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Abstract

Audio-visual saliency prediction can draw support from

diverse modality complements, but further performance en-

hancement is still challenged by customized architectures

as well as task-specific loss functions. In recent studies,

denoising diffusion models have shown more promising in

unifying task frameworks owing to their inherent ability of

generalization. Following this motivation, a novel Diffusion

architecture for generalized audio-visual Saliency predic-

tion (DiffSal) is proposed in this work, which formulates

the prediction problem as a conditional generative task of

the saliency map by utilizing input audio and video as the

conditions. Based on the spatio-temporal audio-visual fea-

tures, an extra network Saliency-UNet is designed to per-

form multi-modal attention modulation for progressive re-

finement of the ground-truth saliency map from the noisy

map. Extensive experiments demonstrate that the proposed

DiffSal can achieve excellent performance across six chal-

lenging audio-visual benchmarks, with an average rela-

tive improvement of 6.3% over the previous state-of-the-

art results by six metrics. The project url is https:

//junwenxiong.github.io/DiffSal.

1. Introduction

With the functionality of visual and auditory sensory sys-

tems, human beings can quickly focus on the most interest-

ing areas during their daily activities. Such a comprehensive

capability of visual attention in multi-modal scenarios has

been explored by numerous researchers and referred to as

an audio-visual saliency prediction (AVSP) task. Based on

the related techniques, many valuable practical applications

have come into utility ranging from video summarization

[29] and compression [65] to virtual reality [15] and aug-

mented reality [46].

Significant efforts have been dedicated to advancing

studies by concentrating on elevating the quality of multi-

modal interaction and refining the generalizability of model

structures in this domain. Among the prevalent AVSP
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Figure 1. Comparison of conventional audio-visual saliency pre-

diction paradigms and our proposed diffusion-based approach.

Both the localization-based and 3D convolution-based methods

use tailored network structures and sophisticated loss functions to

predict saliency areas. Differently, our diffusion-based approach

is a generalized audio-visual saliency prediction framework using

simple MSE objective function.

approaches, as depicted in Figure 1(a), localization-based

methods [38, 39, 50] have gained a lot of attention. These

methods typically consider the sounding objects as saliency

targets in the scene and transform the saliency prediction

task into a spatial sound source localization problem. Even

though the semantic interactions between audio and visual

modalities have been considered in these methods, their fo-

cus on a generalized network structure is still limited and

inevitably results in constrained performance.

In contrast, recent 3D convolution-based methods [10,

30, 58, 61] exhibit superior performance in predicting

audio-visual saliency maps, as illustrated in Figure 1(b).

However, these methods require customized architectures

with built-in inductive biases tailored for saliency predic-

tion tasks. For instance, Jain et al. [30] and Xiong et al.
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[58] both embrace a 3D encoder-decoder structure akin to

UNet, but integrate their empirical designs into the decoder.

Moreover, both localization-based and 3D convolution-

based methods employ sophisticated loss functions, con-

tributing to a more intricate audio-visual saliency modeling

paradigm.

Effective audio-visual interaction and the generalized

saliency network are two essential factors for the seamless

application of AVSP technology in the real world. Unfor-

tunately, an in-depth exploitation of both challenges in the

existing works is far from sufficient. Inspired by the strong

generalization capabilities, diffusion models [25, 26, 43]

can be employed as a unified framework for generative tasks

with class labels [17], text prompts [20], images [11], and

even sounds [45] as the conditions for modeling. However,

it remains an open question how to design a diffusion model

that satisfies the effective audio-visual interaction and the

generalized saliency network.

In this work, we present a conditional Diffusion model

for generalized audio-visual Saliency prediction (DiffSal),

which aims to tackle these two challenges simultaneously,

as illustrated in Figure 1(c). Our DiffSal utilizes the in-

put video and audio as the conditions to reformulate the

prediction problem as a conditional generative task of the

saliency map. During the training phase, the model is fed

the video and audio cues as well as a degraded saliency

map, which has been obtained from the ground-truth with

varying degrees of injected noise. By constructing a two-

stream encoder to explore audio and video feature pairs

with spatio-temporal coherence, the obtained similar pixel-

wise multi-modal features can be utilized to guide the dif-

fusion model generation process. In addition, a novel net-

work Saliency-UNet is employed to recover the original

saliency maps from noisy inputs, which utilizes information

from spatio-temporal audio and video features as the condi-

tions. To explore the latent semantic associations between

audio and video features, an effective multi-modal interac-

tion mechanism is proposed. The entire DiffSal framework

employs a simple mean square error loss to predict ground-

truth saliency maps from random noise. During the infer-

ence phase, following the reversed diffusion process, Diff-

Sal performs multi-step denoising to generate predictions

based on randomly generated noisy saliency maps.

