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Abstract

Regression tasks in computer vision, such as age esti-
mation or counting, are often formulated into classification
by quantizing the target space into classes. Yet real-world
data is often imbalanced – the majority of training sam-
ples lie in a head range of target values, while a minor-
ity of samples span a usually larger tail range. By select-
ing the class quantization, one can adjust imbalanced re-
gression targets into balanced classification outputs, though
there are trade-offs in balancing classification accuracy
and quantization error. To improve regression performance
over the entire range of data, we propose to construct
hierarchical classifiers for solving imbalanced regression
tasks. The fine-grained classifiers limit the quantization
error while being modulated by the coarse predictions to
ensure high accuracy. Standard hierarchical classification
approaches, when applied to the regression problem, fail to
ensure that predicted ranges remain consistent across the
hierarchy. As such, we propose a range-preserving distil-
lation process that effectively learns a single classifier from
the set of hierarchical classifiers. Our novel hierarchical
classification adjustment (HCA) for imbalanced regression
shows superior results on three diverse tasks: age estima-
tion, crowd counting and depth estimation. Code is avail-
able at https://github.com/xhp-hust-2018-
2011/HCA.

1. Introduction
Data imbalance is a critical issue in deep learning. When
learning from long-tail distributions, deep networks may be
biased toward frequent head classes and perform poorly on
tail classes. To ensure strong performance on the entire out-
put space, many balancing strategies have been developed,
such as reweighting [31, 44] and logit adjustment [24].
While these approaches improve tail performance, they in-
variably do so at the expense of head classes. Moreover,
tail classes may also suffer from data insufficiency, leading
to over-fitting on the limited training samples.

While many methods have been developed for imbal-

anced classification, few works have tackled the imbalanced
regression problem [12, 26, 37]. The few existing works
naively adopt imbalanced classification techniques directly
into a regression setting, by extending reweighting [37] or
logit adjustment [26] into the regression loss. However,
such approaches do not address the inherent data imbalance
at the heart of the problem. Therefore, they suffer similar
drawbacks as the original long-tail classification techniques
and also trade off head or tail performance.

In this work, we advocate for the reformulation of re-
gression into classification. This is already done for many
tasks in computer vision, such as depth estimation [6], age
estimation [27] and crowd-counting [21], with good per-
formance because classification is more tolerant to label
noise [40]. Most commonly, the continuous output is quan-
tized, and each bin is treated as a class. A key benefit that
has been overlooked for the conversion is the ability to re-
balance the class distribution. An imbalanced distribution
of targets can be adjusted into a balanced one by applying
a distribution specific quantization. For example, a long-
tail distribution can be balanced by adopting a logarithmic
quantization [9].

In the quantization process, the number of classes should
be selected to ensure sufficient samples to avoid overfitting
the minority class. However, the larger the interval, i.e.
to ensure balanced and sufficient class samples, the greater
the quantization error when recovering the target regression
values. In practice, the number of classes and quantization
scheme is chosen to trade off classification and quantization
errors [6, 40] to minimize regression errors. With a single
class quantization, it is impossible to ensure both balance
(sufficiency) and small quantization error. A coarse quanti-
zation may produce an accurate classifier but suffer from ex-
treme quantization errors; a fine-grained quantization limits
quantization errors, but may not be so accurate.

Can we merge different classifiers such that we bene-
fit from the higher performance of coarse classifiers while
preserving the resolution of fine classifiers? In this work,
we explore the adjustment of fine-grained classifiers with
progressively coarser ones, where the output resolution is
preserved while the activated range is adjusted to be more
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Figure 1. Hierarchical classification adjustment (HCA). The top
plot shows normalized logits of the finest classifier H; progressing
downwards, classifier H is adjusted by coarser classifiers (1 ∼
H − 1), which bring the prediction closer to the ground truth.

accurate. We refer to this procedure as Hierarchical Clas-
sification Adjustment, or HCA. HCA works with the logits
of the classifier ensemble; as shown in Fig. 1, adding the
coarser (but more accurate) logits progressively improves
the accuracy. We also theoretically analyze the error of hi-
erarchical classifiers under data insufficiency and imbalance
and show why HCA is helpful in this case.

