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Abstract
For the essential operation, namely inner product (IP)

as widely adopted in classic computing e.g. matrix multi-

plication, its quantum counterpart: quantum inner product

(QIP), has also been recently theoretically explored with a

verifiable lower complexity on quantum computers. How-

ever, it remains unclear for the embodiment of the quantum

circuits (QC) for QIP, let alone a (thorough) evaluation of

the QIP circuits, especially in a practical context in the

NISQ era by applying QIP to ML via hybrid quantum-classic

pipelines. In this paper, we carefully design the QIP circuits

from scratch, whose complexity is in accordance with the

theoretical complexity. To make the simulation tractable on

classic computers, especially when it is integrated in the

gradient-based hybrid ML pipelines, we further devise a

highly-efficient simulation scheme by directly simulates the

output state. Experiments show that the scheme acceler-

ates the simulation for more than 68k times compared with

the previous circuit simulator. This allows our empirical

evaluation on typical machine learning tasks, ranging from

supervised and self-supervised learning via neural nets, to

K-Means clustering. The results show that the calculation

error brought by typical quantum mechanisms would incur

in general little influence on the final numerical results given

sufficient qubits. However, certain tasks e.g. ranking in

K-Means could be more sensitive to quantum noise.

1. Introduction
Quantum algorithms have been actively studied to solve
some classical problems with theoretically much lower com-
plexity compared with their classic counterparts, e.g. Quan-
tum SVM [27], HHL algorithm for linear equations [12],
quantum Fourier transform [8] etc. The power of quantum
computing (QC) comes from the inherent quantum paral-
lelism associated with the superposition principle [7].
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Figure 1. a/b) Inner product computing in classic and quantum
ways. c) Hybrid quantum-classical computing scheme with QIP.

Despite the theoretical advantages, the pure quantum
methods still face challenges to be put into practical use due
to the limited number of available qubits and capability in
dealing with deep quantum circuits of the NISQ computers.
Compared with the pure quantum methods, hybrid quantum-
classical algorithms are regarded as well-suited for execution
on NISQ devices by combining quantum computers with
classical computers [10]. Researchers design quantum cir-
cuits as the substitutions of specific classical parts to gain
super high efficiency, e.g. Hardamad transform to replace the
classical Conv2D layer [25], or to achieve specific functions
that are computationally impractical on classical computers,
e.g. feature extraction in quantum Hilbert space [20, 31].

Seeing the essential role of inner product (IP) in classic
machine learning (ML) and their quantum counterparts QIP
in QML (as will be discussed in detail), this paper studies
several basic yet less-studied problems regarding QIP. On the
one hand, we develop the detailed embodiment of quantum
circuits of QIP with its behavior on quantum computers.
On the other hand, we develop highly-efficient simulation
scheme for QIP and empirically evaluate the effect of noise
brought by quantum mechanisms, by integrating simulated
QIP into popular ML methods on classic computers.

As aforementioned, IP is a fundamental operator in mod-
ern ML methods. From vector inner product and matrix
multiplication, to distance measurement in clustering algo-
rithms, to linear layers of deep neural networks, a large
number of IP operations are involved. The acceleration of
the IP operation will greatly improve the running speed of
classical ML algorithms that contain a lot of IP operations.
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As illustrated in Fig. 1 a), on classical machines, the precise
result the IP of vectors x and y is obtained by adding up
the product of vector elements xi and yi in a deterministic
way without any probabilistic noise. Its complexity is O(d)
(d: the dimension of input vectors). In contrast, QC uses a
‘quantum circuit’ (see Appendix G for preliminaries) to run
a quantum algorithm. As shown in Fig. 1 b), the circuit is
defined by a unitary U(x,y), whose input is the quantum
basis state |0 . . . 0i and the output is also a quantum state.
By measuring the output quantum state (and processing the
results on a classic computer), we can obtain an approximate
result of the IP (̂x,y) whose error level is dependent on the
number of used qubits and also influenced by the inherent
noise of NISQ computers. By QC, the time complexity of
IP computation can be much reduced.

Most efforts for QIP circuit design (see Sec. 2) focus
on the theoretical complexity side. Yet it is nontrivial to
develop a promising hybrid quantum-classical computing
scheme (Fig. 1 c) with the explicit embodiment of QIP

circuits for running on NISQ machines, which is still absent
in literature. This paper aims to design quantum circuits
U(x,y) that can run on quantum computers as a complete
solution, which can be readily integrated (as will be shown
in our paper) into existing ML algorithms via differentiable
gradient computing. We further show how our circuits can be
efficiently simulated on classic commodity computers which
allows to verify the correctness of the numerical QIP results
especially as a building block in different ML methods. The
contributions are in three folds as follows.

Circuit Design of QIP on Quantum Computers. We de-
sign the proposed quantum circuits to accommodate quantum
machines of different scales. From scratch, we present three
QIP circuits for 1-to-1, 1-to-N , and M -to-N IP computation
tasks respectively. The required numbers of qubits range
from 1 + t+ dlog de to 1 +MNt+ dlogMe+ dlogNe+
dlog de (see Table 2). Our methods are based on and en-
hance the Hadamard test and Quantum Phase Estimation
algorithms, with our mathematically proven lower complex-
ity than classical approaches, which is also in line with the
previous theoretical studies for QIP (see Sec. 2). We further
show its efficacy on quantum computers.