Benefiting from such a diffusion-based framework, we

demonstrate two distinct properties that appeal to the AVSP

task. (i) In contrast to existing methods with spatio-

temporal visual branching [30, 50, 58], DiffSal enables

spatio-temporal modeling of audio and video, and can be

generalized to audio-only, video-only, as well as audio-

visual scenarios. (ii) Thanks to the iterative denoising prop-

erty of the diffusion model, DiffSal can iteratively reuse

Saliency-UNet to improve performance without retraining.

To summarize, our main contributions are: (1) We for-

mulate the saliency prediction task as a conditional gen-

erative problem and propose a novel conditional diffusion

saliency model, which is beneficial from the generalized

network structure and effective audio-visual interaction. (2)

We demonstrate two properties of DiffSal that are effective

on saliency prediction: the ability to be applied to either

uni-modal or multi-modal scenarios, and to perform flex-

ible iterative refinement without retraining. (3) Extensive

experiments have been conducted on six challenging audio-

visual benchmarks and the results demonstrate that DiffSal

achieves excellent performance, exhibiting an average rela-

tive improvement of 6.3% over the previous state-of-the-art

results across four metrics.

2. Related Work

2.1. Audio­Visual Saliency Prediction

For audio-visual saliency prediction, different strategies

for multi-modal correlation modeling have been proposed

to estimate the saliency maps over consecutive frames.

Early solutions [38, 39] attempted to localize the moving-

sounding target by canonical correlation analysis(CCA)

to establish the cross-modal connections between the two

modalities. With the advent of deep learning, Tsiami et

al. [50] continued the localization-based approach by ex-

tracting audio representation using SoundNet [4], and fur-

ther performed spatial sound source localization through bi-

linear operations. Unfortunately, these methods exhibited

sub-optimal performance only and thus led to the emer-

gence of more effective 3D convolution-based approaches

[30, 48, 58] based on the encoder-decoder network frame-

works. Jain et al. [30] and Xiong et al. [58] both embrace

the UNet-style encoder-decoder structure by incorporating

their empirical designs into the decoder. Moreover, Chang

et al. [10] employs a complex hierarchical feature pyramid

network to aggregate deep semantic features. Considering

that both the localization-based and 3D convolution-based

methods use tailored network structures and sophisticated

loss functions to predict saliency areas. In this study, by

formulating the task as a conditional generation problem, a

novel conditional diffusion model is proposed for general-

ized audio-visual saliency prediction.

2.2. Diffusion Model

Recently, diffusion models have gained significant traction

in the field of deep learning. During diffusion modeling,

the Markov process is employed to introduce noise into the

training data followed by a training of deep neural networks

to reverse it. Thanks to the high-quality generative re-

sults and strong generalization capabilities, diffusion mod-

els have achieved an impressive performance in generative

tasks, such as image generation [3, 6, 7, 12, 16], image-

to-image translation [32, 44, 52, 56, 63], video generation

[23, 27, 60], text-to-image synthesis [20, 42, 62], and etc.
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Figure 2. An overview of the proposed DiffSal framework. DiffSal first encodes spatio-temporal video features fv and audio features fa
by the Video and Audio Encoders, respectively. Then the Saliency-UNet takes audio features fa and video features fv as the conditions to

guide the network in generating the saliency map Ŝ0 from the noisy map St.

Beyond generative tasks, diffusion models have proven to

be highly effective in various computer vision tasks. For in-

stance, DiffSeg [1] proposes a diffusion model conditioned

on an input image for image segmentation. Chen et al. [11]

propose a model named DiffusionDet, which formulates ob-

ject detection as a generative denoising process from noisy

boxes to object boxes. Subsequently, the pipeline of this

model is extended by Gu et al. [21] by introducing noise fil-

ters during diffusion, as well as incorporating a mask branch

for global mask reconstruction, which makes making Diffu-

sionDet more applicable to instance segmentation tasks. To

the best of our knowledge, there have been no previous suc-

cessful attempts to apply diffusion models to saliency pre-

diction, which inspires the proposed DiffSal in this work to

explore the potential of diffusion models in the domain of

audio-visual saliency prediction.