In addition, we propose to distill the entire hierarchical
ensemble into a single classifier; we refer to this process as
HCA-d. To ensure that estimated target ranges remain con-
sistent in the distillation process (see detailed example in
Fig. 2), we propose a range-preserving adjustment. Over-
all, HCA-d is simple but efficient, showing improvements
over the whole range of the target space. Our contributions
can be summarized as:

• A novel Hierarchical Classification Adjustment (HCA)
that adjusts a fine classifier with an ensemble of progres-
sively coarser classifiers over an imbalanced target range;

• A theoretical analysis of HCA for data insufficiency and
imbalance which is empirically verified.

• A range-preserving distillation technique, HCA-d, which
ensures consistent class (range) predictions predicted
across the hierarchy of classifiers.

• HCA shows comparable or superior performance on im-
balanced visual regression tasks, including age estima-
tion, crowd counting and depth estimation.

Figure 2. (Left) The prediction of an 8-class classifier. (Right)
Downsampling logits by group-summing (eq. (10)) fails to pre-
serve the range.

2. Related Works

Real-world data [29, 45] is commonly imbalanced. Most
works [4, 14–16, 18, 22, 25, 31, 38, 44] focus on imbal-
anced classification, while only a few [12, 26, 32, 43]
studied imbalanced settings in a regression.

Imbalanced Classification. Current research working with
single classifiers tries to improve tail class performance via
sample weighting [4, 31, 44], upsampling [15, 25] or adjust-
ing class margins [19, 24, 46]. There is invariably a trade-
off which sacrifices the head for the tail.

While a single classifier may not be suitable, ensembling
multiple classifiers can cover all the classes [14, 17, 18, 37,
42]. In an ensemble, a critical issue is ensuring individual
learners’ diversity. A classic approach to introduce diver-
sity is bagging [3] - sampling with replacements for differ-
ent training data partitions for each of the classifiers. More
recent approaches focus on different strategies for sampling
subsets [14], hard sample mining [18] and progressive split-
ting [42]. For deep imbalanced regression, it is convenient
to get diverse classifiers by applying different quantization
strategies without splitting the dataset.
From Imbalanced Classification to Regression Imbal-
anced regression [12, 26, 32, 43] is less explored than
classification. Most works are inspired by classification
techniques such as sample reweighting [43], logit adjust-
ment [26]. Conversely, [21] and [36] choose distribution-
aware quantization to transform imbalanced regression into
a less imbalanced classification problem. We follow this lat-
ter strategy, but explore hierarchical classifiers, where each
classifier trades off head and tail performances differently
while the combination suits the whole range.
Hierarchical classification [2, 7, 10, 39] leverages the tax-
onomy or hierarchical class structure to ensure more seman-
tically meaningful mistakes. For example, a poodle is better
to be mis-classified as a dog instead of a cat. To learn the
hierarchy, classifiers are trained together [2]. A key issue is
how to align hierarchical outputs and propagate supervision
from the coarse to the fine classifiers [2, 7, 10, 39]. The
standard approaches [2, 10] treat classifier outputs after the
softmax as posterior probabilities and sum them. Such a

23722



paradigm does not ensure consistent predictions. For re-
gression, such inconsistencies adversely affect the learn-
ing and serve as the motivation for our proposed range-
preserving distillation.

3. Hierarchical Classification Adjustment

We propose a Hierarchical Classification Adjustment
(HCA) for imbalanced regression. It learns an ensemble of
hierarchical classifiers and then leverages the set of predic-
tions to improve the performance of few-shot ranges while
maintaining the performance of many-shot ranges. In this
section, we first describe how to set a single classifier for
a regression problem (Sec. 3.1), then partition the contin-
uous label space into an ensemble of discrete hierarchical
classes (Sec. 3.2), followed by the hierarchical adjustment
(Sec. 3.3) and distillation (Sec. 3.4). Finally, a theoretical
analysis of the error of HCA is provided in Sec. 3.5.

3.1. A Vanilla Classifier for Continuous Targets

Consider a continuous dataset D = {x, v}, where x and v
denote the input and target value, respectively. Let Vmin

and Vmax denote the minimal and maximal values of v
in the training set. Like [21, 41], we divide the target
range [Vmin, Vmax] into C intervals (Vmin, V1], (V1, V2],
..., (VC−1, Vmax] and treat samples within each interval as
samples belonging to classes c = 1...C. A standard classi-
fier can be trained to estimate the interval index c based on
feature representations of x. Consider an input sample x,
represented by a feature f ∈ Rd extracted by network F :

f = F (x), (1)

with a predicted class logit p̂ ∈ RC where

p̂ = Softmax{G(f)} (2)

and G is a mapping function with learnable weights. For
learning F and G, we apply a cross-entropy loss Lce with p̂

Lce = −
C∑

j=1

p[j]× log(p̂[j]). (3)

where p ∈ RC is the one-hot ground-truth. We can also ap-
ply label smoothing to pi; the soft ordinal loss (SORD) [8]
applies a Gaussian smoothing to ensure that ordinal rela-
tionships are partially preserved in the target classes.

