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Figure 1. We introduce MVHumanNet, a large-scale dataset of multi-view human images with unprecedented scale in human subjects,
daily outfits, motion sequences and frames. Top left and right: Examples of multi-view poses featuring different human identities with
various daily dressing in our dataset. Top middle: Our multi-view capture system includes 48 cameras of 12MP resolution. Bottom:
Comprehensive visualization of all 9000 outfits in our MVHumanNet. Refer to GAP-LAB-CUHK-SZ/MVHumanNet.

Abstract
In this era, the success of large language models and

text-to-image models can be attributed to the driving force
of large-scale datasets. However, in the realm of 3D vi-
sion, while remarkable progress has been made with mod-
els trained on large-scale synthetic and real-captured ob-
ject data like Objaverse and MVImgNet, a similar level of
progress has not been observed in the domain of human-
centric tasks partially due to the lack of a large-scale hu-
man dataset. Existing datasets of high-fidelity 3D hu-
man capture continue to be mid-sized due to the signifi-
cant challenges in acquiring large-scale high-quality 3D
human data. To bridge this gap, we present MVHuman-
Net, a dataset that comprises multi-view human action se-
quences of 4,500 human identities. The primary focus of
our work is on collecting human data that features a large
number of diverse identities and everyday clothing using a

multi-view human capture system, which facilitates easily
scalable data collection. Our dataset contains 9,000 daily
outfits, 60,000 motion sequences and 645 million frames
with extensive annotations, including human masks, cam-
era parameters, 2D and 3D keypoints, SMPL/SMPLX pa-
rameters, and corresponding textual descriptions. To ex-
plore the potential of MVHumanNet in various 2D and 3D
visual tasks, we conducted pilot studies on view-consistent
action recognition, human NeRF reconstruction, text-driven
view-unconstrained human image generation, as well as
2D view-unconstrained human image and 3D avatar gen-
eration. Extensive experiments demonstrate the perfor-
mance improvements and effective applications enabled by
the scale provided by MVHumanNet. As the current largest-
scale 3D human dataset, we hope that the release of MVHu-
manNet data with annotations will foster further innova-
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tions in the domain of 3D human-centric tasks at scale.

1. Introduction
In recent years, the exponential advancements of AI have

been largely driven by the massive amounts of data. In
computer vision, with the emergency of SA-1B [38] and
LAION-5B [62], models like SAM [38] and Stable Diffu-
sion [58] have greatly benefited from these large volumes of
data, enabling zero-shot transfer to downstream tasks. Sub-
sequently, Objaverse [18, 19] and MVImgNet [75] break
barriers of 3D data collection with large-scale synthetic 3D
assets and real-world multi-view capture, which support
Zero123 [45] and LRM [29] models to achieve impressive
generalization ability of multi-view or 3D reconstruction.
However, comparable progress on human-centric tasks still
remained elusive due to the limited scale of 3D human data.

Compared to collecting 3D object datasets, capturing
high-quality and large-scale 3D human avatars is more
time-consuming in the same order of scale. Existing 3D
human datasets can be categorized into two distinct repre-
sentations: 3D human scans and multi-view human images.
While 3D human scan data [57, 74] provides accurate ge-
ometric shapes, it comes with high acquisition costs which
leads to limited data scale. Conversely, multi-view capture
provides an easier way to collect 3D human data. Previ-
ous multi-view human datasets [31, 41, 55] involve only a
few dozen human subjects. Recent advances in multi-view
human performance data [12, 13] narrow the gap of data
scarcity which provides more diverse and representative hu-
man data for establishing reasonable benchmarks. To en-
sure comprehensiveness, it is necessary for these datasets to
consider the complex clothing and the uncommon human-
object interaction. However, incorporating these factors in-
troduces complexities for scaling up the dataset.