Efficient Simulation of QIP on Classic Computers.
Existing quantum simulation platforms (e.g. Qiskit [26],
PennyLane [3], etc.) on classic computers cannot simulate
our devised circuits due to their high complexity. Hence,
we develop an efficient simulation scheme to evaluate our
circuits. Our scheme is agnostic to the circuits, and directly
simulates the theoretical output quantum states produced
by the circuits and employs an efficient sampling strategy
to reduce the original probability calculation complexity
from O(22t) to close to O(2t), while avoiding the memory
overhead of O(2t) (t: the number of qubits to store results).

Evaluating QIP in ML on Classic Computers.

Equipped with our high-efficient simulation schemes, we
evaluate the effectiveness of our methods by investigating
the influence (on both numerical calculation error and over-
all prediction performance) of applying the QIP operators in
various existing ML methods on classic computers for simu-
lation. Experiments empirically show how the QC-induced
errors affect different ML methods in different ways and in
general our techniques can be applicable to these ML mod-
els regarding the final overall prediction performance whose
decrease is small (see details in our experiments).

2. Related Works
Quantum Inner Product. In QC, the inner product with
a specific physical meaning of fidelity, between two quan-
tum states is typically computed by swap test [6] or modi-
fied Hadamard test [22]. These two ways involve quantum
circuits implemented on quantum devices and have been
adopted widely in quantum ML [21, 32]. Quantum phase
estimation (QPE) [24] or amplitude estimation [4] can be
used to readout the result of the inner product encoded into
the amplitude of the superposition state of the quantum cir-
cuits. [19, 33] employ the swap test and QPE as a part of the
quantum neuron. However, the 1-to-1 QIP computation by
the simple combination of the Hadamard test and QPE can
hardly meet the ubiquitous needs of batch-wise computing
of IP in ML models. Therefore, we propose to extend the
1-to-1 QIP circuit to 1-to-many and many-to-many cases to
fully utilize the power of quantum parallelism.
Quantum Matrix Multiplication (QMM). Matrix multi-
plication is a more general case of IP between a set of row
vectors and a set of column vectors. QMM which aims to
utilize quantum parallelism has been studied in the quan-
tum community in decades. [29] constructs explicit QC,
including row-column multipliers and the modulo N matrix
multiplier. But they fail to use superposition and parallelism
to enable the quantum advantages. [32] designs a quantum
hyper-parallel algorithm based on swap test. [28] devises
three quantum algorithms based on swap test, singular value
estimation, and HHL (quantum algorithm for linear systems
of equations). [18] proposes a binary quantum matrix mul-
tiplier that uses the basis state to store data, which means
that the algorithm requires no quantum tomography and
can obtain results in a few measurements. However, both
[29] and [18] only give solutions for matrices of integers,
limiting their application in more common float operations;
[32] and [28] store the computing results in the amplitude
of quantum states, which requires the use of quantum state
tomography [9] to convert the result to its classic form, re-
sulting in exponential measurement overheads; a complete,
explicit, and implementable quantum circuit for QMM is
still absent since previous works only give the theoretical
study by quantum linear algebra without a concrete solution.
Moreover, all these methods have no numerical experiments
nor practical applications in ML/DL methods due to the lack
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Table 1. Quantum matrix multiplication methods. Quantum speedup brought by the inherent quantum parallelism and no reliance on
tomography are important for practical use of QIP. V denotes the maximum value of the two matrices’ entries.

Methods Explicit
Circuit # Qubits Quantum

Speedup
Time Complexity of Computing XY

(X 2 RM⇥d, Y 2 Rd⇥N ) Data Type Obtain
Results

Experiments
Simulation Devices Applications

[29] !
(MN +M +N
+d)d log(V )

No O(MNd) Integer Measurement

No experiments[32] Partly N/A ! O(MN✏�2 log ⌘�1) (⌘: the accuracy) Float Tomography
[28] Not given ! O(kXkF kYkF kXYk�1

F ✏�1) Float Tomography
[18] ! N/A ! O(MN log d) Integer Measurement

Ours !
Referred to

Table 2 !
O(✏�1 logMNd) (M -to-N case in Theorem 3,

1-to-1 and 1-to-N cases referred to Theorem 1, 2) Float Measurement Circuit (slow, Sec. 3),
output state (fast, Sec. 4)

Quantum,
classical

Numerical comput-
ing, ML, DL

Table 2. Designed QIP circuits in three modes, where t is the
number of measuring qubits for each pair of the inner product; d is
the input dimension; M and N is the number of input.