3. Preliminaries

Diffusion models [26] are likelihood-based models for

points sampling from a given distribution by gradually de-

noising random Gaussian noise in T steps. In the forward

diffusion process, the increased noises are added to a sam-

ple point x0 iteratively as x0 → · · · → xT−1 → xT , to

obtain a completely noisy image xT . Formally, the forward

diffusion process is a Markovian noising process defined by

a list of noise scales {āt}Tt=1 as:

q(xt|x0) := N (xt|
√
ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∈ N (0, I),

(1)

where ᾱt :=
∏t

s=1 αt =
∏t

s=1(1 − βs) and βs denote

the noise variance schedule [26], ϵ is the noise, N denotes

normal distribution, x0 is the original image, and xt is noisy

image after t steps of the diffusion process.

The reverse diffusion process aims to learn the posterior

distribution p(xt−1|x0, xt) for xt−1 estimation given xt.
Typically, this can be done using a step-dependent neural

network in multiple parameterized ways. Instead of directly

predicting the noise ϵ, we choose to parameterize the neural

network fθ(xt, t) to predict x0 as [11]. For model opti-

mization, a mean squared error loss is employed to match

fθ(xt, t) and x0:

L = ∥fθ(xt, t)− x0∥2, t ∈R {1, 2, . . . , T}, (2)

where the step t is randomly selected at each training itera-

tion. From starting with a pure noise xt ∈ N (0, I) during

inference stage, the model can gradually reduce the noise

according to the update rule [47] using the trained fθ as be-

low:

xt−1 =
√
ᾱt−1fθ(xt, t)+

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtfθ(xt, t)√
1− ᾱt

+ σtϵ.
(3)

Iteratively applying Eq. 3, a new sample x0 can be gen-

erated from fθ via a trajectory xT → xT−1 → · · · → x0.

Specially, some improved sampling strategies skip such an

operation in the trajectory to achieve better efficiency [47].
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To control the generation process, the conditional infor-

mation can be modeled and incorporated in the diffusion

model as an extra input fθ(xt, t,C). The class labels [17],

text prompts [20], and audio guidance [2] are the prevalent

forms of conditional information documented in the litera-

ture.

4. Method

To tackle the challenges of effective audio-visual interaction

and saliency network generalization, we formulate audio-

visual saliency prediction as a conditional generation mod-

eling of the saliency map, which treats the input video and

audio as the conditions. Figure 2 illustrates the overview

of the proposed DiffSal, which contains parts of Video and

Audio Encoders as well as Saliency-UNet. The former is

used to extract multi-scale spatio-temporal video features

and audio features from image sequences and correspond-

ing audio signals. By conditioning on these semantic video

and audio features, the latter performs multi-modal atten-

tion modulation to progressively refine the ground-truth

saliency map from the noisy map. Each part of DiffSal is

elaborated on below.

4.1. Video and Audio Encoders

Video Encoder. Let I = [I1, · · · , Ij , · · · , ITv
], Ij ∈

R
Hv×Wv×3 denotes an RGB video clip of length Tv . This

serves as the input to a video backbone network, which pro-

duces spatio-temporal feature maps. The backbone consists

of 4 encoder stages and outputs 4 hierarchical video fea-

ture maps, illustrated in Figure 2. The generated feature

maps are denoted as {fiv}Ni=1 ∈ R
T i

v
×hi

v
×wi

v
×Ci

v , where

(hiv, w
i
v) = (Hv,Wv)/2

i+1, N = 4. In practical imple-

mentation, we employ the off-the-shelf MViTv2 [33] as

a video encoder to encode the spatial and temporal infor-

mation of image sequences. More generally, MViTv2 can

also be replaced with other general-purpose encoders, e.g.,

S3D[57], Video Swin Transformer[34].