After training, the predicted class can be determined by
the maximum dimension of p̂. The class is then mapped
back to a representative regression value for evaluation, e.g.
by considering the mean or median of samples belonging to
the class interval.

3.2. Hierarchical Classifier Ensemble

Consider H classifiers; these classifiers are hierarchical,
in that each covers a progressively coarser quantization.
The finest quantization is designated the H-th classifier; its
classes can be merged to form coarser quantization. For
h= 1 to H−1, the classifier has Ch = 2h classes, where
each class interval’s range is determined to normalize the
number of data samples per class. For example, for the first
classifier (h=1), the two classes cover ranges (Vmin, Vmed]
and [Vmed, Vmax), where Vmed is the value selected from Vi

that is closest to the median; for h= 2, the 4 intervals are
selected in Vi to cover quartiles of the data samples. Fig. 3
(a) shows an example of H = 3 hierarchical classifiers. We
can observe that the label distribution of 1 ∼ (H−1) hierar-
chical classifiers is more balanced than the H-th classifier.

The h-th classifier predicts p̂h ∈ RCh based on

p̂h = Softmax{Gh(f)}, (4)

where Gh is a mapping function with learnable weights. Its
cross entropy Lh

ce can be given as

Lh
ce = −

Ch∑
j=1

ph[j]× log(p̂h[j]), (5)

where ph ∈ RCh is the ground-truth for the h-th classifier.
The overall loss for training feature network F and hierar-
chical classifiers Gh is the sum of all the cross-entropies:

L =

H∑
h=1

Lh
ce. (6)

Note that we do not weight each Lh
ce differently since they

have the same scale.

3.3. Hierarchical Classifier Adjustment (HCA)

In the ensemble of classifiers learned by Eq. (6), classifier H
has the finest quantization (and therefore the lowest quan-
tization error) but is also the least accurate. In contrast, as
the classifier gets progressively coarser, it gets more accu-
rate, but also has higher quantization error (see Fig. 3). To
merge these results, we can adjust the prediction of classifer
H with the coarser classifiers H − 1 to 1.

From the hierarchical predictions p̂h, we can estimate an
adjusted prediction through a summation operation

p̂a = p̂H +

H−1∑
h=1

TT
h,H · p̂h, (7)

or a multiplication operation:

p̂m = log(p̂H) +

H−1∑
h=1

TT
h,H · log(p̂h). (8)
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(a) (b) (c)

Figure 3. An example of H = 3 hierarchical classifiers. (a) Class splitting and label distributions for hierarchical classifiers 1 ∼ 3
from bottom to top. We also visualize class transition matrices Th,H between the h-th and H-th classifiers, which are used to project
hierarchical predictions to the finest dimension for merging ( eq. (7) and eq. (8)). (b) Training of Hierarchical classifiers (dashed blue box).
The dashed green box denotes the second-stage learning, which distillates classifier T from hierarchical predictions p̂h. (c) Distillation
learning of classifier T . Hierarchical alignment by sum operation (eq. (10)) and max operation (eq. (13)) are compared. Here we only plot
the distillation from p̂1, while from p̂2 and p̂3 are not visualized.

In Eqs. 7 and 8, p̂a, p̂m are addition- and multiplication-
adjusted predictions that keep the finest quantization as H-
th classifier. Th,H ∈ RCh×CH is the class mapping from h-
th classifier to H-th classifier. If the u-th class in H-th clas-
sifier is the v-th class in the h-th classifier, then Tv,u = 1;
otherwise Tv,u = 0. Fig. 3 (a) visualizes an example of
Th,H for H = 3 hierarchical classifiers. Note that the mul-
tiplication merging in Eq. (8) has a similar form as logit
adjustment, but here we use hierarchical prediction p̂h to
adjust p̂H rather than the frequency of each class. The fi-
nal class is recovered by taking a max over p̂a or p̂m for
addition or multiplication adjustments respectively.

HCA, while proposed with the concept of adjusting
the finest-quantized classifier with coarser ones, is effec-
tively an ensembling approach, voting with either the logits
(Eq. (7)) or log of the logits (Eq. (8)). However, such an
ensembling approach cannot ensure that the adjusted or en-
sembled result p̂a and p̂m will predict a final class interval
consistent with p̂h.

