
Efficient Deformable ConvNets: Rethinking Dynamic and Sparse
Operator for Vision Applications

Yuwen Xiong∗1,2 Zhiqi Li∗3,2 Yuntao Chen∗4 Feng Wang∗5

Xizhou Zhu5,6 Jiapeng Luo6 Wenhai Wang7,2 Tong Lu3 Hongsheng Li7

Yu Qiao2 Lewei Lu6 Jie Zhou5 Jifeng Dai5,2B

1University of Toronto 2OpenGVLab, Shanghai AI Laboratory
3Nanjing University 4CAIR, HKISI, CAS 5Tsinghua University

6SenseTime Research 7The Chinese University of Hong Kong
https://github.com/OpenGVLab/DCNv4

Abstract

We introduce Deformable Convolution v4 (DCNv4), a
highly efficient and effective operator designed for a broad
spectrum of vision applications. DCNv4 addresses the limita-
tions of its predecessor, DCNv3, with two key enhancements:
1. removing softmax normalization in spatial aggregation to
enhance its dynamic property and expressive power and 2.
optimizing memory access to minimize redundant operations
for speedup. These improvements result in a significantly
faster convergence compared to DCNv3 and a substantial
increase in processing speed, with DCNv4 achieving more
than three times the forward speed. DCNv4 demonstrates
exceptional performance across various tasks, including im-
age classification, instance and semantic segmentation, and
notably, image generation. When integrated into genera-
tive models like U-Net in the latent diffusion model, DCNv4
outperforms its baseline, underscoring its possibility to en-
hance generative models. In practical applications, replac-
ing DCNv3 with DCNv4 in the InternImage model to create
FlashInternImage results in up to 80% speed increase and
further performance improvement without further modifica-
tions. The advancements in speed and efficiency of DCNv4,
combined with its robust performance across diverse vision
tasks, show its potential as a foundational building block for
future vision models.

1. Introduction

In the field of computer vision, there is an ongoing debate
about whether convolutional networks (ConvNets) or Trans-
formers offer superior performance. In recent years, Trans-

* Equal contribution
B Corresponding author (daijifeng@tsinghua.edu.cn)

(56x56)x128 (28x28)x256 (14x14)x512
Input Tensor Shape

0.
5

1.
0

1.
5

2.
0

Re
la

tiv
e

Ru
nt

im
e

3.76x
faster

FlashAttention
Window Attention
DWConv
DCNv3
DCNv4

(a)

0 3 6 9 12 15
Iterations (K)

10

20

30

40

50

60

70

Im
ag

eN
et

 To
p-

1
Ac

c
(%

)

DCNv4
DWConv
Dense-Attn
DCNv3

(b)
Figure 1. (a) We show relative runtime with DCNv3 as the baseline.
DCNv4 shows significant speedup over DCNv3, and surpasses
other common vision operators. (b) With the same network archi-
tecture, DCNv4 converges faster than other operators.

former models [12, 25, 44] have achieved remarkable re-
sults in large vision models with the attention mechanism,
showing the potential to overtake ConvNets. However, re-
cent works such as InternImage [38] and ConvNeXt [26]
demonstrate that ConvNet-based vision models retain robust
performance, efficiency, simplicity, and suitable inductive
bias for various downstream tasks [15, 41]. Notably, in do-
mains like image generation [29, 31], models containing
both convolutions and transformers remain the preferred ap-
proach. This situation brings to light the enduring value of
convolution-based approaches.

Building on convolution’s strengths, Deformable Convo-
lution v3 (DCNv3) – the core operator of the advanced Con-
vNet model InternImage – innovatively combines a sparse
attention mechanism with convolution: it processes each
output location in a sliding window manner with a small
window size (e.g. 3 × 3 = 9 points) which acts as a local,
sparse operator like convolution, while dynamically sam-
ples point with an adaptive range and aggregates the spatial
features with input-dependent attention weights. With its

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5652

small window size and ConvNet inductive bias, DCNv3 is
expected to achieve a faster convergence rate and lower infer-
ence latency, especially when compared to dense global [12]
or local window-based [25] attention methods.

Despite these advantages, DCN has not become the go-
to solution for vision backbone models. This observation
led us to investigate the lingering limitations of the DCN
operator. The first thing we notice is the running speed.
The slow speed of DCN is known to be a long-standing
problem [1], as it introduces extra overhead on sampling
non-nearby locations, making it not fit modern convolution
algorithms. Our comparative analysis, illustrated in Fig. 1a,
reveals that DCNv3 can be slower than a properly optimized
dense global attention [9], highlighting the need for further
optimization. Moreover, we find DCNv3 even converges
slower than global attention at the initial backbone training
phase, as shown in Fig. 1b, which is counter-intuitive as
DCNv3 is equipped with ConvNet inductive bias.

To overcome these challenges, we propose Deformable
Convolution v4 (DCNv4), an innovative advancement to
optimize the sparse DCN operator for practical efficiency.
DCNv4 comes with a much faster implementation and an
improved operator design to enhance its performance, which
we will elaborate on as follows:

First, we conduct instruction-level kernel profiling for
existing implementation and find that DCNv3 is already
lightweight. The compute cost is less than 1%, while mem-
ory access costs 99%. This motivates us to revisit the oper-
ator implementation and find that many memory accesses
in the DCN forward process are redundant and thus can be
optimized, leading to a much faster DCNv4 implementation.

Second, drawing inspiration from convolution’s un-
bounded weight range, we find that softmax in spatial ag-
gregation, a standard operation in dense attention, is unnec-
essary in DCNv3, as it is not a requirement for operators
with a dedicated aggregation window for each location. In-
tuitively, softmax puts a bounded 0 ∼ 1 value range to the
weight and will limit the expressive power of the aggrega-
tion weight. This insight led us to remove the softmax in
DCNv4, enhancing its dynamic property and improving its
performance.