To scale up the 3D human data, we present MVHuman-
Net, a large-scale multi-view human performance capture
dataset. Our dataset primarily focuses on casual clothing
commonly found in everyday life, enabling to easily ex-
pand the scale of human data collection. For the hard-
ware setup, we establish two 360-degree indoor systems
equipped with 48 and 24 calibrated RGB cameras, respec-
tively, to capture high-fidelity videos with resolutions up to
12MP (4096 × 3000) and 5MP (2048 × 2448). Consider-
ing the capture of human data, we intend to cover a wide
range of attributes among human subjects, including age,
body shape, motion, as well as the colors, types, and mate-
rials of dressing, enabling our dataset as diverse as possible.
Furthermore, we also design 500 motion types to guarantee
coverage of daily scenarios. Overall, we invite 4,500 in-
dividuals to participate in the data capture process. Each
participant is recorded in two distinctive outfits (9,000 in
total) and at least seven different motion sequences. Thanks

to the targeted collection of everyday clothing, data cap-
ture for each participant has been accomplished efficiently
within six months. Eventually, the full dataset comprises an
extensive collection of 60,000 motion sequences with over
645 million frames. Compared with the existing multi-view
human datasets [12, 30, 31, 55], MVHumanNet provides a
significantly larger number of human subjects and outfits
than previously available. Furthermore, MVHumanNet sur-
passes the recently proposed DNA-Rendering [13] dataset
by an order of magnitude in terms of motion and frame
data. The detailed comparisons between MVHumanNet and
other relevant datasets are shown in Tab. 1.

In order to benefit downstream human-centric tasks, we
also provide essential annotations including action labels,
camera intrinsics and extrinsics, human masks, 2D/3D key-
points, SMPL/SMPLX parameters and text descriptions to
enhance the applicability of our dataset. To thoroughly ex-
plore the capabilities of our dataset, we carefully design
four pilot experiments: a) view-consistent action recog-
nition, b) NeRF reconstruction for human, c) text-driven
view-unconstrained human image generation, and d) 2D
view-unconstrained human image and 3D avatar genera-
tion. First, leveraging the multi-view nature of human cap-
ture data, we can achieve more accurate view-consistent
action recognition and enhance the generalization capa-
bility of NeRF as the data scale increases. Furthermore,
the unprecedented scale of subjects and outfits, along with
pose sequences and paired textual descriptions, allows us to
finetune a remarkable text-driven, pose-conditioned high-
quality human image generation model. Finally, through the
exploitation of multi-view human images on a large scale,
we can obtain 2D/3D full-body human generative models
with promising results. The aforementioned experiments
reveal the promise and opportunities with the large-scale
MVHumanNet datasets to boost a wide range of digital hu-
man applications and inspire future research.

In summary, the main contributions of our work include:
• We present the largest multi-view human capture

dataset, which is nearly ten times larger than the re-
cently proposed DNA-Rendering dataset in terms of
human subjects, motion sequences, and frames.

• We conduct several pilot studies that demonstrate the
proposed MVHumanNet can support various down-
stream human-centric tasks for effective applications.

• We believe that MVHumanNet opens up new possibil-
ities for research in the field of 3D digital human.

2. Related Work
3D Human Reconstruction and Generation. Recently,
we have witnessed impressive performance in the field of
image generation, 3D reconstruction and novel view syn-
thesis in computer vision community with the emergency
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Dataset Age Cloth Motion #ID #Outfit #Actions #View #Frames Resolution

Human3.6M [31] % % " 11 11 17 4 3.6M 1000P
CMU Panoptic [35] " % " 97 97 65 31 15.3M 1080P

MPI-INF-3DHP [50] % % " 8 8 − 14 1.3M 2048P
NHR [71] % % " 3 3 5 80 100K 2048P

ZJU-MoCap [55] % % " 10 10 10 24 180K 1024P
Neural Actor [44] % % " 8 8 − 11∼100 250K 1285P

HUMBI [76] " " % 772 772 − 107 26M 1080P
AIST++ [41] % % % 30 30 − 9 10.1M 1080P

THuman 4.0 [81] % % " 3 3 − 24 10K 1150P
HuMMan [5] % " " 1000 1000 500 10 60M 1080P

GeneBody [12] " " " 50 100 61 48 2.95M 2048P
ActorsHQ [30] % % " 8 8 52 160 40K 4096P

DNA-Rendering [13] " " " 500 1500 1187 60 67.5M 4096P

MVHumanNet(Ours) " " " 4500 9000 500 48 645.1M 4096P

Table 1. Dataset comparison on existing multi-view human-centric datasets. MVHumanNet provides a significantly larger number of
human subjects and outfits than previous datasets available, regarding the number of identities (#ID), outfits in total (#Outfit) and frames
of images (#Frames). Attributes among humans, including age, cloth and motion are covered (denoted by ✓ for inclusion and ✗ for
exclusion.). Cells highlighted in denotes the dataset with best and second-best feature in each column.