3.4. Range-Preserving Distillation (HCA-d)

In addition to the inconsistencies, the adjustment procedure,
like other ensembling methods, is inefficient because it re-
quires running H classifiers during testing. Alternatively,
we propose to distill the ensemble of classifiers into a single
adjusted classifier. The ensemble is learned during training
in a first stage, frozen, and then distilled into a single clas-
sifier during a second stage; during inference, only the ad-
justed classifier is applied. Such an approach is motivated
by hierarchical classification [2, 10], which also distills hi-
erarchical classifiers, though they aim to learn hierarchy-
aware features.

Consider a classifier T which predicts p̂ ∈ Rd with a

mapping function GT :

p̂T = Softmax(GT (f)), (9)

where p̂T distills the hierarchical information of p̂h. This
can be achieved by adopting a Kullback–Leibler divergence
loss between the softmax normalized logits p̂T and p̂h. As
p̂Ti ∈ RCH and p̂hi ∈ RCh have different resolutions, they
must be aligned before the distillation.

Previous works on hierarchical classification [2, 10]
view p̂T ∈ RCH as posterior probabilities and thus sim-
ply sum the corresponding dimensions in p̂T to get a down-
sampled versions of pT,h ∈ RCh to match with p̂h, i.e.

pT,h[j] =

CH∑
k=1

Th,H [j, k]× p̂T [k]. (10)

After aligning p̂T with the individual p̂h, we can apply the
Kullback–Leibler (KL) divergence between p̂hi and pT,h

i :

Lh
hd = KL{p̂h||pT,h}, (11)

and an overall hierarchical distillation by summing over all
the classifiers:

Lhd =

H∑
h=1

Lh
hd. (12)

The hierarchical loss in Eq. (11) is not range-preserving
when we choose Eq. (10) as the hierarchical alignment. As
indicated in Fig. 3 (c), Lhd = 0 does not indicate the class
predicted by p̂T is within the range of classes predicted by
p̂h. We can adjust Eq. (10) to be range-preserving by con-
sidering the maximum of Th,H [j, k]:

p̈T,h[j] = max
k=1,...,CH

Th,H [j, k]× p̂T [k]. (13)
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and then p̈T,h is normalized to get pT,h ∈ RCh

pT,h[j] =
p̈T,h[j]∑Ch

l=1 p̈
T,h[l]

. (14)

Proposition 1 (Range-Preserving Alignment). Let v =
argmaxjp

T,h[j], u=argmaxkp̂
T [k]. If pT,h is computed by

eqs. (13) and (14), then Th,H [v, u] = 1, which indicates the
class predicted by p̂T is within the range of that predicted
by pT,h.

3.5. Error Analysis

From a theoretical perspective, it is possible to show that the
upper bound of MAE for HCA is lower than that of a vanilla
classifier. We sketch the case below for a simple case of two
classifiers but is easy to extend the result to H classifiers by
induction.

Consider hierarchical classifiers G1 and G2. Classifier
G1 has C1 balanced classes, with n1,i = N

C1
samples for

i-th class ; G2 has C2 = 2C1 imbalanced classes, with n2,j

samples for j-th class. Note that i-th class of G1 correspond
to (2i − 1)-th and 2i-th classes in G2. We first show the
upper bound of classification error is related to the sample
number per class in Prop. 2 and then compare the MAE of
HCA to a vanilla classifier in Prop. 3.

Definition 1. Following [5], the margin of i-th class of Gh

is defined as γh
i = minyh=i maxl ̸=y p̂

h[yh] − p̂h[l], where
yh is the ground-truth for Gh.

Definition 2. Let Pr(ŷh = j|yh = i) denote the probabil-
ity of i-th class in h-th classifier being mis-classified as j-th
class by Gh. The classification error of Gh on the i-th class
is defined as Lh

i =
∑

j ̸=i Pr(ŷh = j|yh = i).

Proposition 2 (Generalization Error Bound [5]). With
probability 1− 1

N5 , Lh
i is upper bounded by ∆h

i :

Lh
i ≲ ∆h

i =
1

γh
i

√
C(Gh)

nh,i
+

log(N)
√
nh,i

∝ 1
√
nh,i

, (15)

where “∝” denotes being proportional to, C(Gh) is some
proper complexity measure of function Gh, such as [1, 11],
and we use ≲ to hide some constant factors.