Mode Number of required qubits Use case

1-to-1 1 + t+ dlog de vector inner product
1-to-N 1 +Nt+ dlogNe+ dlog de linear mapping
M -to-N 1 +MNt+ dlogNe+ dlogMe+ dlog de matrix multiplication

of an efficient way for simulation.
A detailed comparison of the quantum matrix multiplica-

tion methods is shown in Table 1. Our method manages to i)
build the concrete quantum circuit, ii) employ the parallelism
of quantum characteristics to achieve quantum speedup, iii)
encode results through quantum basis state with small mea-
surement overheads, and we further iv) propose an efficient
measurement simulation to perform numerous experiments
including ML tasks, v) lays a foundation for using quantum
matrix multiplication to accelerate classical ML tasks.

3. Principles and Circuit Design of QIP
Our QIP computing is conducted by a quantum circuit as a
sequence of quantum gates and measurements with initial-
ized quantum bits (qubits) as input. Readers are referred to
Appendix G for the preliminaries.

We devise three QIP circuits: 1-to-1, 1-to-N , and M -to-
N , to cope with different computing scenarios and different
scales of quantum hardware. These circuits approximate the
inner product by combining the two quantum algorithms,
Hadamard test and Quantum Phase Estimation (QPE): first,
load the classical data into a quantum state, and then trans-
form the fidelity of the quantum states (i.e. the inner product
of the classical data) into quantum phases by Hadamard test,
and finally estimate the phase of the quantum state through
QPE. The approximated inner product can be obtained from
the measured output quantum states of the circuits.
Notations. We first briefly introduce the notations: i denotes
the imaginary unit

p
�1, |·i denotes a quantum state, ⌦ is

the tensor product, bold lowercase letters x, y are vectors,
(·, ·) denotes the classical inner product of two vectors while
g(·, ·) denotes the quantum one, and normal capital letters
(e.g. U , E, D) represent unitaries.
Step-by-Step Circuit Construction from Special to Gen-
eral Cases. We use the following three theorems to present
the step-by-step circuit construction methodology for the
three cases. The requirements for the number of qubits for

these circuits are listed in Table 2. The detailed proofs are
put in Appendix H.
Theorem 1 (1-to-1 QIP Circuit (for vector inner product)).
There exists a quantum circuit U(x,y) computing the inner

product of two normalized vector x,y 2 Rd
with complexity

O( log d
✏ ) where ✏ is a given precision parameter.

Proof (A Sketch). We use different colors to mark qubits
with different roles. Blue is for loading data and Hadamard
test, and green is for the output phase by QPE.

Input = |0i⌦t|0i|0i⌦dlog de

E(x,y)��������!
Hardamard Test

ei✓|0i⌦t|w+i � e�i✓|0i⌦t|w�i

D(x,y)����!
QPE

ei✓|R+i|w+i � e�i✓|R�i|w�i,

(1)

where E(x,y) is a unitary as the ‘encoder’ transforming
classical data x and y to two orthogonal quantum states
|w+i and |w�i, and storing the IP in the phase ✓ =
arccos

�
� (x,y)

�
/2 2 [0, ⇡

2 ] by Hadamard test, D(x,y) is
a unitary as the ‘decoder’ that decodes phase ✓ as quantum
states |R±i. The IP in the phase ✓ can be recovered with
high probability by measurement in the computational basis
of the state |R+i = 1

2t
P2t�1

x=0

P2t�1
k=0 e�

2⇡ik
2t

(x�2t✓/⇡)|xi.
We define 2t✓/⇡ = a + 2t�/⇡ where a is an integer in
[0, 2t � 1]. Then the probability of measuring |R+i as

|ai is
��� 1
2t

P2t�1
k=0 e2ik�

���
2
. The two cases a = d2t✓/⇡e and

a = b2t✓/⇡c have the highest probabilities. ⇤
Theorem 2 (1-to-N (N � 2) QIP Circuit (for linear map-
ping)). There exists a quantum circuit computing inner prod-

ucts between a normalized vector x 2 Rd
and a set of N

normalized vectors {yi}N�1
i=0 , yi 2 Rd

with the time com-

plexity O( logNd
✏ ) (✏ is a given precision parameter).

Proof (A Sketch). We add an index register to the 1-to-1
QIP circuit to encode multiple vectors into quantum states.
It runs as follows with the index register marked in red:

Input = |0i⌦dlogNe|0i⌦Nt|0i|0i⌦dlog de

E(x,{yi})��������!
Hardamard Test

1
p
N

N�1X

i=0

|ii(ei✓i |0i⌦Nt|wi+i � e�i✓i |0i⌦Nt|wi�i)

D(x,{yi})�������!
QPE

1
p
N

N�1X

i=0

|ii(ei✓i |Ri+i|wi+i � e�i✓i |Ri�i|wi�i),

(2)
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where |Ri+i is defined as:

|Ri+i =
�
|+i ⌦ · · ·⌦ |+i| {z }

it terms

�
|ri+i

�
|+i ⌦ · · ·⌦ |+i| {z }

(N�i�1)t terms

�
, |+i

=
1p
2
|0i+ 1p

2
|1i.

(3)

We define |ri+i = 1
2t

P2t�1
x=0

P2t�1
k=0 e�

2⇡ik
2t

(x�2t✓i/⇡)|xi.
From |ri+i, the approximated inner product (̂x,yi) can be
recovered. The procedure is the same as Theorem 1. ⇤
Theorem 3 (M -to-N (M,N � 2) QIP Circuit (for matrix
multiplication)). There exists a quantum circuit computing

inner products between a set of M vectors {xi}M�1
i=0 2 Rd

and another set of N vectors {yj}N�1
j=0 2 Rd

with time

complexity O( logMNd
✏ ) (✏ is the precision parameter).