of Generative Adversarial Networks (GANs) [23, 32, 36],
Neural Implicit Function [11, 51, 54] and Neural Radiance
Field (NeRF) [52, 53]. These successes inspire subsequent
works [20, 40, 55, 60] to extend reconstruction and genera-
tion tasks to high-fidelity clothed full-body humans. Many
efforts have also been made to combine 2D GANs with
NeRF representations for 3D-aware, photo-realistic image
synthesis. EG3D [7] proposes the 3D-aware generation of
multi-view face images by introducing an efficient tri-plane
representation for volumetric rendering. GET3D [22] uti-
lizes two separate latent codes to generate the SDF and tex-
ture field, enabling the generation of textured 3D meshes.
EVA3D [27] extends EG3D to learn generative models
with human body priors for 3D full-body human gener-
ation from a collection of 2D images. HumanGen [33]
and Get3DHuman [72] further incorporate the priors of
StyleGAN-Human [21] and PIFuHD [61] for generative hu-
man model construction. In addition, Text2Human [34] and
AvatarClip [28] explore to leverage the powerful vision-
language model CLIP [56] for text-driven 2D and 3D hu-
man generation. However, the reconstruction, generation
and novel view synthesis works can only utilize limited real-
world human data, which consequently affects the general-
izability of their models. Moreover, the current methods
of human generation often train their models on datasets
comprising only front-view 2D human images [21, 46] or
monocular human videos [77]. Unfortunately, these ap-
proaches fail to produce satisfactory results when altering
the input image across various camera viewpoints. In this
work, we provide the current largest scale of multi-view hu-

man capture images along with text descriptions to facilitate
3D human-centric tasks.

3D Human Scanning Datasets. Understanding human ac-
tions and reconstructing detailed body geometries with re-
alistic appearances are challenging tasks that require high-
quality and large-scale human data. Early works [3, 4, 78]
in this field provide dynamic human scans but with limited
data consisting of only a few subjects or simple postures.
Parallel works such as Northwestern-UCLA [69] and NTU
RGB+D series [43, 63] utilize more affordable Kinect sen-
sors to obtain depth and human skeleton data, enabling the
capture of both appearance and action cues. However, due
to the limitations in the accuracy of Kinect sensors, these
datasets are inadequate for precise human body modeling.
Subsequently, AMASS [49] further integrates traditional
motion capture datasets [15, 59] and expands them with
fully rigged 3D meshes to facilitate advancements in hu-
man action analysis and body modeling research. With the
emergency of learning-based digital human techniques, rel-
evant algorithms [9, 60, 61, 73] heavily rely on human scan
datasets with high-fidelity 3D geometry and corresponding
images. Several studies [26, 48, 64, 74, 79, 80] capture their
own datasets and release the data to the public for research
purposes. Additionally, there are several commercial scan
datasets [1, 2, 57, 66] that are well-polished and used for re-
search to ensure professional quality. These datasets play a
foundational role in bridging the gap between synthetic vir-
tual avatars and real humans. However, the aforementioned
datasets typically exhibit a bias towards standing poses due
to the complicated capture procedure and cannot afford for
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large-scale data collection.
Multi-view Human Capturing Datasets. Multi-view cap-
ture holds an indispensable role in computer vision, serv-
ing as a fundamental technique for AR/VR and 3D con-
tent production. Prior works [67, 68] present multi-view
stereo systems to collect multi-view human images and ap-
ply multi-view constraints to reconstruct 3D virtual charac-
ters. Human3.6M [31] captures numerous 3D human poses
using a marker-based motion capture system from 4 cam-
eras. MPI-INF-3DHP [50] annotates both 3D and 2D pose
labels for human motion capture in a multi-camera studio.
CMU Panoptic [35] presents a massively multiview sys-
tem consisting of 31 HD Cameras to capture social inter-
action and provides 3D keypoints annotations of multiple
people. HUMBI [76] collects local human behaviors such
as gestures, facial expressions, and gaze movements from
multiple cameras. AIST++ [41, 65] is a dance database
that contains various 3D dance motions reconstructed from
real dancers with multi-view videos. These datasets pri-
marily focus on human activity motions ranging from daily
activities to professional performances, rather than factors
related to identity, cloth texture and body shape diversity.
With the recent progress of neural rendering techniques,
NHR [71], ZJU-Mocap [55], Neural Actor [24, 25, 44] and
THuman4.0 [81] present their multi-view human dataset
for evaluating the proposed human rendering algorithms.
HuMMan [5] and Genebody [12] expand the diversity of
pose actions and body shapes for human action recognition
and modeling. ActorsHQ [30] uses dense multi-view cap-
turing for photo-realistic novel view synthesis but is lim-
ited to 16 motion sequences and 8 actors. Recently, with
the presence of the large-scale synthetic data and real cap-
tures from Objaverse [18, 19] and MVImgNet [75], sev-
eral methods [29, 45] have made remarkable strides in the
direction of open-world 3D reconstruction and generation.
The concurrent work, DNA-Rendering [13] emphasizes the
comprehensive benchmark functionality, but it encounters
challenges in expanding the dataset to a larger scale due to
the consideration of unusual human-object interactivity and
clothes texture complexity. Differing from these efforts, we
take a significant step forward in scaling up the human sub-
jects and outfits, leading to the creation of MVHumanNet,
the multi-view human capture dataset on the largest scale.