As a result, DCNv4 converges significantly faster than
DCNv3 and accelerates forward speed by more than 3×.
This improvement allows DCNv4 to fully leverage its sparse
property and become one of the fastest core vision operators.

We further replace DCNv3 in InternImage with DCNv4,
creating FlashInternImage. Remarkably, FlashInternImage
achieves a 50 ∼ 80% speed increase compared to Intern-
Image without any additional modifications. This enhance-
ment positions FlashInternImage as one of the fastest mod-
ern vision backbone networks while maintaining superior
performance. With the help of DCNv4, FlashInternImage
significantly improves the convergence speed in ImageNet
classification [10] and transfer learning settings and further

demonstrates improved performance in downstream tasks.
Furthermore, DCNv4 shows potential as a universal vi-

sion operator in various architectures and tasks. We integrate
DCNv4 into other modern backbone architectures, including
ConvNeXt [26] and ViT [12], replacing depthwise convolu-
tion [6] and dense self-attention layers [35]. Surprisingly,
without any hyperparameter adjustments, these meticulously
designed networks with DCNv4 perform on par while being
much faster, showing the efficacy and efficiency of the dy-
namic, sparse DCNv4. Moreover, we explore the potential
of DCNv4 in generative models as a new application domain.
Specifically, we apply it in the U-Net [30] architecture used
in diffusion models [29], replacing regular convolution with
DCNv4. Our experimental results show that DCNv4 can
work better than the baselines in image generation, showing
great potential for using DCN to improve generative models.

We have released the DCNv4 implementation to facilitate
future research in the vision community.

2. Related Work
Core operators in vision models: The standard convolu-
tion [17] stands as the most prevalent and impactful operator,
forming the backbone of the majority of computer vision ar-
chitectures [14, 16, 32]. Nevertheless, a myriad of operators,
each with unique characteristics, collectively play a crucial
role in the development of computer vision. Depthwise
separable convolution (DWConv) [6] separates the spatial
and channel operations, and has been pivotal in developing
lightweight and efficient models [26, 27]. RepLKNet [11]
illustrates that a purely convolutional network, leveraging
large-kernel depth-wise convolutions, can attain competi-
tive performance in both efficiency and effectiveness. De-
formable Convolution (DCN) series [7, 38, 47] significantly
leaps the adaptability of convolution by adding learnable off-
sets to the convolutions kernels. Contrary to convolutions, at-
tention mechanisms [35] possess the capacity to model long-
range dependencies and have been successfully adopted in
various computer vision tasks [3, 12, 24, 33]. Window atten-
tion [25, 36] reduces the computational complexity inherent
in vanilla attention by restricting the attention operation to a
fixed-size window. To mitigate the high computational com-
plexity associated with vanilla attention, deformable atten-
tion [48] enables each query to concentrate on a select num-
ber of key sampling points, with dynamically determined lo-
cations and weights. This efficient method is widely used in
the following arts perception methods [4, 19, 21, 22, 43, 45].
DynamicConv [40] and dynamic-DWNet [13] augment DW-
Conv by incorporating dynamic weights, thereby enabling
the use of instance-specific weights that adapt dynamically.
For non-grid structured data, sparse operators [34, 37, 42]
utilize dynamic weights obtained via bilinear interpolation
or in a parametric way.

Memory access cost in vision backbones: As under-
scored in previous studies [18, 27], FLOPs, although a fre-

5653

Model 5th EP 10th Ep 20th Ep 50th Ep 300th Ep
ConvNeXt 29.9 53.5 66.1 74.8 83.8
ConvNeXt 8.5 25.3 51.1 69.1 81.6
+ softmax (-21.4) (-28.2) (-15.0) (-5.7) (-2.2)

Table 1. ImageNet-1K accuracy at different training epochs.
Softmax on the convolution weights significantly affects the con-
vergence speed and the final performance for the ConvNeXt model.

quently used metric to measure model complexity, do not
accurately represent the model’s speed or latency. In practi-
cal scenarios, the running speed of a model is influenced by
multiple factors, not just FLOPs. Memory access cost plays
a significant role in this context [27]. Flash-Attention [9], by
reducing the number of accesses to High Bandwidth Memory
(HBM), achieves a significantly faster speed in practice de-
spite having higher FLOPs compared to vanilla attention. Al-
though DCN operators do not exhibit a disadvantage in terms
of FLOPs, their latency is considerably longer compared to
DW-Conv, under the same FLOPs budget, predominantly
due to substantial memory access costs. In this work, we
conduct a thorough analysis and optimization of the memory
access costs associated with the DCN operators, significantly
accelerating the DCN’s running speed.

3. Method
3.1. Rethinking the Dynamic Property in De-

formable Convolution

Revisiting DCNv3: Given an input x ∈ RH×W×C with
height H , width W and channel C, the DCNv3 operation
with K points is defined in Eq. (2) for each point p0:

yg =

K∑
k=1

mgkxg(p0 + pk +∆pgk), (1)

y = concat([y1, y2, ..., yG], axis=-1), (2)

where G denotes the number of spatial aggregation groups.
For the g-th group, xg,yg ∈ RH×W×C′

represents the
sliced input/output feature map with C ′=C/G represents
the group dimension; mgk ∈ R denotes the spatial aggrega-
tion weights (also known as modulation scalar) of the k-th
sampling point in the g-th group, conditioned on the input
x and normalized by the softmax function along the dimen-
sion K; pk denotes the k-th location of the pre-defined grid
sampling {(−1,−1), (−1, 0), ..., (0,+1), ..., (+1,+1)} as
in regular convolutions and ∆pgk is the offset corresponding
to the grid sampling location pk in the g-th group. A 1× 1
point-wise convolution on x and y can be applied before and
after the DCNv3 operator to enhance the model’s expressive
power, following separable convolution [6]. DCNv3 is a
combination of convolution and attention: on the one hand,
it processes the input data in a sliding window manner, which
follows convolution and inherent its inductive bias; on the
other hand, the sampling offset ∆p and spatial aggregation
weight m are dynamically predicted from the input feature,