Audio Encoder. To temporally synchronize the audio fea-

tures with the video features in a better way, initially, we

transform the raw audio into a log-mel spectrogram through

Short-Time Fourier Transform (STFT). Then, the spec-

trogram is partitioned into Ta slices of dimension Ha ×
Wa × 1 with a hop-window size of 11 ms. To extract

per-frame audio feature f̄a,i where i ∈ {1, · · · , Ta}, a pre-

trained 2D fully convolutional VGGish network [24] is per-

formed on AudioSet [19], resulting in a feature map of size

R
ha×wa×Ca . To improve the inter-frame consistency, we

further introduce a temporal enhancement module consist-

ing of a patch embedding layer as well as a transformer

layer. Then, the audio features are rearranged in the spatio-

temporal dimension and fed into the patch embedding layer

to obtain f̄a ∈ R
Ta×ha×wa×Ca . For the retaining of tempo-

ral position information, a learnable positional embedding

epos is incorporated along the temporal dimension:

f̄a = [̄fa,0 + e
pos
0 , · · · , f̄a,Ta

+ e
pos
Ta

], (4)

where [·, ·] represents concatenation operation. The pro-

cessed feature is finally fed into the Multi-head Self At-

tention (MSA), the layer normalization (LN) [5] and the

MLP layer to produce the spatio-temporal audio features

fa ∈ R
Ta×ha×wa×Ca :

f̄a = MSA(LN(̄fa)) + f̄a,

fa = MLP(LN(̄fa)) + f̄a.
(5)

4.2. Saliency­UNet

To learn the underlying distribution of saliency maps, we

design a novel conditional denoising network gψ with

multi-modal attention modulation, named Saliency-UNet.

This network is designed to leverage both audio features fa
and video features {fiv}Ni=1 as the conditions, guiding the

network in generating the saliency map Ŝ0 from the noisy

map St:

Ŝ0 = gψ(St, t, fa, fv), (6)

where St =
√
ᾱtS0+

√
1− ᾱtϵ, noise ϵ is from a Gaussian

distribution, and t ∈R {1, 2, . . . , T} is a random diffusion

step.

Our Saliency-UNet can be functionally divided into two

parts: feature encoding and feature decoding, as shown in

Figure 2. The first part encodes multi-scale noise feature

maps {fis}Ni=1 ∈ R
hi

v
×wi

v
×Ci

v from the noisy map St us-

ing multiple ResNet stages. The second part utilizes our

designed multi-modal attention modulation (MAM) across

multiple scales for the interaction of noise features, audio

features, and video features. The MAM stage comprises

an upsampling layer, a multi-modal attention block, and a

3D temporal convolution. This stage not only computes

the global spatio-temporal correlation between multi-modal

features but also progressively enhances the spatial resolu-

tion of the feature maps. At last, a prediction head is em-

ployed to produce the predicted saliency map Ŝ0. The entire

network incorporates 4 layers of the ResNet stage for fea-

ture encoding and 4 layers of the MAM stage for feature

decoding.

For more robust multi-modal feature generation, two

techniques in MAM are introduced: efficient spatio-

temporal cross-attention and multi-modal interaction mod-

ule.

Efficient Spatio-Temporal Cross-Attention. Given video

features fiv ∈ R
T i

v
×hi

v
×wi

v
×Ci

v , audio features fa ∈
R
Ta×ha×wa×Ca and noise features fis ∈ R

hi

v
×wi

v
×Ci

v ,

the video features and noise features are concate-

nated as a spatio-temporal noise feature map [fiv, fis] ∈
R

(T i

v
+1)×hi

v
×wi

v
×Ci

v . The processed feature map is then

fed into the multi-modal interaction module along with the
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audio features to obtain favs ∈ R
(T i

v
+1)×hi

v
×wi

v
×Ci

v . To

introduce audio information in the saliency prediction, we

design an efficient spatio-temporal cross-attention (ECA),

which not only effectively reduces the computational over-

head of the standard cross-attention [51], but also possesses

spatio-temporal interactions between features.

For all processed features, they are first converted to

2D feature sequences in the spatio-temporal domain and

obtained Q = V = [fiv, fis] ∈ R
(T i

v
+1)hi

v
wi

v
×Ci

v ,K =

fiavs ∈ R
(T i

v
+1)hi

v
wi

v
×Ci

v . We find that directly following

the standard cross-attention would take a prohibitively large

amount of memory due to the high spatio-temporal resolu-

tion of the feature map. Therefore, a spatio-temporal com-

pression technique is employed that can effectively reduce

the computational overhead without compromising perfor-

mance, as:

[fiv, fis] = ECA(QWQ, STC(K)WK , STC(V )WV ), (7)

where WQ,WK ,WV ∈ R
Ci×Ci are parameters of lin-

ear projections, STC(·) is the spatio-temporal compression,

which is defined as:

STC(x) = LN(Conv3d(x)), (8)

Here, the dimension of features is reduced by controlling

the kernel size as well as the stride size of 3D convolution.