3. MVHumanNet
In this section, we provide a comprehensive overview of

the core features of MVHumanNet, with a focus on dataset
construction. We discuss the hardware capture system, data
collection arrangements, dataset statistics, and data pre-
processing. Sec. 3.1 provides an illustration to the funda-
mental aspects of the data acquisition system. This part
specifically outlines the key components of the hardware
capture system and its capabilities. Sec. 3.2 delves into

the actual data acquisition process, providing detailed in-
formation on personnel arrangement and the protocols fol-
lowed during data collection. This section elucidates the
steps taken to ensure the accuracy and consistency of the
acquired data. Finally, in Sec. 3.3, we present a comprehen-
sive framework that combines manual annotation and ex-
isting algorithms to obtain diverse and rich annotations for
MVHumanNet. This framework enhances the applicability
of our dataset for various research purposes.

3.1. Multiview Synchronized Capture System

We collected all the data using two sets of synchronized
indoor video capture systems. In this section, we provide
a detailed account of one system, while supplementary ma-
terials contain additional information about the second sys-
tem. The primary framework of the capture system consists
of 48 high-definition industrial cameras with a resolution of
12MP. These cameras are arranged in a multi-layer structure
resembling a 16-sided prism, as shown in Fig. 1. The col-
lection system has approximate dimensions of 2.4 meters in
height and a diameter of roughly 4.5 meters. Each prism
within the system is equipped with three 4K high-definition
industrial cameras positioned at different heights.The lenses
of each camera are meticulously aligned towards the center
of the prism. To ensure clear image capture from different
perspectives, we have placed light sources at the center of
each edge of the system. During the data collection pro-
cess, the frame rate of all cameras is set to 25 frames per
second, enabling the capture of smooth and detailed mo-
tion sequences. For more comprehensive technical details,
please refer to the supplementary materials.

3.2. Data Capture and Statistics

Data Capture To capture the wide range of dressing habits
observed in people’s daily lives, we establish a comprehen-
sive process for performer recruitment and data collection.
Specifically, at regular intervals, we release targeted recruit-
ment requests to the public based on the statistics derived
from the already collected clothing data. This strategy aims
to enhance the diversity of clothing styles and colors for
more reasonable human data distributions to achieve more
reasonable human data distributions. In accordance with
the clothing requirements, each performer is instructed to
bring two sets of clothing to the capture system. Prior to the
beginning of the capturing, performers randomly select 12
sets of actions from a predefined pool of 500 actions. Subse-
quently, they enter the capture system and sequentially per-
form the first six sets of actions, following instructions pro-
vided by the collection personnel. Each action is performed
at least once on both the left and right sides for complete ex-
ecution of the human performance capture. Upon complet-
ing the sixth set of actions, the performer finishes the first
collection session by extending their hands to an A-pose
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Figure 2. The distribution of performers’ attributes. The gen-
der, age, weight, and height of performers are recorded and care-
fully controlled. The statistical analysis of these attributes reflects
a diverse range among the performers involved in MVHumanNet.