query pixels value range (0, 1) (−∞, +∞)response pixels

(a) Attention

Window: Share/Fixed
Weights: Dynamic
Value Range: Bounded

(b) DCNv3

Window: Dedicated/Adaptive
Weights: Dynamic
Value Range: Bounded

(c) Convolution

Window: Dedicated/Fixed
Weights: Static
Value Range: Unbounded

(d) DCNv4

Window: Dedicated/Adaptive
Weights: Dynamic
Value Range: Unbounded

Figure 2. Comparisons of core operators in spatial aggregation
for query pixels on different locations within the same channel.
(a) Attention and (b) DCNv3 use bounded (range from 0 ∼ 1)
dynamic weights to aggregate spatial features, while the window
(sampling point set) for attention is the same, and DCNv3 uses a
dedicated window for each location. (c) Convolution has a more
flexible unbounded value range for aggregation weights and uses
a dedicated sliding window for each location, but the window
shape and aggregation weights are input-independent. (d) DCNv4
combines their advantages, using an adaptive aggregation window
and dynamic aggregation weights with an unbounded value range.

showing its dynamic property and making it more like an
attention mechanism. We compare different operators where
each has its own property, as illustrated in Fig. 2

Softmax normalization: A key difference between convo-
lution and DCNv3 is that DCNv3 normalizes m, the spatial
aggregation weights, with a softmax function, following the
convention of scaled dot-product self-attention. Conversely,
convolution does not employ softmax over its weights and
still works well. The reason why attention needs a softmax
is straightforward: scaled dot-product self-attention with
Q,K, V ∈ RN×d is defined with a formulation:

softmax(
1√
d
QK⊤)V, (3)

where N is the number of points in the same attention win-
dow (can be either global [12] or local [25]), d is the hidden
dimension, Q,K, V are the query, key, and value matrices
computed from the input. Softmax operation is required in
Eq. (3) for attention; without softmax, K⊤V ∈ Rd×d can
be calculated first, and it degrades to a linear projection for
all queries in the same attention window, resulting in degen-
erated performance. However, for convolutional operators
like depthwise convolution and DCNv3 where each point
has its own dedicated aggregation window and the values
in each aggregation window are already different and there
is no “key” concept, such degradation issue no longer ex-
ists, and the normalization becomes unnecessary. In fact,
normalizing convolution weights within a fixed 0-1 range
using softmax could impose a significant limitation on the
operator’s expressive power and make the learning slower.

To confirm this hypothesis, we train a ConvNeXt model
and apply softmax to the 7 × 7 window of the depthwise

5654

convolution weights before convolution forward. We ob-
serve a remarkable decline in model performance as well
as convergence speed from results in Tab. 1. This suggests
that for operators with a dedicated aggregation window on
each location like convolution or DCN, aggregation weights
with an unbounded range offer better expressive power than
softmax-normalized, bounded-range weights.

Enhancing dynamic property: Motivated by this observa-
tion, we remove the softmax normalization in DCNv3, trans-
forming the modulation scalars ranging from 0 to 1 to un-
bounded dynamic weights similar to convolution. As shown
in Fig. 2, this alteration further amplifies the dynamic prop-
erty of DCN, where other operators have certain limits, such
as bounded value range (attention/DCNv3) or fixed aggre-
gation window with input-independent aggregation weights
(convolution). Fig. 1b shows that by making this change,
DCNv4 converges significantly faster than DCNv3 and other
common operators, including convolution and attention. Re-
sults in Sec. 4 further showcase that DCNv4 works well in
both pre-training and transfer learning settings.

3.2. Speeding up DCN
Theoretically, DCN, as a sparse operator with 3× 3 window,
should act faster than other common operators that employ
larger window sizes, like dense attention or 7× 7 depthwise
convolution. However, we find that this is not the case,
as shown in Fig. 1a. In this subsection, we first conduct
a theoretical analysis of GPU efficiency, showing a large
variance in memory access cost depending on how we read
the memory. We further perform optimization based on our
observations, significantly improving the speed of DCN by
saving additional memory instruction and bringing the speed
advantage of being a sparse operator into reality.

Theoretical analysis of GPU efficiency Our study be-
gins with a theoretical examination of the DCNv3 operator’s
computational behavior. We employ the roofline model to
evaluate its performance, focusing on theoretical FLOPs
and memory access cost. For an input and output tensor of
shape (H,W,C), the DCNv3 operator requires 36HWC
FLOPs, where 3× 3 represents the convolution kernel’s spa-
tial dimensions and the factor of 4 accounts for the bilinear
interpolation at each sampling point.

Following the framework outlined in [27], DCNv3’s mem-
ory access cost is calculated as 2HWC+27HWG. The first
term corresponds to the input/output feature map size and
the second to the DCNv3’s offset and aggregation weights
with G groups. We approximate G as C/16 assuming a
group dimsion of 16, resulting in approximately 3.7HWC
memory access cost. However, this assumes an ideal sce-
nario of infinite cache and a single memory read for each
value, which is often unrealistic in parallel computing en-
vironments where concurrent thread execution necessitates
simultaneous data access.

H, W
(a) DCNv3 (b) DCNv4

C

channel group 1/2/3

G
PU

 m
em

or
y

of
 in

pu
t

memory access request 2x fewer memory
access cost

output tensor

G
PU

 m
em

or
y

of
 in

pu
t

H, W

C

output tensor
Thread-1

Thread-2

Thread-3

Thread-4

Thread-5

Thread-6

Thread-1

Thread-2

Thread-3

Figure 3. Illustration of our optimization. In DCNv4, we use one
thread to process multiple channels in the same group that shares
sampling offset and aggregation weights. Workloads like memory
reading and bilinear interpolation coefficient computation can be
reduced, and multiple memory access instructions can be merged.

