments on 1K samples from the WebVid validation set.

Effect of Temporal Adapter Temporal modeling is a cru-
cial component of video generation. In our video editing
task, when compared to methods that rely on temporal at-
tention modeling like Tune-A-Video [110], we observe that
our temporal adapter is more lightweight and achieves supe-
rior editing results as in Table 5. Additionally, we conduct
ablation experiments, as shown in Table 6 and Fig. 6, where
the lack of Temporal Adapter (TA) results in significantly
higher FVD and chaotic temporal sequences in the gener-
ated videos.

Effect of Spatial Adapter We also validate the effective-
ness of the Spatial Adapter (SA) in transferring spatial
knowledge of videos. As shown in Table 6, without the At-
tention Adapter (AA) and FFN Adapter (FA), the model’s

Table 6. Ablation study on different modules. We report the
FVD [99] and CLIPSIM [75] on 1K samples from the validation
set of WebVid-10M [5]. TA, SA, AA, FA and LSA represent Tem-
poral Adapter, Spatial Adapter, Attention Adapter, FFN Adapter
and Latent-shift Attention, respectively.

TA AA FA LSA FVD(↓) CLIPSIM(↑)

w/o TA ✓ ✓ ✓ 1470.1 0.2629
w/o SA ✓ ✓ 811.3 0.2822
w/o AA ✓ ✓ ✓ 764.8 0.2851
w/o FA ✓ ✓ ✓ 623.7 0.2962

w/o LSA ✓ ✓ ✓ 618.2 0.3011

Ours ✓ ✓ ✓ ✓ 530.2 0.3034

FVD and CLIPSIM scores for generated videos will be-
come worse. Additionally, it can be observed from the
Fig. 6 that the model exhibits misconceptions in understand-
ing the text prompt without the spatial adapter.

Effect of Latent Shift Attention To investigate the impact
of Latent-shift Attention (LSA), we replace it with regular
single-frame spatial attention. Besides observing a decline
in FVD and text alignment CLIPSIM scores in Table 6, we
also test the CLIPSIM of each frame within the same video,
which decreased from 96.4 to 94.5. This demonstrates that
our LSA module can effectively model the relationship of
adjacent frames, leading to more consistent videos.

5. Conclusion

In this paper, we proposed SimDA, a parameter-efficient
video diffusion model for text-guided video generation and
editing. With the proposed light-weight spatial and tempo-
ral adapters, our method not only transferred from power-
ful spatial information but also modeled temporal relation-
ships with the least new parameters. The experimental re-
sults demonstrated that our approach has the fastest training
and inference speed while maintaining competitive gener-
ation and editing results. Our work is the first parameter-
efficient video diffusion method serving as an efficient T2V
fine-tuning baseline and paved the way for future research.
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