The core idea of Theorem 3 is to stack the 1-to-N QIP
circuits in a similar way as Theorem 2 by adding an index
register for vectors in {xi}M�1

i=0 . For page limit, we put the
detailed proof in Appendix H.4.
Remarks. In practical ML, the 1-to-1, 1-to-N , and M -to-
N QIP circuits can be used for vector inner product, linear
mapping, and matrix multiplication, respectively.

4. Efficient Simulation on Classic Computers
The simulation of the output states of our QIP circuits is
essential for verifying the performance of our method for
ML applications. However, simulating the circuits directly
on classical machines is infeasible due to the exponential
memory w.r.t. the number of qubits by existing quantum
simulation platforms (e.g. Qiskit [26], PennyLane [3]). This
limits the applicability of our QIP operators to ML models
in real-world scenarios. Based on the theorem proofs and
mathematical derivation in the previous section, we can ob-
tain the analytical expression of the output quantum states.
Therefore, we can simulate the output quantum states of the
circuits directly, bypassing the step of simulating the circuit
execution. In this way, we successfully integrate our QIP
simulation module into existing ML methods. We develop a
package torch_qip for efficient simulation of QIP. With
torch_qip, one can easily define a differentiable opera-
tor in Pytorch by using the simulated QIP operator, such as
quantum inner product, quantum matrix multiplication, etc.
4.1. Simulation of the Output Quantum States
Sec. 3 presents the output quantum states of different circuits
by three theorems. As illustrated in Fig. 2 a), the workflow
of the three circuits consists of two steps: first, ‘encoding’
the input vectors and their inner products into an entangled
quantum state through an entangling layer; and second, ‘de-
coding’ the phase of the quantum state as a measurable out-
put quantum state through the QPE layer. In the simulation
process as depicted in Fig. 2 b), we can directly compute
the output quantum state distribution after QPE and sample
the measured basis quantum state from the distribution to

...

quantum circuit

a) Quantum circuits for QIP

Entangling layer 

      

QPE layer 

b) Fast simulation of the circuits for QIP

...

2) sample

accurate
inner product approximate

inner product

distribution of
output quantum states

1) QPEphase
estimated

phase

encoder decoder

Figure 2. In a) we summarize the proposed three quantum circuits
in a common framework, which is similar to the encoder-decoder
architecture in neural networks. In b) we show a fast simulation
scheme for the proposed quantum circuits.

Algorithm 1 Simulation of QIP on a classic computer.
1: Input: vectors x, y, # of measuring qubits t, sampling times r.
2: Compute the accurate inner product (x,y), real quantum phase

✓ = arccos
�
� (x,y)

�
/2;

3: ileft = floor(2t✓/⇡), iright = ceil(2t✓/⇡)%2t,
prob_trace = dict(), ihits = list();

4: for r_ = 1, 2, · · · , r do
5: Generate a random number p from Uniform(0, 1);
6: for k = 0, 1, · · · , 2t � 1 do
7: if ileft not in prob_trace do pleft =

compute_prob(ileft), prob_trace[ileft] = pleft;
8: else do pleft = prob_trace[ileft];
9: p = p� pleft; if p < 0, ihit = ileft, break; I The

measured basis state has been hit
10: For iright and pright, do the same as the above line 7-9;
11: ileft = (ileft + 2t � 1)%2t, iright = (iright + 1)%2t;

I Search for other basis states
12: end for
13: ihits.append(ihit);
14: end for
15: (I) OUTPUT-AVG: (̂x,y) = avg

⇣
� cos(2⇡i/2t) for all

i in ihits
⌘

16: (II) OUTPUT-MODE: select the mode number from ihits as
iout, (̂x,y) = � cos(2⇡iout/2

t);
17: return (̂x,y); I The approximated inner product by quantum
function compute_prob(i):

1: Complex number x = 0 + 0i;
2: for k = 0, 1, · · · , 2t � 1 do x+ = exp

�
2⇡ik(i/2t + ✓/⇡)

�

end for
3: return xx/2t+1 I x is the conjugate of x

simulate the output of the entire quantum circuit. Thus, we
simulate the output of the quantum circuit directly without
simulating the operation of the quantum circuit.

The simulation method shown in Fig. 2 b) still faces the
challenge of complexity. We denote the number of measure-
ment qubits as t (referred to in the quantum algorithm in

26165



Sec. 3). The total number of computational basis states is
2t, and for each state calculating the probability consumes
O(2t) time complexity. Therefore, O(22t) complexity in
total is required to obtain the probabilities of all basis states.
In Algorithm 1, we introduce two techniques to reduce the
complexity of obtaining the basis state as the result of mea-
surement from O(22t) to close to O(2t):
• Quantum state search (QSS). We start from the basis

states with the highest probabilities, and stop once hit.
In Algorithm 1, we initialize ileft and iright as the two
basis states with the highest probability (line 3), and then
calculate the states with lower probability step by step
(line 11). We stop calculating the probabilities of the basis
states once the basis state is hit (line 9). As the initial
probabilities pleft and pright when k = 0 is usually very
high, the entire process of calculating probabilities of basis
states is very likely to stop at k = 0, saving much time
from calculating the basis states with lower probabilities.