To estimate the maximum memory access requirement,
we consider a scenario devoid of cache, where each output
location requires fresh memory reads and involves 36 reads
for bilinear interpolation, 27 for offset/aggregation weights,
and one write operation, resulting in a memory access cost
of 64HWC. This is 17 times larger than the ideal case.

This analysis reveals a substantial gap in the ratio of
computation-to-memory access (ranging from 0.6 to 9.7),
highlighting the significant potential for memory access opti-
mization. Notably, despite DCNv3’s use of input-dependent,
dynamic offsets causing non-deterministic memory access,
one deterministic thing is that channels within the same
group share offset values. This leads us to propose a specific
optimization strategy for enhancing DCNv3’s speed.
Eliminating redundant workload: In previous CUDA
implementations of DCN kernel, for input with shape
(H,W,C)1, offset (H,W,G,K2 × 2) and aggregation
weight (H,W,G,K2), we will create H×W×C threads in
total to maximize parallelism, where each thread processes
one channel for one output location. Notably, the D = C/G
channels within each group share the same sampling off-
set and aggregation weight values for each output location.
Using multiple threads to process these D channels on the
same output location is wasteful as different threads will
read the same sampling offset and aggregation weight val-
ues from GPU memory multiple times, which is critical for
a memory-bound operator. Processing multiple channels
within the same group on each output location with one
thread can eliminate these redundant memory read requests,
greatly reducing memory bandwidth usage. As the sampling
locations are the same, we can also only calculate the bilin-
ear interpolation coefficient used in DCN once. Specifically,
if each thread processes D′ channels, the memory access
cost for reading offset and aggregation weight, as well as
the computation cost for calculating bilinear interpolation
coefficient, can be reduced D′ times.

Eliminating redundant memory instructions: In prac-
tice, solely reusing threads for multiple channels will not

1We assume the batch size is 1 and memory layout is channel-last.

5655

Operator Runtime (ms)
56× 56× 128 28× 28× 256 14× 14× 512 7× 7× 1024 14× 14× 768

Attention (torch) 30.8 / 19.3 3.35 / 2.12 0.539 / 0.448 0.446 / 0.121 0.779 / 0.654
FlashAttention-2 N/A / 2.46 N/A / 0.451 N/A / 0.123 N/A / 0.0901 N/A / 0.163
Window Attn (7× 7) 4.05 / 1.46 2.07 / 0.770 1.08 / 0.422 0.577 / 0.239 1.58 / 0.604
DWConv (7× 7, torch) 2.02 / 1.98 1.03 / 1.00 0.515 / 0.523 0.269 / 0.261 0.779 / 0.773
DWConv (7× 7, cuDNN) 0.981 / 0.438 0.522 / 0.267 0.287 / 0.153 0.199 / 0.102 0.413 / 0.210
DCNv3 1.45 / 1.52 0.688 / 0.711 0.294 / 0.298 0.125 / 0.126 0.528 / 0.548
DCNv4 0.606 / 0.404 0.303 / 0.230 0.145 / 0.123 0.0730 / 0.0680 0.224 / 0.147

Table 2. Op-level benchmark on standard input shape with various downsample rates. FP32/FP16 results are reported when the
implementation is available. Our new DCNv4 can surpass all other commonly used operators under different input resolutions.

see speed improvement. The reason is that when D′ in-
creases, we create fewer threads and the workload of each
thread now increases D′ times. This essentially reduces
the degree of parallelism for the CUDA kernel. Luckily,
the DCN kernel is now computationally lightweight as the
bilinear interpolation only needs to be performed once for
all D′ channels, and most of the workload is the memory
instructions reading input values from different channels.
When the memory layout is channel-last, and all D′ chan-
nel values are contiguous, we can leverage vectorized load:
for example, to read four 32-bit float values from memory,
instead of reading one 32-bit float value four times with
four instructions, we can use a single instruction to load a
128-bit packed value at once, thus reducing the number of
instructions and execution time of each thread. We can ap-
ply similar technique when writing the final results to GPU
memory, minimizing the memory access time and increasing
memory bandwidth utilization. Moreover, the modern half-
precision data format (float16/bfloat16) halves the bytes that
need to be loaded, which means the memory efficiency can
be twice as much under the same memory bandwidth when
using the half-precision format. However, we do not see
speed improvement with half-precision data in the original
DCNv3 implementation, possibly due to too much overhead
on data access and computation, while in our new implemen-
tation, the speedup is significant. It is worth noting that the
aforementioned optimization techniques can also be applied
to DCNv1/v2 and deformable attention [48], as they share a
similar performance bottleneck and issue.

Micro design in DCN module: DCNv3 module intro-
duces multiple micro designs; as the core kernel is optimized,
their impact on the speed becomes non-negligible. We iden-
tify two points in DCNv3 designs that could be further op-
timized: first, after removing the softmax and transforming
the modulation scalar into dynamic aggregation weights as
mentioned in the previous paragraph. The linear layers for
computing offset and dynamic weights can actually be com-
bined into one linear layer. This reduces network fragmenta-
tion and eliminates extra overheads, such as kernel launching
and synchronization, enhancing run-time efficiency on the
GPU; second, in the original DCNv3 module design, a com-
plex sub-network that consists of depthwise 3×3 conv, layer

normalization (LN), GELU, and linear layer is used to com-
pute offsets and dynamic weights. Following the design in
Xception [6], we remove the additional LN-GELU layers
and use the original separable convolution structure, further
reducing running time. We empirically find that if latency
is a higher priority, the depthwise convolution can also be
removed with only a minor performance sacrifice.

4. Experiments
In this section, we verify the effectiveness of our proposed
DCNv4 module from both speed as well as performance
perspective. We benchmark the operator-level speed and
integrate DCNv4 into the backbone to test the system-level
performance. All speed test results are obtained with an
NVIDIA A100 80G SXM GPU. We include additional ex-
perimental results and implementation details in supp.