Prop. 2 suggests that few-shot classes tend to have larger er-
ror bounds than many-shot classes because the upper bound
∆h

i is proportional to 1√
nh,i

.

Proposition 3 (MAE of HCA). If U2 and UHCA denote the
upper bounds of the mean absolute error (MAE) of G2 and
HCA, then we have

U2 − UHCA ∝
C1∑
i=1

(∆2
2i−1 +∆2

2i − 2∆1
i ) > 0, (16)

∆2
2i−1 +∆2

2i

2∆1
i

>
ηi
2

≥
√
2, (17)

where “∝” denotes being proportional to, ηi =
√
1 + ri +√

1 + 1
ri

and ri =
n2,2i−1

n2,2i
.

Prop. 3 eq. (16) implies that the MAE bound of HCA is
smaller than G2, and the reduction of MAE is proportional
to the difference in classification error.
Remarks on Data Sufficiency: i) When the data is suffi-
cient (nh,i → ∞), the upper bounds ∆h

i for a given classi-
fier, as given in Eq. (15) approaches zero. Therefore, each
of the ∆h

i terms on the RHS of Eq. (16) will progressively
shrink, i.e. (∆2

2i−1+∆2
2i)−2∆1

i becomes smaller, resulting
in a limited gap between U2 and UHCA (eq. (16)).
ii) The converse is true for ∆h

i when the data is limited and
the gap between U2 and UHCA will become more promi-
nent, as eq. (17) suggests that RHS of eq. (16) is larger than∑C1

i=1 2(
√
2 − 1)∆1

i . Moreover, as per eq. (16) and (17),
the more imbalanced the data (the larger ri), the larger the
difference between U2 and UHCA.

4. Experiment and Discussion

4.1. Implementation Details

We conduct experiments on three imbalanced regres-
sion tasks: IMDB-WIKI-DIR [43] for age estimation,
SHTech [45] for crowd counting, and NYUDv2-DIR [43]
for depth estimation. For the age and depth datasets, we
follow the same ResNet50 [13] backbone for feature ex-
traction and training setting as [43]. For SHTech, we use
VGG16 [30] backbone and the same training setting as [40].
The finest class numbers CH are 121 for ages and 100 for
depth and counting. Following [36], we choose the mean
values of samples fallen in each class interval. For age es-
timation, we adopt linear intervals with length 1, since ages
increase with step 1; while for counting or depth estimation
tasks, we choose log-spaced intervals as per [21, 40] for fair
comparison. Since CH ≤ 27 for all datasets, we set H as 7
for all datasets. For Gh (h = 1, ...,H), we adopt one linear
layer, which maps features f ∈ Rd to outputs p̂h ∈ RCh .
For GT , a linear layer is also feasible, while a non-linear
mapping is more adequate to distill the hierarchical infor-
mation. Specifically, we adopt two fully connected layers
with hidden dimensions d

4 and softplus activation. Detailed
experiments of GT can be found in the supplementary.

We first train the hierarchical classifiers with the summed
cross-entropy loss in Eq. (6). We can then apply learning-
free HCA results, HCA-add and HCA-mul with Eq. (7) and
Eq. (8), respectively. For range-preserving HCA (HCA-d),
classifiers 1 ∼ H and feature extraction network F are
fixed. Only classifier T is trained with Lhd in Eq. (12) for
additional 20% epochs of stage 1 until convergence.
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4.2. Ablation Studies

We first do ablation studies to verify some factors of
HCA, including hierarchical class settings and two vari-
ants of HCA. IMDB-WIKI-DIR [43] and SHTech Part A
(SHA) [45] datasets are chosen for ablation studies. Mean
absolute error (MAE) and its balanced version bMAE [26]
are adopted as evaluation metrics for SHA and IMDB-
WIKI-DIR, respectively. Lower MAE and bMAE denote
better performance.
i) Hierarchical Class Settings Combining extra classifiers
could improve a single vanilla classifier, but could we just
duplicate the vanilla classifier at the finest level rather than
setting hierarchical classifiers? Besides, how about splitting
hierarchical classifiers that equalize the interval length of
each class rather than equalize sample numbers? We com-
pare hierarchical class settings in Table 1. Compared with
a single classifier, assembling duplicated classifiers can be
helpful (overall bMAE from 13.50 to 13.42), but the im-
provement is limited compared to that of HCA. Moreover,
it is more beneficial to split hierarchical classes by equaling
the sample number within each class rather than equaling
the length of class intervals.