• Reuse of calculation results. In quantum computing,
the output basis state of a circuit is often measured mul-
tiple times to obtain precise results. In the simulation,
to avoid recalculating the probability of the ground state
that has already been calculated, we reuse the results in
previous sampling iterations that are stored in the vari-
able prob_trace. In this way, multiple sampling iterations
won’t linearly increase the running time of the simulation.

Parallelization. Note that the simulation of QIP between
different vector pairs are independent. We parallelize Algo-
rithm 1 for a batch of QIP simulation tasks (e.g. in M -to-N
QIP there are totally MN simulation tasks) for speedup.
4.2. Output Inner Products From Quantum States
After we obtain the output basis quantum state of the cir-
cuits, the next step is to convert the quantum states into
classical data, that is, the calculated inner product. As shown
in Algorithm 1, we store the quantum states obtained by
multiple times of sampling in ihits, where the quantum state
corresponding to each element i 2 ihits is i’s binary repre-
sentation |i0i1 · · · it�1i s.t. i = i0+2i1+· · ·+2t�1it�1. For
each measured basis state |ii, the corresponding computed
inner product can be obtained by (̂x,y) = � cos(2⇡i/2t).
Given a list of quantum states ihits, we define two strategies
for the final computed inner product, i.e. i) OUTPUT-AVG
which outputs the average inner products, and ii) OUTPUT-
MODE which outputs the mode number of the inner products,
as shown by line 15-16 in Algorithm 1. OUTPUT-AVG yields
more accurate results for lower t and OUTPUT-MODE the
opposite, as will be shown in the experiments.
4.3. Enabling Automatic Differentiation
The measurement process of the quantum state appears to
be non-differentiable, which hinders the application of quan-
tum applicability to most ML methods that rely on gradient
optimization. To make the QIP operator differentiable, we
adopt a simple solution: During the forward propagation, we

substitute the result of the classical computing with the result
of the quantum computing, and this result is used for the
subsequent differentiable calculation; during the backward
propagation, we obtain the gradient by applying the chain
rule as in classical approaches.

We give an example of a differentiable quantum ma-
trix multiplication operator in Pytorch with torch_qip in
Fig. 12 (Appendix I), where torch_qip.qip is an opera-
tor developed according to Algorithm 1. torch_qip.qip
takes exact classical inner products as input and returns
the approximated quantum inner products. We also pro-
vide other differentiable quantum operators within the
torch_qip package, such as quantum inner product, batch
quantum matrix multiplication, quantum linear layer, and so
on, which can replace their classical counterparts.

5. Experiments
Experiments include: i) (Sec. 5.1) Direct studies of the
simulated QIP operator, including its visualization, accuracy,
and efficiency. ii) (Sec. 5.2) Indirect studies in various
ML scenarios to examine the impact of errors caused by
the quantum scheme. All experiments of simulations run
on a machine with Intel(R) Core(TM) i9 CPU @ 2.90GHz
and 128GB memory. The used quantum computer is IBM
Brisbane with 127 available qubits. Detailed settings of the
ML/DL methods, tasks, and metrics are in Appendix J.
5.1. Evaluations on the QIP Core
5.1.1 Evaluation on the Circuit Simulator (with qiskit)

and Quantum Machine
We evaluate our QCs with both classic simulators imple-
mented with qiskit and IBM quantum cloud (Brisbane). Due
to memory limitation, we can only run the 1-to-1 QIP circuit
on the cloud with input of small dimensions d = 2, 4, 8 and
a small number of qubits (t = 4). We run each experiment
with 5 pairs of normalized random vectors as the data. We
compare the error level of the simulator and Brisbane in
Table 3. Results show that though the quantum machine
yields good results sometimes, the error and variance are
still relatively high to the results by our classic simulator.
It also suggests that the current quantum computers (IBM
Bristane) may not be fully ready for QIP applications.

5.1.2 Evaluation on the Proposed State Simulator
Our major experiments are performed by simulation on CPU.
Visualization. We first study the output of QIP and the
discrepancies between classic and quantum inner products.
We show the output values with different numbers of qubits
t for QPE output registers in Fig. 3. In the top, QIP-Avg
is computed by the weighted average of all possible output
values according to their probabilities, QIP-Mode is obtained
by selecting the output value with the highest probability, and
the classic computation results are identical to the ground-
truth. QIP-Avg and QIP-Mode can also be viewed as the
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Figure 3. Top figures: x-axis represents the ground-truth of inner products, and the y-axis is the calculation results by sufficiently large
times of measurements. Each figure shows the probability distribution of the output quantum basis states for each ground-truth inner product
value. The bottom six figures: x-axis denotes the basis quantum states, and y-axis is the probabilities of quantum states being measured.