4.1. Speed Benchmark for Operators
Settings: We conduct the op-level benchmark by solely
measuring the running time of several representative opera-
tors building state-of-the-art vision backbone models, includ-
ing full attention [35] implemented with PyTorch as well as
the advanced FlashAttention-2 [8] implementation, window-
based attention with window size 7 × 7 [25], depthwise
convolution with 7× 7 window, implemented by cuDNN [5]
and ATen library from PyTorch [28], respectively. We only
benchmark the core operation for spatial aggregation, and
additional linear layers like qkv projection and output projec-
tion layers are excluded and not included in the runtime mea-
surement. Please refer to supp. for a more comprehensive
module-level comparison. We first consider a feature map
shape generated from the standard 224× 224 input resolu-
tion for image classification with 4, 8, 16, 32× downsample
ratio as used by common hierarchical ConvNet/transformer
backbones; we also add a feature map shape from isotropic
backbone like ViT with a downsampling ratio 16 and larger
hidden dimension. We further consider high-resolution in-
puts often used in downstream tasks like object detection.
We set the input shape to be 800 × 1280 and 1024 × 1024
for the hierarchical feature map and isotropic feature map,
respectively, as they are the common practice in object detec-
tion [15, 20]. Batch size is 64 and 1 for these two input sets,
respectively. For operators with a head/group concept, we

5656

Operator Runtime (ms)
200× 320× 128 100× 160× 256 50× 80× 512 25× 40× 1024 64× 64× 768

Attention (torch) OOM / OOM 25.4 / 12.9 2.88 / 1.89 0.490 / 0.309 4.17 / 2.57
FlashAttention-2 N/A / 13.2 N/A / 1.74 N/A / 0.285 N/A / 0.0797 N/A / 0.437
Window Attn (7× 7) 1.33 / 0.509 0.728 / 0.291 0.426 / 0.186 0.279 / 0.165 0.673 / 0.272
DWConv (7× 7, torch) 0.634 / 0.608 0.313 / 0.315 0.167 / 0.158 0.0943 / 0.0894 0.260 / 0.253
DWConv (7× 7, cuDNN) 0.331 / 0.282 0.188 / 0.168 0.114 / 0.115 0.0817 / 0.0881 0.161 / 0.156
DCNv3 0.472 / 0.493 0.244 / 0.253 0.128 / 0.132 0.0737 / 0.0767 0.194 / 0.199
DCNv4 0.210 / 0.136 0.124 / 0.0895 0.0707 / 0.0589 0.0452 / 0.0426 0.103 / 0.0672

Table 3. Op-level benchmark on high-resolution input shape with various downsample rates. DCNv4 performs well as a sparse operator,
surpassing all other baselines, while dense global attention is slow under this scenario.

set the dimension of each head/group to 32 and change the
number of heads/groups when the hidden dimension varies.
Results: We show the benchmark results on standard res-
olution and high-resolution input in Tab. 2 and Tab. 3. We
report results with both FP32 and FP16 data formats unless
the FP32 implementation is not available. Dense global at-
tention implemented with PyTorch performs significantly
slower when the input resolution is large and even out of
memory. FlashAttention significantly improves the speed
of attention and can be even faster than 7 × 7 window at-
tention in certain cases, indicating the importance of proper
optimization. However, it does not change the quadratic
complexity of attention; when the input resolution is high, it
still falls behind local/sparse operators like window attention
or convolution. While DCNv3 can be faster than DWConv
with plain implementation, it is slower than the heavily op-
timized cuDNN version. Instead, our DCNv4 can provide
more than 3× speedup compared to DCNv3, greatly saving
the running time. Moreover, DCNv4 can leverage the advan-
tage of using a 3× 3 sparse window to perform significantly
faster than other baselines under different settings.

4.2. Image Classification
Settings: We evaluate the effectiveness of DCNv4 on Im-
ageNet classification. We start from InternImage [38] as it
shows state-of-the-art performance among ConvNet-based
models. We replace the DCNv3 in InternImage with DCNv4
and create FlashInternImage. Other implementation de-
tails, including network architecture and hyperparameters,
are kept the same as [38]. We compare Swin-Transformer
and ConvNeXt which are two representative baselines in
Transformer and ConvNet models. We follow the common
practice [25, 26, 38] of training protocols, including data
augmentation, preprocessing, optimizer and learning rate
schedule, and train FlashInternImage-Tiny/Small/Base on
ImageNet-1K for 300 epochs. FlashInternImage-Large is
trained on ImageNet-22K for 90 epochs and then fine-tuned
on ImageNet-1K for 20 epochs. Other baselines share the
same setting for a fair comparison.

Results: Tab. 4 shows the results of models at various
scales. Besides the model size and training/inference resolu-
tion, we also report each model’s overall throughput (number

Model Size Scale Acc Throughput
Swin-T 29M 2242 81.3 1989 / 3619
ConvNeXt-T 29M 2242 82.1 2485 / 4305
InternImage-T 30M 2242 83.5 1409 / 1746

FlashInternImage-T 30M 2242 83.6 2316 / 3154
(+64%/+ 80%)

Swin-S 50M 2242 83.0 1167 / 2000
ConvNeXt-S 50M 2242 83.1 1645 / 2538
InternImage-S 50M 2242 84.2 1044 / 1321

FlashInternImage-S 50M 2242 84.4 1625 / 2396
(+56%/+ 81%)

Swin-B 88M 2242 83.5 934 / 1741
ConvNeXt-B 89M 2242 83.8 1241 / 1888
InternImage-B 97M 2242 84.9 779 / 1030

FlashInternImage-B 97M 2242 84.9 1174 / 1816
(+51%/+ 76%)

Swin-L 197M 3842 87.3 206 / 301
ConvNeXt-L 198M 3842 87.5 252 / 436
InternImage-L 223M 3842 87.7 158 / 214
ConvNeXt-XL 350M 3842 87.8 170 / 299
InternImage-XL 335M 3842 88.0 125 / 174