Multi-modal Interaction Module. To take full advantage

of different modal features, we model the interaction be-

tween audio features fa, video features fiv and noise fea-

tures fis at each scale i to obtain a robust multi-modal fea-

ture representation. A straightforward approach would be to

directly concatenate and aggregate fa, fiv and fis, but this fu-

sion method does not acquire global correlations between

various modalities. Therefore, an effective multi-modal

interaction strategy is proposed to capture crucial audio-

visual activity changes in the spatio-temporal domain. In

specific, this process starts with convolution and upsam-

pling on the audio features, which is to construct spatially

size-matched feature triples (̃fa, fiv, fis). Subsequently, the

video features and noise features are concatenated to obtain

spatio-temporal noise features [fiv, fis]. This processed fea-

ture undergoes an element-wise product operation with the

audio features, resulting in f̄
i

avs. Following this, we perform

average activation along the temporal dimension over f̄
i

avs

to pool global temporal information into a temporal descrip-

tor. For the indication of critical motion regions, a softmax

function is applied to obtain a mask by highlighting the seg-

ments of the corresponding spatio-temporal audio features,

which exhibit key audio-visual activity changes:

f̃a = Conv(UpSample(fa)),

fiavs = softmax(Pool([fiv, fis] ∗ f̃a)) ∗ f̃a.
(9)

where Conv(·), ∗, softmax and Pool denote the operations

of convolution, element-wise product, softmax and average

pooling, respectively.

4.3. Overall Training and Inference Algorithms

Training. A diffusion process is initiated to create noisy

maps by introducing corruption to ground-truth saliency

maps. To reverse this process, the Saliency-UNet is trained

for saliency map denoising. The overall training procedure

of DiffSal is outlined in Algorithm 1 in the Appendix. In

detail, Gaussian noises are sampled following αt in Eq. 1

and added to the ground-truth saliency maps, resulting in

noisy samples. At each sampling step t, the parameter αt is

pre-defined by a monotonically decreasing cosine scheme,

as employed in [26]. The standard mean square error serves

as the optimization function to supervise the model training:

L = ∥S0 − gψ(St, t, fa, fv)∥2. (10)

where S0 and gψ(St, t, fa, fv) denote the ground-truth and

predicted saliency maps, respectively.

Inference. The proposed DiffSal engages in denoising

noisy saliency maps sampled from a Gaussian distribu-

tion, and progressively refines the corresponding predic-

tions across multiple sampling steps. In each sampling step,

the Saliency-UNet processes random noisy saliency maps

or the predicted saliency maps from the previous sampling

step as input and generates the estimated saliency maps for

the current step. For the next step, DDIM [47] is applied to

update the saliency maps. The detailed inference procedure

is outlined in Algorithm 2.

5. Experiments

Experiments are conducted on six audio-visual datasets.

The following subsections introduce the implementation

details and evaluation metrics. The experimental results are

represented with analysis through ablation studies and com-

parison with state-of-the-art works.

5.1. Setup

Audio-Visual Datasets: Six audio-visual datasets in

saliency prediction have been employed for the evaluation,

which are: AVAD [38], Coutrot1 [13], Coutrot2 [14], DIEM

[40], ETMD [31], and SumMe [22]. The significant char-

acteristics of these datasets are elaborated below. (i) The

AVAD dataset comprises 45 video clips with durations rang-

ing from 5 to 10 seconds. These clips cover various audio-

visual activities, such as playing the piano, playing bas-

ketball, conducting interviews, etc. This dataset contains

eye-tracking data from 16 participants. (ii) The Coutrot1

and Coutrot2 datasets are derived from the Coutrot dataset.

Coutrot1 consists of 60 video clips covering four visual cat-

egories: one moving object, several moving objects, land-

scapes, and faces. The corresponding eye-tracking data are
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Table 1. Ablation of different components in DiffSal.

Method
Components AVAD ETMD

ECA MIM CC ↑ SIM ↑ CC ↑ SIM ↑

baseline 0.701 0.547 0.632 0.498

✓ 0.716 0.556 0.644 0.503

✓ 0.714 0.551 0.638 0.502

✓ ✓ 0.738 0.571 0.652 0.506

obtained from 72 participants. Coutrot2 includes 15 video

clips recording four individuals having a meeting, with eye-

tracking data from 40 participants. (iii) The DIEM dataset

contains 84 video clips, including game trailers, music

videos, advertisements, etc., captured from 42 participants.