Table 3. The error level comparison between the QIP results of the classical circuit simulator and quantum machine.
d = 2 d = 4 d = 8

Circuit Simulator IBM Brisban Circuit Simulator IBM Brisban Circuit Simulator IBM Brisban

MSE # 0.0066 ± 0.0098 0.0990 ± 0.1835 0.0060 ± 0.0068 0.1183 ± 0.1739 0.0048 ± 0.0044 0.0387 ± 0.0399
MAE # 0.0560 ± 0.0586 0.1800 ± 0.2580 0.0680 ± 0.0366 0.2705 ± 0.2126 0.0584 ± 0.0369 0.1633 ± 0.1095

output of OUTPUT-AVG and OUTPUT-MODE in Algorithm
1 with a sufficiently large number of samples. We highlight
some points that produce either the most accurate or most
ambiguous results in Fig. 3 a) - c), and plot the probability
distribution of the quantum states of these points below the
corresponding figures, as shown by the bottom six figures.

Analysis. i) As compared between Fig. 3 a) - c), gener-
ally, the increase in the number of qubits t makes the QIP
results approach the classical solution (ground truth – GT)
thus improving the accuracy. With about t = 8 qubits, the
results by QIP are almost as accurate as GT. ii) QIP-Avg
and QIP-Mode show different output behaviors: QIP-Avg
produces continuous values, while QIP-Mode produces dis-
crete ones. This implies that QIP-Mode is not suitable for
tasks that require precise output e.g., when sorting the inner
products in K-means. iii) The bottom six plots show that
the probabilities of the output basis states are often concen-
trated in one (Fig. 1 a/b/c.1)) or two quantum states (Fig.
1 a/b/c.2)) that yield the closest results to the ground-truth
value. This implies a low probability of deviation from the
ground truth and allows the solution accuracy to be enhanced
by multiple measurements. iv) By comparing Fig. 1 a/b/c.1)
with a/b/c.2), we find that the accuracy of QIP computa-
tion depends on the inner product values. For a value that
matches a certain quantum state, the output of QIP is almost
deterministic and very accurate. For example, in Fig. 1 a.1),

(x,y) = 0 corresponds to the state |1i and the probability of
measuring |1i as the output basis state is almost 1.
How sampling times r and number of qubits t influ-
ence the computing error. We generate 100K instances
of inner products from the uniform distribution (x,y) ⇠
Uniform(�1, 1) as the dataset D, and simulate QIP by
Algorithm 1. For a ground-truth (x,y) and the computed
QIP (̂x,y), we use the mean squared error (MSE) and the
mean absolute error (MAE) as the metrics (see Appendix
J.1 for definitions). We range the initial random seed from
0 to 9, and report the mean and standard deviation of the
error of QIP in Table 4. Analysis. i) Both increasing num-
ber of qubits t and the sampling times r can improve the
calculation accuracy and narrow the gap with the ground
truth. ii) When the number of qubits t is low, the result of the
OUTPUT-AVG strategy is more accurate. Due to the small
number of basis quantum states, the calculated inner prod-
ucts by basis quantum states can be very sparse, therefore,
the OUTPUT-MODE strategy is at a disadvantage. iii) When
the number of qubits t is relatively high, the OUTPUT-MODE
strategy has a greater advantage. Because there are a big
number of basis quantum states, for each ground-truth inner
product there are always one or two quantum states that can
yield an inner product very close to the ground truth. The
OUTPUT-MODE strategy is very likely to select this ‘right’
quantum state. However, the OUTPUT-AVG strategy may
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Table 4. Error of QIP on a randomly generated dataset of 100k instances. Recall that all the experiments in this paper are performed on
a classic computer for simulation hence our experiments mainly check the correctness of our approach instead of the actual speedup.

number of qubits t=2 t=4 t=6 t=8

r MSE # MAE # MSE # MAE # MSE # MAE # MSE # MAE #

A
vg

1 0.2665±0.0027 0.3830±0.0014 0.0624±0.0005 0.1356±0.0003 0.0156±0.0003 0.0448±0.0003 0.0038±0.0002 0.0138±0.0002
3 0.1396±0.0003 0.2858±0.0003 0.0232±0.0001 0.0949±0.0002 0.0053±0.0001 0.0449±0.0003 0.0013±0.0000 0.0110±0.0001
5 0.1141±0.0006 0.2661±0.0007 0.0152±0.0001 0.0816±0.0003 0.0033±0.0000 0.0291±0.0001 0.0008±0.0000 0.0099±0.0001
7 0.1034±0.0005 0.2588±0.0006 0.0118±0.0001 0.0743±0.0002 0.0024±0.0000 0.0268±0.0001 0.0006±0.0000 0.0092±0.0001