FlashInternImage-L 223M 3842 88.1 248 / 401
(+57%/+ 87%)

Table 4. Image classification performance on ImageNet-1K. We
show relative speedup between FlashInternImage w/ DCNv4 and
its InternImage counterparts. DCNv4 significantly improves the
speed while shows state-of-the-art performance.

of images per second) in FP32/FP16 data format. We use
timm [39] implementation of ConvNeXt and Swin Trans-
former, which is faster than the original implementation.
Equipped with DCNv4, FlashInternImage significantly im-
proves the throughput of the InternImage counterpart over
50% ∼ 80% and slightly improves the model performance.
FlashInternImage now matches the speed of ConvNeXt with
higher accuracy. It is noteworthy that FlashInternImage-S
can outperform ConvNeXt-B (84.4% vs. 83.8%) while be-
ing faster than it, showing a better speed-accuracy trade-off.
Moreover, the FlashInternImage-L can surpass ConvNeXt-
XL and InternImage-XL and being 30% ∼ 130% (401 vs.
174) faster, showing the effectiveness of our DCNv4 module.

4.3. Downstream Tasks with High-Resolution Input
We evaluate the performance of DCNv4 on representative
downstream perception tasks with high-resolution input, in-

5657

Model #param FPS
Mask R-CNN

1× 3×+MS
APb APm APb APm

Swin-T 48M 66 / 106 42.7 39.3 46.0 41.6
ConvNeXt-T 48M 78 / 113 44.2 40.1 46.2 41.7
InternImage-T 49M 54 / 69 47.2 42.5 49.1 43.7
FlashInternImage-T 49M 72 / 102 48.0 43.1 49.5 44.0
Swin-S 69M 45 / 77 44.8 40.9 48.2 43.2
ConvNeXt-S 70M 54 / 83 45.4 41.8 47.9 42.9
InternImage-S 69M 44 / 56 47.8 43.3 49.7 44.5
FlashInternImage-S 69M 57 / 83 49.2 44.0 50.5 44.9
Swin-B 107M 33 / 59 46.9 42.3 48.6 43.3
ConvNeXt-B 108M 43 / 70 47.0 42.7 48.5 43.5
InternImage-B 115M 33 / 43 48.8 44.0 50.3 44.8
FlashInternImage-B 115M 44 / 67 50.1 44.5 50.6 45.4

Model #param FPS
Cascade Mask R-CNN

1× 3×+MS
APb APm APb APm

Swin-L 253M 20 / 26 51.8 44.9 53.9 46.7
ConvNeXt-L 255M 26 / 40 53.5 46.4 54.8 47.6
InternImage-L 277M 20 / 26 54.9 47.7 56.1 48.5
ConvNeXt-XL 407M 21 / 32 53.6 46.5 55.2 47.7
InternImage-XL 387M 16 / 23 55.3 48.1 56.2 48.8
FlashInternImage-L 277M 26 / 39 55.6 48.2 56.7 48.9

Table 5. Object detection and instance segmentation perfor-
mance on COCO val2017. APb and APm denotes box AP and
mask AP, respectively. “MS” means multi-scale training. FlashIn-
ternImage w/ DCNv4 models converge faster, clearly outperform
other baselines with 1× training schedule, and still maintain a
leading position when training 3× longer while being significantly
faster than InternImage.

cluding instance segmentation, semantic segmentation and
3D object detection. We keep all implementation details the
same as InternImage and only change the backbone model.
The backbone models are initialized from the ImageNet pre-
trained weights when training the downstream models.

Instance Segmentation: We train FlashInternImage with
two representative instance segmentation frameworks, Mask
R-CNN [15] and Cascade Mask-RCNN [2], on COCO
dataset [23] at 1× (12 epochs) and 3× (36 epochs) train-
ing schedules. The results are shown in Tab. 5. We also
report FPS with batch size 16 in FP32/FP16 data format.
FlashInternImage shows superior results on all model scales
and training schedules, achieving a higher speed-accuracy
tradeoff. For example, FlashInternImage-T/S surpasses all
other models with the same scale and is on par with a larger
InternImage-S/B while being 80%− 90% faster.

Semantic Segmentation: We train FlashInternImage with
UperNet [41] on ADE20K [46] dataset for 160K iterations.
We can draw a similar conclusion as instance segmentation
from the results in Tab. 6, with FPS reported with batch
size 16 in FP32/FP16. FlashInternImage w/ DCNv4 can
achieve significantly faster speed and further improve the
performance of InternImage across different model scales,
resulting in a new state-of-the-art.

Model crop #param FPS mIoU mIoU
size (SS) (MS)

Swin-T 5122 60M 107 / 168 44.5 45.8
ConvNeXt-T 5122 60M 120 / 184 46.0 46.7
InternImage-T 5122 59M 100 / 139 47.9 48.1
FlashInternImage-T 5122 59M 119 / 206 49.3 50.3
Swin-S 5122 81M 89 / 142 47.6 49.5
ConvNeXt-S 5122 82M 107 / 164 48.7 49.6
InternImage-S 5122 80M 89 / 123 50.1 50.9
FlashInternImage-S 5122 80M 107 / 182 50.6 51.6
Swin-B 5122 121M 77 / 126 48.1 49.7
ConvNeXt-B 5122 122M 95 / 147 49.1 49.9
InternImage-B 5122 128M 77 / 104 50.8 51.3
FlashInternImage-B 5122 128M 94 / 157 52.0 52.6
Swin-L 6402 234M 59 / 99 52.1 53.5
ConvNeXt-L 6402 235M 73 / 117 53.2 53.7
InternImage-L 6402 256M 56 / 78 53.9 54.1
ConvNeXt-XL 6402 391M 53 / 75 53.6 54.0
InternImage-XL 6402 368M 47 / 67 55.0 55.3
FlashInternImage-L 6402 256M 71 / 122 55.6 56.0

Table 6. Semantic segmentation performance on the ADE20K
validation set. All models are trained with UperNet. “SS” and
“MS” denote single-scale and multi-scale testing, respectively. FPS
is reported with single-scale testing. FlashInternImage w/ DCNv4
achieves superior performance with competitive speed.