Configuration
IMDB-WIKI-DIR

SHA
All Many Med. Few

Single CLS 13.58 7.13 13.95 33.21 58.2
Same CLSs 13.42 7.10 14.38 32.22 57.9

E-Num HCA-d 12.70 7.00 13.18 29.94 53.7
E-Len HCA-d 12.77 7.23 12.92 29.77 56.2

Table 1. Comparison of various (hierarchical) class settings.
“Same CLSs” means H classifiers adopts the same class splitting
as the H-th classifier. “E-Num” means equaling the number of
samples within each class during hierarchical class splitting, while
“E-Len” will equal the length of each class interval.

ii) Comparing two variants of HCA Learning-free HCA
and range-preserving HCA (HCA-d) are compared in Ta-
ble 2. It can be observed: all variants of HCAs are clearly
better than a single classifier or ensemble same classifiers
in all shots; HCA-d is better than HCA-add and HCA-mul,
suggesting that learning-free HCA cannot fully explore the
hierarchical information in p̂h and an explicit hierarchical
distillation learning is more beneficial.

4.3. Analysis of HCA

i) Quantization error of coarse classifiers: Fig. 4 (a) com-
pares the classifiers individually versus their quantization
error. The coarse classifiers (1− 3) perform worse than the
vanilla H-th classifier due to the quantization error of rep-
resenting the entire interval with one value.
ii) Coarse classifiers provide better range estimation;
fine classifiers mitigate quantization errors: In Fig. 4
(c), a coarse h-th classifier and the finest H-th classifier are

Combine
IMDB-WIKI-DIR

SHA
All Many Med. Few

Single CLS 13.58 7.13 13.95 33.21 58.2
Same CLSs 13.42 7.10 14.38 32.22 57.9

Average 14.85 7.18 17.83 36.24 106.1
HCA-add 12.86 6.98 13.15 30.80 55.9
HCA-mul 12.89 7.00 13.36 30.74 54.7

HCA-d 12.70 7.00 13.18 29.94 53.7

Table 2. Comparison of two hierarchical adjustment approaches.

combined in a coarse-to-fine manner. Specifically, we first
get a coarse range prediction from the h-th classifier and
then select a finer class within this coarse range according
to p̂H predicted by the H-th classifier. It can be observed
that merging coarse predictions will significantly decrease
the error of the H-th classifier, suggesting coarse classifiers
provide better range estimation than the finest H-th clas-
sifier. Meanwhile, selecting a finer class within the coarse
range will decrease the bMAE of coarse classifiers (1 ∼ 3),
implying that combining fine classifiers can mitigate quan-
tization error in coarse classifiers.
iii) Range-preserving distillation is key for successful
HCA: Sec. 3.3 showed that the summation alignment of
Eq. (10) is not range preserving. Table 3 experimentally
compare summation and range-preserving alignment (13);
using sum alignment harms HCA in all shots, while the
range-preserving alignment benefits vanilla classification.
Fig. 5 shows the percentage of inconsistent samples for each
classifier head when using Eq. (10). The inconsistency in-
creases with the number of classes; this is directly explained
by the decreased maximum value of prediction p̂i in finer
classifiers. Ideally, if the maximum value of p̂h is 1, then
the sum of p̂h will not change the range predicted by p̂h;
however, the maximum value of p̂h will be much less than
1 in regression by finer classifiers. As such, the sum oper-
ation in Eq. (10) cannot ensure consistent ranges across the
hierarchy, as shown in Fig. 2.

To justify the influence of second-stage training, we add
a “CLS+GT sup” baseline (see Table 3), which uses the
ground-truth labels to train the classifier T . Yet this baseline
does not improve over the vanilla classification, indicating
that hierarchical distillation rather than extra training stages
is helpful for imbalanced regression.
iv) Influence of imbalanced vs insufficient data? In im-
balanced regression tasks, like age estimation and counting,
the ”Few” range is also a low-shot (≤ 20 samples per class).
HCA is helpful in this imbalanced and also insufficient set-
ting. However, is it still effective if the dataset is imbalanced
but has sufficient samples in the “Few” range? Moreover,
is HCA applicable to balanced regression? To verify the
influence of imbalanced and insufficient data samples, we
resample the IMDB-WIKI-DIR dataset to create these sce-
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(a) Quantization and Prediction Error (b) Individual Classifier Error (c) Adjusted Classifier Error

Figure 4. Analysis of hierarchical classifiers on IMDB-WIK-DIR dataset [43]. (a) Comparison between quantization error and bMAE of
the h-th classifier; for bMAE, lower is better. (b) Decrements of bMAE of the class index in each hierarchical level of classes. We report
the decrements from the value of the vanilla H-th classifier. (c) Decrements of bMAE when adjusting the H-th classifier with a coarse
h-th classifier. Specifically, a coarse h-th classifier provides the range, and then the finer class is selected in this range according to the
prediction of the H-th classifier. We have subtracted the value of the vanilla H-th classifier.