M
od

e

1 0.2665±0.0014 0.3830±0.0010 0.0626±0.0010 0.1359±0.0008 0.0157±0.0004 0.0449±0.0003 0.0038±0.0002 0.0138±0.0001
3 0.2032±0.0017 0.3419±0.0011 0.0364±0.0005 0.1074±0.0004 0.0080±0.0003 0.0322±0.0002 0.0019±0.0001 0.0094±0.0001
5 0.1616±0.0010 0.3174±0.0006 0.0141±0.0002 0.0856±0.0002 0.0015±0.0001 0.0220±0.0001 0.0002±0.0000 0.0056±0.0000
7 0.1462±0.0004 0.3076±0.0004 0.0108±0.0001 0.0814±0.0001 0.0007±0.0000 0.0205±0.0000 0.0000±0.0000 0.0051±0.0000

Table 5. Running time for 10k rounds of matrix multiplication
of random matrices A, B and the gradient backward propagation.
Numbers in parentheses indicate speedup over the one w/o QSS.

with QSS without QSS

t=2 t=4 t=6 t=8 t=2 t=4 t=6 t=8

r=1 3.46 s (0.99x) 3.56 s (1.57x) 4.74 s (9.45x) 16.20 s (39.71x) 3.44 s 5.60 s 44.86 s 643.43 s
r=3 3.58 s (1.02x) 3.86 s (1.51x) 6.52 s (7.00x) 27.25 s (23.16x) 3.64 s 5.79 s 45.65 s 631.02 s
r=5 3.72 s (1.01x) 4.04 s (1.52x) 7.71 s (5.92x) 34.63 s (17.93x) 3.74 s 6.15 s 45.61 s 620.88 s
r=7 3.82 s (1.00x) 4.27 s (1.41x) 8.68 s (5.22x) 41.03 s (14.75x) 3.81 s 6.01 s 45.33 s 605.24 s

introduce the inner products obtained by ‘wrong’ quantum
states, thus bringing more noise and losing some accuracy.
Efficiency study to demonstrate the significance of the
proposed QSS algorithm. In Sec. 4.1, we have proposed
to simulate output basis quantum states by introducing the
quantum state search (QSS) algorithm, reusing the calcu-
lation results, and parallelizing the process. Among them,
the QSS algorithm substantially reduces the computational
complexity. Here we investigate the speedup brought by the
QSS algorithm by comparing the running time of different
scenarios with and without QSS. Concretely, we conduct 10k
iterations of forward and backward propagation for the multi-
plication of two matrices A 2 R16⇥128 and B 2 R128⇥16 of
random values, by the code implemented in Fig. 12. We use
the Frobenius norm of AB as the loss, and OUTPUT-MODE
as the default output strategy. The running time is recorded
in Table 5. Analysis. i) By comparing the running time
of different qubit numbers t, the running time of the cases
without QSS increases with t much faster than that with QSS.
This allows us to simulate the results of higher qubit number
t in a reasonable time. ii) By comparing the running time
of different sampling numbers r, it shows that whether to
use QSS or not, increasing the number of sampling times
will not incur a notable increase in the algorithm running
time. This benefit is attributed to the reuse of the calculation
results of the quantum state probabilities in simulation.
Comparison with the circuit simulator. We run 10 pairs
of normalized random vectors of variant dimension d with
the 1-to-1 QIP circuit, and compare both the accuracy and
efficiency in Table 7. As d increases, the running time of
circuit simulator increases exponentially while the running
time of our state simulator keeps almost as a constant with-
out sacrificing the computing accuracy. It demonstrates the
necessity of our state simulator to realize the simulation of

Table 7. Accuracy and efficiency comparison of the circuit simu-
lator implemented in qiskit and our proposed state simulator (Sec.
4), with number of qubits t = 6, 32000 times of measurements for
each run of QIP, and the OUTPUT-MODE strategy.

Simulator MSE # MAE # Running Time (s) #

d = 4
Circuit (qiskit) 4.31e-4 1.63e-2 7.072
State (ours) numerically the same 0.036, 196x faster

d = 16
Circuit (qiskit) 7.64e-4 2.32e-2 114.502
State (ours) numerically the same 0.037, 3095x faster

d = 64
Circuit (qiskit) 9.05e-4 2.53e-2 2388.785
State (ours) numerically the same 0.035, 68251x faster

QIP in practical applications in ML models.

5.2. Applications in ML with Classic Simulation
Due to the prohibitively long running time and waiting time
in using the currently available IBM’s quantum computer
and also the high complexity of the circuit simulator by
qiskit, it is impractical to demonstrate the effectiveness of
our circuits in computationally intensive machine learning
applications. Therefore, we used the proposed efficient sim-
ulator we developed in ML applications.
Training Unitary Neural Networks for Image Classifica-
tion. In training, the errors of one layer might be propagated
through layers in forward/backward propagation. ProjUNN
[17] defines a unitary layer in neural networks to maintain
long-range stability, which could be highly related to quan-
tum since all the quantum gates are unitaries. With our QIP,
ProjUNN becomes a quantum model by implementing the
unitary matrices as our 1-to-many or many-to-many QIP
circuits. In the experiments, we embed the unitary layer in
a three-layer MLP (see Appendix J.2), and conduct image
classification on the MNIST dataset. We use ProjUNN-D as
the projector of the unitary layer (experiments of ProjUNN-T
are in Appendix K.1) and adopt RMSprop as the optimizer.
In the simulation, we set the sampling times as r = 5. The
convergence curve is plotted in Fig. 4, and the test accuracy
after 20 epochs of training is given in Table 4.