Model NDS mAP FPS† FPS
InternImage-B 62.0 54.0 8.0 2.7
InternImage-XL 63.4 55.6 4.0 2.0
FlashInternImage-S 61.7 55.5 16.8 4.1
FlashInternImage-B 63.1 57.4 12.1 3.8

Table 7. 3D detection performance of BEVFormer v2 on
nuScenes test set. We report backbone FPS (denoted with †),
overall FPS results with underoptimized head implementation are
also added for reference. With on-par NDS and higher mAP re-
sults, FlashInternImage can be 50− 90% faster than InternImage
baselines or 200%− 300% when only considering the backbone.

3D Detection: We further test DCNv4 on the camera-
based 3D object detection task in the autonomous driving
scenario, We train BEVFormer v2 [43], a state-of-the-art
multi-camera 3D object detector, with FlashInternImage-
Small and Base backbone models on the nuScenes dataset
for 24 epochs. We report results on the nuScenes test set in
Tab. 7 with FPS for each model. We note that the header
parts, such as the BEV encoder and object decoder in BEV-
Former v2, are underoptimized and take more than 50% of
the running time (and even more with a faster backbone);
thus, we also report the FPS for the backbone for a clearer
illustration. Our results show that when only considering
the backbone, FlashInternImage can be twice or even three
times faster than the InternImage backbone with an on-par
performance, greatly increasing the model efficiency.

4.4. DCNv4 as a Universal Operator

Drop-in replacement in other vision backbones : We
verify whether DCNv4 can still work well in architectures de-

5658

Model IN-1K Acc Throughput
ConvNeXt-B 83.8 1241 / 1888

ConvNeXt-B + DCNv4 84.0
1495 / 2513
(+20%/+ 33%)

ViT-B 81.8 1683 / 2781†

ViT-B + DCNv4 81.9
2092 / 3261
(+24%/+ 17%)

Table 8. DCNv4 in other architecture. We show supervised
learning results on ImageNet-1K and throughput. DCNv4 achieves
higher throughput with comparable accuracy. † denotes testing
with the advanced FlashAttention-2 implementation.

Model #param FID FPS
U-Net 860M 2.94 4.82
U-Net + DCNv4 566M 2.44 4.92

Table 9. Class conditional generation on ImageNet 256x256.
Latent diffusion models are trained from scratch with U-Net. We
replace the convolution layer in the models with DCNv4. DCNv4
can achieve better FID results without any hyperparameter tuning.

signed with other operators, such as ConvNeXt and ViT. To
achieve that, we replace the attention module and depthwise
convolution layer with DCNv4 in ViT and ConvNeXt and
perform supervised learning on ImageNet-1K without chang-
ing any other architecture and hyperparameters, similar to
FlashInternImage and InternImage. The results are shown
in Tab. 8. We can see that on these architectures, which are
carefully tuned for the specific operators, our DCNv4 can
perform equally well. Thanks to the fast speed of DCNv4,
the new model can even achieve better throughput, showcas-
ing the superior performance of DCNv4.

Drop-in replacement in diffusion model: DCN has been
recognized to be an effective operator for perception tasks.
As generative models become a fundamental tool for AI-
generated content (AIGC), we are also curious if DCNv4
can work well on generation tasks with diffusion-based gen-
erative models. Specifically, we choose the U-Net [30] used
in Stable Diffusion [29] as our baselines and replace the at-
tention module and regular 3× 3 convolution in U-Net. We
use U-ViT’s codebase, follow its training schedule, and train
a latent diffusion model based on the image latent extracted
from an image autoencoder provided by Stable Diffusion.
We show the results in Tab. 9. We can see that DCNv4
also works well in generative modeling, achieving better
results in terms of FID/Throughput with fewer parameters
compared to regular convolution in U-Net. Notice that the ar-
chitecture/hyperparameters may not be optimal for DCNv4,
and it is possible that re-designing the models or searching
for new hyperparameters for DCNv4 will give better results.

4.5. Ablation Study

We conduct ablation studies in our optimization choice de-
scribed in Sec. 3.2. The results are shown in Tab. 10. The
time in the table is obtained with 56× 56× 128 input with

Implementation variant Module Kernel
Original DCNv3 3.28 1.45
- micro design 2.12 1.45
- redundant memory access 2.20 1.53
- redundant computation 2.18 1.51
- redundant memory instr. 1.28 0.606
- half-precision format 0.873 0.404

Table 10. Ablation studies of DCN’s runtime (ms). We show how
to achieve DCNv4 (gray row) from the original DCNv3 implemen-
tation and how different design choices affect the speed.

batch size 64 and 4 groups (32 channels per group). We
first remove the softmax operation and improve the micro
design, which means we merge the two linear layers into
one and remove costly layer norm and GELU activation in
offset/aggregation weight computing, simplifying the overall
modules and increasing the speed. We then start modifying
the kernel implementation. First, we change the parallel exe-
cution pattern and let each thread process 8 channels instead
of 1 channel, thus, unnecessary memory access on loading
sampling offset and aggregation weight values from the GPU
memory can be saved. As we expected, solely applying this
change will not increase the speed as the degree of paral-
lelism decreases, and each thread’s workload increases 8
times now. The latency is increased instead. Eliminating
redundant computation by reusing the bilinear interpolation
coefficient (4th row) can save some time but is insignificant.
Removing the redundant memory instruction via vectorized
load/store can greatly reduce the workload of each thread
and largely accelerate the GPU kernel speed (5th row). Us-
ing a half-precision datatype, which halves the number of
bytes the kernel needs to read/write, further increases the
data throughput, as shown in the 6th row. In the end, we
reach the final DCNv4 design, which is three times more
efficient than the original implementation.