Figure 5. Percentage of inconsistent samples for each hierarchical
classifier when downsampled by eq. (10). The maximum value of
hierarchical predictions p̂h is also visualized.

Combine
IMDB-WIKI-DIR

SHA
All Many Med. Few

CLS 13.58 7.13 13.95 33.21 58.2
CLS+GT sup 13.64 7.20 14.94 32.54 57.0

HCA sum (10) 27.08 15.14 38.57 55.11 150.3
HCA max (13) 12.70 7.00 13.18 29.94 53.7

Table 3. Comparison of the summation and ranging preserving
alignments of hierarchical predictions. “CLS+GT sup” denotes
using the ground-truth labels to supervise the classifier T .

narios. We first generate balanced subsets with M samples
per age and ages ranging from 20 to 49. M can be 1000,
100 and 10 to cover the sufficient to insufficient data sce-
narios. Then for imbalanced subsets, we take 20 ∼ 34 ages
as many and 35 ∼ 49 ages as “Few”, while keeping the
ratios between Many to Few as 19. To make a fair com-
parison, we keep the total sample number the same among
balanced and imbalanced subsets, thus having 1900 : 100,
190 : 100 and 19 : 1 imbalanced subsets covering suffi-
cient and insufficient cases. Table 4 presents quantitative

results. We can observe that: i) HCA does not show sig-
nificant improvement when the training set is balanced or
imbalanced but with sufficient samples (1900 : 100), in ac-
cordance with Sec. 3.5 “Remark i)”; ii) HCA outperforms
vanilla classification or regression by a clear margin when
the training set is insufficient, and the difference is more
prominent when data imbalance is also encountered, in ac-
cordance with Sec. 3.5 “Remark ii)”.

4.4. Comparison with SOTA on Regression Tasks

SHTech Dataset SHTech [45] is a crowd-counting dataset,
which presents severe imbalanced distribution [21, 40, 41].
For the two subsets, Part A features crowded scenes cap-
tured in arbitrary camera views, while Part B has relatively
sparse scenes captured by surveillance cameras. We fol-
low the same network setting as [40], where 100 logarithm
classes are adopted for CH . Mean absolute error (MAE)
and rooted mean square error are adopted as evaluation met-
rics; for both, lower errors are better. Quantitative results
are presented in Table 6. It can be observed that Hierarchi-
cal classification shows the best performance and improves
plain classification by a large margin.
IMDB-WIKI-DIR Dataset IMDB-WIKI-DIR [43] is a
large age estimation dataset; it is an imbalanced subset sam-
pled from IMDB-WIKI [28]. There are 192k / 11k / 11k
training / validation / testing samples.

We choose three baselines of classification, they are: i)
vanilla classification, which is H-th classifier of HCA; ii)
classification with label distribution smoothing (LDS) [43],
which re-weight samples with inverse class frequency; iii)
classification with label distribution smoothing (LDS) and
ranksim [12] regularization. ranksim [12] regularizes fea-
ture space to have the same ordering as label space. Their
HCA counterparts are also included.

Table 5 presents the quantitative results. From Ta-
ble 5, we can observe that: i) HCA shows clear im-
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Configuration
Balanced Subsets Imbalanced Subsets

1000:1000 100:100 10:10 1900:100 190:10 19:1
Regression 6.00±0.10 7.50±0.04 7.56±0.07 6.78±0.04 7.68±0.05 7.74±0.12

CLS 6.09±0.03 7.63±0.05 7.61±0.07 6.78±0.03 7.74±0.12 7.90±0.07
HCA-d 6.06±0.04 7.53±0.03 7.53±0.03 6.72±0.04 7.54±0.03 7.54±0.05

Table 4. Comparison on subsampled balanced and imbalanced subsets of IMDB-WIKI-DIR. Each method is repeated for 5 times.