Notably, the audio and visual tracks in these videos do not

naturally correspond. (iv) The ETMD dataset comprises 12

video clips extracted from various Hollywood movies, with

eye-tracking data annotated by 10 different persons. (v) The

SumMe dataset consists of 25 video clips covering diverse

topics, such as playing ball, cooking, travelling, etc.

Implementation Details: To facilitate implementation, a

pre-trained MViTv2 [33] model on Kinetics [9] and a pre-

trained VGGish [24] on AudioSet [19] are adopted. The in-

put samples of the network consist of 16-frame video clips

of size 224× 384× 3 with the corresponding audio, which

is transformed into 9 slices of 112 × 192 log-Mel spec-

trograms. For the spatio-temporal compression in efficient

spatio-temporal cross-attention, the kernel size and stride

size of the 3D convolution in the ith MAM stage are set

to 2i and 2i, respectively. For a fair comparison, the video

branch of DiffSal is pre-trained using the DHF1k dataset

[53] following [58], and the entire model is fine-tuned on

these audio-visual datasets using this pre-trained weight.

The training process chooses Adam as the optimizer with

the started learning rate of 1e−4. The computation platform

is configured by four NVIDIA GeForce RTX 4090 GPUs

in a distributed fashion, using Pytorch. The total sampling

step T is defined as 1000 and the entire training is termi-

nated within 5 epochs. The batch size is set to 20 across all

experiments. During inference, the iterative denoising step

is set to 4.

Evaluation Metrics: Following previous works, four

widely-used evaluation metrics are adopted [8]: CC, NSS,

AUC-Judd (AUC-J), and SIM. The same evaluation codes

are used as in previous works [50, 58].

5.2. Ablation Studies

Extensive ablation studies are performed to validate the de-

sign choices in the method. The AVAD and ETMD datasets

are selected for ablation studies, following the approach in

[58].

Effect of Components of DiffSal. To validate the effec-

tiveness of each module in the proposed framework, a base-

Table 2. Ablation of video and audio modalities.

Model
AVAD ETMD

CC ↑ SIM ↑ CC ↑ SIM ↑

Audio-Only 0.343 0.283 0.365 0.295

Video-Only 0.716 0.556 0.644 0.503

Ours 0.738 0.571 0.652 0.506

GT

Audio-Only

Video

Audio

Video-Only

Ours

Figure 3. Visualizing the saliency results when different modal-

ities are used. The audio-only approach can localize the sound

source coming from the performer’s guitar, while the video-only

approach focuses on both the performer’s face as well as the gui-

tar.

line model is initially defined as the video-only version

of DiffSal and replaces the multi-modal attention modula-

tion in Saliency-UNet with a pure convolution operation.

As shown in Table 1, the baseline model demonstrates a

good performance that indicates a potential capability of the

diffusion-based framework in the AVSP task. With the in-

corporation of the designed efficient spatio-temporal cross-

attention (ECA), and the multi-modal interaction module

(MIM) components, the overall performance of the model

has been enhanced continually. As the core module, ECA

presents a significant improvement in the CC metric by

0.015 on the AVAD dataset, and 0.012 on the ETMD dataset

for the whole DiffSal framework. With the addition of the

audio features and the MIM, the model also has another im-

provement of 0.022 in the CC metric on the AVAD dataset.

All of these have demonstrated the effectiveness of ECA

and MIM in the proposed DiffSal.

Effect of Video and Audio Modalities. Table 2 shows

the contribution of spatio-temporal information from each

modality in the Video and Audio Encoders to the over-

all performance. The experimental observations reveal that
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Table 3. Ablation of different multi-modal interaction methods.

Method
AVAD ETMD

CC ↑ SIM ↑ CC ↑ SIM ↑

DiffSal(w/ MIM) 0.738 0.571 0.652 0.506

w/ Bilinear 0.716 0.556 0.644 0.503

w/ Addition 0.706 0.543 0.606 0.464

w/ Concatenation 0.704 0.528 0.610 0.432

Table 4. Ablation of different cross-attention strategies. The

computational cost is evaluated based on input audio of size

1 × 9 × 112 × 192 and video of size 3 × 16 × 224 × 384. #

Params and #Mem denote the number of parameters and memory

footprint of the model, respectively.