We make the following analysis. i) In line with the con-
clusions in the accuracy study in the last section, when t
is small (t = 4), the calculation error of OUTPUT-AVG is
smaller and hence Q-4-Avg converges faster and has a higher
test accuracy than Q-4-Mode. When t gets larger (t = 6, 8),
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Figure 4. Convergence. ‘Q’: quantum method; ‘4/6/8’: qubit # t; ‘Avg/Mode’: output strategy.

Table 6. Test accuracy af-
ter 20 epochs on MNIST.

Accuracy (%)

Q-4-Avg 93.70
Q-4-Mode 92.96
Q-6-Avg 94.65
Q-6-Mode 95.37
Q-8-Avg 95.54
Q-8-Mode 96.13
classical 95.97

Table 8. Results of unsupervised clustering by K-Means on MNIST. The higher the better.
Metrics classical Q-4-Mode Q-4-Avg Q-6-Mode Q-6-Avg Q-8-Mode Q-8-Avg

RI " 0.9318 ± 0.0096 0.7866 ± 0.0079 0.8902 ± 0.0015 0.9244 ± 0.0084 0.9175 ± 0.0060 0.9295 ± 0.0111 0.9271 ± 0.0091
NMI " 0.7314 ± 0.0156 0.3473 ± 0.0262 0.4930 ± 0.0076 0.6962 ± 0.0233 0.6430 ± 0.0137 0.7300 ± 0.0229 0.7069 ± 0.0122
AMI " 0.7211 ± 0.0191 0.3159 ± 0.0263 0.4848 ± 0.0077 0.6858 ± 0.0253 0.6343 ± 0.0155 0.7185 ± 0.0268 0.6967 ± 0.0154
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Figure 5. Node classification on PPI and BlogCatalog.

OUTPUT-MODE outperforms OUTPUT-AVG since less noise
is introduced. ii) By comparing the results of different t, we
see that generally higher qubit number t will yield a faster
convergence speed and a better accuracy. iii) Surprisingly,
we observe that the Q-8-Mode outperforms the classical im-
plementation on both convergence speed and test accuracy.
We speculate that this may be because the quantum method
introduces some randomness that has a similar effect to the
dropout strategy. iv) In our cases, the training of neural net-
works is robust to errors by quantum with sufficient qubits
(e.g. t = 8), as shown by the comparison of the classical
method and quantum counterparts.
Embedding Learning by Node2vec. Embedding learning
is essential in ML, to obtain representations in continuous
vector space for different raw data including discrete ones,
e.g. natural language and graphs. We consider the network
embedding algorithm node2vec [11] which is derived from
word2vec [23]. We evaluate the node embeddings on the
task of node classification. We set the sampling time r = 5.
Experiments on node classification are conducted on a pro-
tein network: PPI [5], and BlogCatalog [30] which is a social
network. We use Macro-F1 and Micro-F1 as the metrics.
Results are given in Fig. 5 (full version in Fig. 14). Analysis.
i) Cases of a high qubit number outperform cases of a low
qubit number, and OUTPUT-AVG has better performance
in low-qubit cases compared with OUTPUT-MODE. The
observations are consistent with former experiments. ii) Sur-

prisingly, on BlogCatalog, Q-4-Avg has better performance
and comparable performance compared with the classical
model. It indicates that the node2vec model can be highly
robust to errors in some cases (BlogCatalog) even with a
small number of qubits.
Unsupervised K-Means Clustering. K-means partitions
data points into clusters. Yet K-means would intuitively
be sensitive to calculation errors as the computed distances
would be sorted and small errors can cause dis-ordering.
We test on MNIST and use the rand index (RI), normalized
mutual information (NMI), and adjusted mutual information
(AMI) for evaluation. We set the sampling times r = 7. The
scores are given in Table 8. Analysis. Unlike the previous
two ML applications, K-Means with QIP fails to achieve
comparable performance to the classical model even with
sufficient qubits (t = 8). This suggests the limitations of
QIP for error-sensitive tasks like K-Means.

6. Conclusions and Further Discussion
This paper focuses on the quantum inner product (QIP) prob-
lem, with the ultimate goal to accelerate classic ML on a
quantum computer in the NISQ era. Covering the 1-to-1,
1-to-many, and many-to-many cases, we devise quantum
circuits for QIP. Meanwhile, we devise a scheme that can
efficiently simulate QIP, as done on a commodity classic
computer with low memory. APIs have been encapsulated
in the torch_qip package, with automatic differentiation
enabled. In experiments, we show that the mean squared
error of the approximated results by QIP can be smaller than
1e-4 with an 8-qubit output register and only 7 times of mea-
surement. The performance of models that incorporate QIP
improves in training neural networks, remains comparable
in embedding, and declines slightly in K-Means.

Limitations. 1) The QIP operation is limited to normal-
ized vectors as input data, which is also a common constraint
in many quantum algorithms e.g. [15, 27]. 2) The impact
of noise and decoherence process is often non-negligible in
real-world quantum computer operation process when the
number of quantum gates in the circuit becomes large.
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