Methods
IMDB-WIKI-DIR bMAE↓ NYUDv2-DIR

All Many Med. Few MAE↓ RMSE↓ AbsRel↓ δ1 ↑ δ2 ↑ δ3 ↑
Regression [43] 13.92 7.32 15.93 32.78 1.004 1.486 0.179 0.678 0.908 0.975

Regression+LDS [43] 13.37 7.55 13.96 30.92 0.968 1.387 0.188 0.672 0.907 0.976
Regression+LDS+ranksim [12] 12.83 7.00 13.28 30.51 0.931 1.389 0.183 0.699 0.905 0.969

Balanced MSE [26] 12.66 7.65 12.68 28.14 0.922 1.279 0.219 0.695 0.878 0.947
CLS 13.58 7.13 13.95 33.21 1.011 1.512 0.184 0.678 0.906 0.958

HCA-d 12.70 7.00 13.18 29.94 0.987 1.475 0.181 0.689 0.915 0.961
CLS+LDS 12.85 7.31 13.40 29.54 0.924 1.383 0.181 0.711 0.909 0.965

HCA-d+LDS 12.42 7.28 12.47 28.24 0.911 1.367 0.179 0.714 0.911 0.966
CLS+LDS+ranksim 12.33 6.70 13.16 29.10 0.904 1.335 0.182 0.715 0.916 0.972

HCA-d+LDS+ranksim 11.92 6.88 11.67 27.72 0.895 1.321 0.180 0.715 0.919 0.972

Table 5. Comparison on IMDB-WIKI-DIR and NYUDv2-DIR Dataset. Detailed results can be found in the supplementary.

SHA SHB
MAE↓ RMSE↓ MAE↓ RMSE↓

CSRNet [20] 68.2 115.0 10.6 16.0
BL [23] 62.8 101.8 7.7 12.7
MNA [33] 61.9 99.6 7.4 11.3
OT [35] 59.7 95.7 7.4 11.8
GL [34] 61.3 95.4 7.3 11.7
Regression [40] 65.4 103.3 10.7 19.5
DC-regression [40] 60.7 101.0 7.1 11.0
CLS 58.2 96.7 7.0 11.8
HCA-d 53.7 87.8 6.8 11.8

Table 6. Comparison on SHTech dataset [45].

provement in bMAE over naive classification baselines.
Specifically, HCA-d can improve all the shots for “CLS”
and “CLS+LDS” baselines, while for strong baseline
“CLS+LDS+ranksim”, since the baseline results are already
saturated for the many-shot, there is still a slight trade-off
between many and few-shot (many-shot bMAE increases
from 6.70 to 6.88). ii) HCA outperforms its regression
baselines and other regression approaches. Noted that Bal-
anced MSE [26] is a logit adjustment version for regression,
it improves the few/medium-shot performances via signif-
icantly harming the many-shot (bMAE from 7.32 to 7.56),
while for HCA-d, many-shot performance is roughly main-
tained or improved.

NYUDv2-DIR Dataset NYUDv2-DIR [43] is an im-
balanced version sampled from the NYU Depth Dataset
V2 [29]. The depth values range from 0 to 10 meters, which
are divided into 100 logarithm classes for CH . Mean abso-

lute error (MAE), rooted mean square error (RMSE), rel-
ative absolute error (RelAbs), δ1, δ2 and δ1 are adopted
as evaluation metrics. Noted that all classes in NYUDv2-
DIR have more than 107 samples, which should be all cat-
egorized as many-shot classes according to the criteria in
IMDB-WIKI-DIR [43] (> 100 samples). We report the
overall results in Table 5 and detailed results can be found
in the supplementary. We can observe that HCA shows im-
provements to its classification baselines and it is also com-
parable to or better than other regression methods. Noted
that the improvement of HCA to CLS in NYUDv2-DIR is
small. It is because NYUDv2-DIR is imbalanced but with
sufficient samples per class, thus HCA does not improve
much. This result is also in accordance with the theoretical
analysis in Sec. 3.5 “Remark i)” and experiments in Table 4.

5. Conclusion
This paper proposes a hierarchical classification adjustment
(HCA) for imbalanced regression. HCA leverages hierar-
chical class predictions to adjust the vanilla classifiers and
improves the regression performance in the whole target
space without introducing extra quantization errors. On im-
balanced regression tasks including age estimation, crowd
counting and depth estimation, HCA shows superior results
to regression or vanilla classification approaches. HCA is
extremely helpful in imbalanced and insufficient scenarios;
while it is also helpful in balanced and sufficient scenarios.
Acknowledgment. This research is supported by the Min-
istry of Education, Singapore, under its MOE Academic
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