Attention #Params #Mem
AVAD ETMD

CC ↑ SIM ↑ CC ↑ SIM ↑

SCA 76.43M 5.32G 0.713 0.531 0.628 0.476

ECA 76.57M 1.20G 0.738 0.571 0.652 0.506

the video-only model exhibits significantly greater strength

than the spatio-temporal audio-only version, which verifies

the essential role of the video modality. Figure 3 also vi-

sualizes the model predictions utilizing the two modal en-

coders separately. It is clear that either the audio-only or

video-only approach can predict saliency areas in the scene,

and the combination of the two modalities leads to more ac-

curate predictions. This demonstrates the generalization of

the DiffSal framework to audio-only, video-only, and audio-

visual scenarios as well.

Effect of Different Cross-Attention Strategies. The de-

sign of efficient spatio-temporal cross-attention mechanism

is further evaluated. As shown in Table 4, using efficient

spatio-temporal cross-attention (ECA) not only leads to bet-

ter performance but also greatly reduces the memory foot-

print of the model compared to using the standard cross-

attention (SCA) strategy. This shows that the designed ECA

can compress the effective spatio-temporal cues in the fea-

tures and reduce the interference of irrelevant noises.

Effect of Different Multi-modal Interaction Methods.

The effects of using different multi-modal interaction meth-

ods, such as Bilinear [49], Addition, and Concatenation, are

compared in Table 3. These multi-modal interaction meth-

ods can be found in recent state-of-the-art works [30, 50],

and the video features and noise features are firstly con-

catenated before their interaction with audio features. Ex-

perimental results show that the proposed MIM can out-

perform all the other three interaction methods, and obtain

more robust multi-modal features. In contrast, the perfor-

mance degradation of the other three methods suffers from

the noise information embedded in the features.

Effect of Different Training Losses. Table 5 compares

the impact on DiffSal using different loss functions from

Table 5. Ablation of different training losses.

Model
Losses AVAD ETMD

LCE LKL LMSE CC ↑ SIM ↑ CC ↑ SIM ↑

Ours

✓ 0.690 0.490 0.617 0.422

✓ 0.720 0.552 0.644 0.496

✓ 0.738 0.571 0.652 0.506
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Figure 4. Performance analysis of denoising steps on AVAD and

DIEM datasets.

previous state-of-the-art approaches [50, 58], such as the

cross entropy (CE) loss LCE and the Kullback-Leibler di-

vergence (KL) loss LKL. During the training process, it is

observed that the model with the LCE converges slowly and

yields sub-optimal performance. Compared to the LMSE ,

employing the LKL can achieve acceptable results, but

there is still a gap in the performance of training with the

LMSE . This suggests that simple MSE loss can be used in

the AVSP task as an alternative to these task-tailored loss

functions.

Effect of Denoising Steps. The impact of the number of

iterative denoising steps on the final performance is studied

in Figure 4, which shows that more iteration steps result in

better performance. With diminishing marginal benefits as

the step number increases, a steady increase in performance

is observed. For a linearly increasing of the computational

cost with the step number, N = 4 is used to maintain a good

balance between performance and computational cost.

5.3. Method Comparison

Comparisons with State-of-the-art Methods. As shown

in Table 6, the experimental results of our DiffSal are com-

pared with recent state-of-the-art works on six audio-visual

saliency datasets. The table highlights the superiority of

DiffSal, as it outperforms the other comparable works on all

datasets by defined metrics. Notably, DiffSal significantly

surpasses the previous top-performing methods, such as

CASP-Net [58] and ViNet [30], and becomes the new state-

of-the-art on these six benchmarks. The performance boost

is very encouraging: DiffSal can achieve an average rela-

tive performance improvement of up to 6.3% compared to

the second-place performer. Such substantial improvements

validate the effectiveness of the diffusion-based approach as

an effective audio-visual saliency prediction framework.

Qualitative Results. The ability of the model to handle

challenging scenarios, such as fast movement on the ten-
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Table 6. Comparison with state-of-the-art methods on six audio-visual saliency datasets. Bold text in the table indicates the best result, and

underlined text indicates the second best result. Our DiffSal significantly outperforms the previous state-of-the-arts by a large margin.