5. Conclusion
We present Deformable Convolution v4 (DCNv4), an effi-
cient dynamic and sparse operator. By rethinking the dy-
namic property in deformable convolution and streamlining
memory access, DCNv4 emerges as a much faster and more
effective operator than its predecessor DCNv3. DCNv4-
equipped FlashInternImage backbone not only enhances
speed but also improves performance across various vision
tasks. We further show DCNv4’s versatility and effectiveness
as a universal operator by integrating it into state-of-the-art
architecture like ConvNeXt and ViT with improved through-
put and accuracy; and it also works well in latent diffusion
model, showing its potential to enhance generative models.

Acknowledgement
The work is supported by the National Key R&D
Program of China (NO. 2022ZD0161300), by the Na-
tional Natural Science Foundation of China (62376134).

5659

References
[1] Saehyun Ahn, Jung-Woo Chang, and Suk-Ju Kang. An effi-

cient accelerator design methodology for deformable convo-
lutional networks. In 2020 IEEE International Conference on
Image Processing (ICIP), pages 3075–3079. IEEE, 2020. 2

[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving
into high quality object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
6154–6162, 2018. 7

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In European con-
ference on computer vision, pages 213–229. Springer, 2020.
2

[4] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander
Kirillov, and Rohit Girdhar. Masked-attention mask trans-
former for universal image segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1290–1299, 2022. 2

[5] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shel-
hamer. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv:1410.0759, 2014. 5

[6] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 2, 3, 5

[7] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang,
Han Hu, and Yichen Wei. Deformable convolutional net-
works. In Proceedings of the IEEE international conference
on computer vision, pages 764–773, 2017. 2

[8] Tri Dao. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023. 5

[9] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344–16359, 2022. 2, 3

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 2

[11] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Scaling up your kernels to 31x31: Revisiting large
kernel design in cnns. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
11963–11975, 2022. 2

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International Conference
on Learning Representations, 2020. 1, 2, 3

[13] Qi Han, Zejia Fan, Qi Dai, Lei Sun, Ming-Ming Cheng, Ji-
aying Liu, and Jingdong Wang. On the connection between

local attention and dynamic depth-wise convolution. arXiv
preprint arXiv:2106.04263, 2021. 2

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, 2017. 1, 5, 7

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 2012. 2

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
2

[18] Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok
Bae, and Jongyoul Park. An energy and gpu-computation
efficient backbone network for real-time object detection. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pages 0–0, 2019. 2

[19] Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang,
Lionel M Ni, and Heung-Yeung Shum. Mask dino: Towards a
unified transformer-based framework for object detection and
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3041–
3050, 2023. 2

[20] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. In European Conference on Computer Vision, pages
280–296. Springer, 2022. 5

[21] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao
Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer: Learn-
ing bird’s-eye-view representation from multi-camera images
via spatiotemporal transformers. In European conference on
computer vision, pages 1–18. Springer, 2022. 2

[22] Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima Anand-
kumar, Jose M Alvarez, Ping Luo, and Tong Lu. Panoptic
segformer: Delving deeper into panoptic segmentation with
transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1280–1289,
2022. 2

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V 13, pages 740–755. Springer, 2014. 7

[24] Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun.
Petr: Position embedding transformation for multi-view 3d
object detection. In European Conference on Computer Vi-
sion, pages 531–548. Springer, 2022. 2

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 1, 2, 3, 5, 6

5660

[26] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11976–11986,
2022. 1, 2, 6

[27] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, 2018. 2, 3, 4

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
5

[29] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 2, 8

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 2, 8

[31] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li,
Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael
Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Pho-
torealistic text-to-image diffusion models with deep language
understanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022. 1

[32] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[33] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmentation.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 7262–7272, 2021. 2

[34] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6411–6420, 2019. 2

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2, 5

[36] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki
Parmar, Blake Hechtman, and Jonathon Shlens. Scaling local
self-attention for parameter efficient visual backbones. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12894–12904, 2021. 2

[37] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric contin-
uous convolutional neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 2589–2597, 2018. 2

[38] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi
Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu, Hongsheng
Li, et al. Internimage: Exploring large-scale vision foundation
models with deformable convolutions. In CVPR, 2023. 1, 2,
6

[39] Ross Wightman. Pytorch image models. https:
/ / github . com / rwightman / pytorch - image -
models, 2019. 6

[40] Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and
Michael Auli. Pay less attention with lightweight and dynamic
convolutions. arXiv preprint arXiv:1901.10430, 2019. 2

[41] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian
Sun. Unified perceptual parsing for scene understanding. In
Proceedings of the European conference on computer vision
(ECCV), pages 418–434, 2018. 1, 7

[42] Yuwen Xiong, Mengye Ren, Renjie Liao, Kelvin Wong, and
Raquel Urtasun. Deformable filter convolution for point cloud
reasoning. arXiv preprint arXiv:1907.13079, 2019. 2

[43] Chenyu Yang, Yuntao Chen, Hao Tian, Chenxin Tao, Xizhou
Zhu, Zhaoxiang Zhang, Gao Huang, Hongyang Li, Yu Qiao,
Lewei Lu, et al. Bevformer v2: Adapting modern image back-
bones to bird’s-eye-view recognition via perspective supervi-
sion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 17830–17839,
2023. 2, 7

[44] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lu-
cas Beyer. Scaling vision transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12104–12113, 2022. 1

[45] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr
with improved denoising anchor boxes for end-to-end object
detection. arXiv preprint arXiv:2203.03605, 2022. 2

[46] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
riuso, and Antonio Torralba. Scene parsing through ade20k
dataset. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 633–641, 2017. 7

[47] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2019. 2

[48] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In International Conference
on Learning Representations, 2020. 2, 5

5661