Method #Params #FLOPs
DIEM Coutrot1 Coutrot2

CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC ↑ NSS ↑ AUC-J↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑
ACLNetTPAMI′2019 [54] - - 0.522 2.02 0.869 0.427 0.425 1.92 0.850 0.361 0.448 3.16 0.926 0.322

TASED-NetICCV′2019 [37] 21.26M 91.80G 0.557 2.16 0.881 0.461 0.479 2.18 0.867 0.388 0.437 3.17 0.921 0.314

STAViSCVPR′2020 [50] 20.76M 15.31G 0.579 2.26 0.883 0.482 0.472 2.11 0.868 0.393 0.734 5.28 0.958 0.511

ViNetIROS′2021 [30] 33.97M 115.31G 0.632 2.53 0.899 0.498 0.56 2.73 0.889 0.425 0.754 5.95 0.951 0.493

TSFP-NetarXiv′2021 [10] - - 0.651 2.62 0.906 0.527 0.571 2.73 0.895 0.447 0.743 5.31 0.959 0.528

CASP-NetCVPR′2023 [58] 51.62M 283.35G 0.655 2.61 0.906 0.543 0.561 2.65 0.889 0.456 0.788 6.34 0.963 0.585

Ours(DiffSal) 76.57M 187.31G 0.660 2.65 0.907 0.543 0.638 3.20 0.901 0.515 0.835 6.61 0.964 0.625

Method #Params #FLOPs
AVAD ETMD SumMe

CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC ↑ NSS ↑ AUC-J↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑
ACLNetTPAMI′2019 [54] - - 0.580 3.17 0.905 0.446 0.477 2.36 0.915 0.329 0.379 1.79 0.868 0.296

TASED-NetICCV′2019 [37] 21.26M 91.80G 0.601 3.16 0.914 0.439 0.509 2.63 0.916 0.366 0.428 2.1 0.884 0.333

STAViSCVPR′2020 [50] 20.76M 15.31G 0.608 3.18 0.919 0.457 0.569 2.94 0.931 0.425 0.422 2.04 0.888 0.337

ViNetIROS′2020 [30] 33.97M 115.31G 0.674 3.77 0.927 0.491 0.571 3.08 0.928 0.406 0.463 2.41 0.897 0.343

TSFP-NetarXiv′2021 [10] - - 0.704 3.77 0.932 0.521 0.576 3.07 0.932 0.428 0.464 2.30 0.894 0.360

CASP-NetCVPR′2023 [58] 51.62M 283.35G 0.691 3.81 0.933 0.528 0.620 3.34 0.940 0.478 0.499 2.60 0.907 0.387

Ours(DiffSal) 76.57M 187.31G 0.738 4.22 0.935 0.571 0.652 3.66 0.943 0.506 0.572 3.14 0.921 0.447

GT

Ours

CASP-Net

ViNet

STAViS

Figure 5. Qualitative results of our method compared with other state-of-the-art works. Challenging scenarios involving fast movement on

the tennis court and multiple speakers indoors.

nis court and multiple speakers indoors, is further exam-

ined. Figure 5 compares the DiffSal against other state-of-

the-art approaches, such as CASP-Net [58], ViNet [30] and

STAViS [50]. It is observed that DiffSal produces saliency

maps much closer to the ground-truth for various challeng-

ing scenes. In contrast, CASP-Net focuses mainly on audio-

visual consistency and lacks adopting an advanced network

structure, leading to sub-optimal results. STAViS is only

able to generate unsurprisingly saliency maps by employ-

ing sound source localization. More visualization results

can be found in the supplementary.

Efficiency Analysis. Table 6 compares the number of pa-

rameters and computational costs of the DiffSal with pre-

vious state-of-the-art works. Compared to CASP-Net, the

computational complexity of DiffSal is at a moderate level,

even though incorporating Saliency-UNet in DiffSal leads

to an increase in the number of model parameters. From

a performance perspective, the DiffSal model achieves the

best performance with the second-highest computational

complexity.

6. Conclusion

In this work, we introduce a novel Diffusion architecture for

generalized audio-visual Saliency prediction (DiffSal), for-

mulating the prediction problem as a conditional generative

task of the saliency map by utilizing input video and audio

as conditions. The framework involves extracting spatio-

temporal video and audio features from image sequences

and corresponding audio signals. A Saliency-UNet is de-

signed to perform multi-modal attention modulation, pro-

gressively refining the ground-truth saliency map from the

noisy map. Extensive experiments have proven that DiffSal

achieves superior performance compared to previous state-

of-the-art methods in six challenging audio-visual bench-

marks.
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