and rotating in place twice. Subsequently, the performer
changes outfit and repeats the same process to complete the
remaining six sets of actions with rotations in place.
Data Statistics The essential statistics of our dataset are
shown in Fig. 2 and Fig. 3. MVHumanNet comprises a
total of 4,500 unique identities with a equitable distribu-
tion of 2,300 male and 2,200 female individuals, ensuring
a balanced representation of genders. Participants are re-
quired to fall within the age range of 15 to 75 years old.
This age range is chosen to encompass a wide spectrum of
performers while considering the potential impact of age on
the quality and capabilities of their actions. Conversely, no
restrictions are imposed on performers’ weight or height,
as these variables are deemed to have minimal impact on
the data collection process. By not imposing such limita-
tions, we aim to capture a more diverse and realistic repre-
sentation of subjects in the dataset, allowing for a broader
range of body types and proportions. Our dataset boasts the
largest number of unique identities and garment items when
compared to existing multi-view human dataset . It encom-
passes a wide range of everyday clothing styles and colors
that are commonly available in real-world scenarios.

3.3. Data Annotation

To enable the advancement of applications in 2D/3D
human understanding, reconstruction and generation, our
dataset offers comprehensive and diverse annotations along-
side the raw data. These annotations include action lo-
calization, attribute description, human masks, camera cal-
ibrations, 2D/3D skeleton, and parametric model fitting.
The annotation pipeline, as depicted in Fig. 4, provides an
overview of the entire process.
Manually Annotation Before capturing human data, we
collect the cloth color and dress type of each performer in
the registration table for further manual textual description.
During the data collection process, we ensure a continuous
flow as performers execute a sequence of six distinct ac-

Figure 3. The garment type and color distribution of outfits
of performers. Diverse colors and types of dressing are required
for each invited performer. The statistical results show the wide
coverage of daily clothes.

tions along with in-place rotations. Subsequently, after the
recording session, we manually mark the breakpoints for
each action, accurately documenting the start and end of
each action sequence. Moreover, the supplementary mate-
rials provide comprehensive records and annotations of the
performers’ basic attributes and outfits. For further details,
please refer to the supplementary materials.
Human Mask Segmentation MVHumanNet comprises
approximately 645 million images of individuals captured
from various perspectives. Manual segmentation of such a
massive image collection is obviously infeasible. To tackle
this challenge, we propose a hierarchical automated im-
age segmentation approach based on off-the-shelf segmen-
tation algorithms. Our approach follows a coarse-to-fine
segmentation strategy. Initially, we employ the RVM [42] to
obtain efficient rough segmentation results. Subsequently,
the rough segmentation outcomes are utilized to generate a
bounding box of the performer, which serves as a prompt for
the SAM [39] to produce higher-quality masks. In Fig. 4,
the bottom-left region presents a comparison between the
coarse and fine segmentation results.
Camera Calibration We utilized a commercial solution
based on CharuCo boards to achieve fast and efficient cam-
era calibration. Specifically, we position a CharuCo pat-
terned calibration board at the central location of the cap-
ture studio. This ensures that each camera can capture a
clear and complete view of the calibration board. With the
aid of specific software, we obtain the intrinsic, extrinsic
parameters and distortion coefficient for each camera. We
also carefully adjust parameters, such as lighting, exposure,
and camera white balance to capture high-quality data.
2D/3D Skeleton and Parametric Models Following the
previous works [5, 12, 13] and with the goal of facilitat-
ing extensive research and applications in 3D digital hu-
man community, we conducted pre-processing on the entire
dataset to obtain corresponding 2D/3D skeletons and two
parameterized models. The processing pipeline is visually
depicted in the bottom-right section of Fig. 4. Specifically,
we employed the OpenPose [6] to predict 2D skeletons for
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Figure 4. Data annotation pipeline. The manual and automatic
annotation pipeline for action localization, text description, masks,
2D/3D keypoints and parametric models.

each frame of the images. Leveraging the calibrated cam-
era parameters, multi-view 2D skeletons, and optimization
algorithms [17], we derived the 3D skeletons from multi-
view triangulation. Finally, SMPL/SMPLX parameters are
fitted with the constrains of multi-view 2D keypoints and
3D skeletons. All these labeled data support MVHumanNet
to be applied to various tasks.

4. Experiments

In this section, we present a comprehensive series of ex-
ploratory experiments conducted in the human action un-
derstanding, reconstruction, and generation tasks. Specif-
ically, Sec. 4.1 focuses on showcasing experiments per-
taining to view-consistent action recognition. As the
dataset expands from single-view 2D data to multi-view 3D
data, existing algorithms may encounter new challenges.
In Sec. 4.2, we demonstrate experiments on generalizable
NeRF (Neural Radiance Fields) reconstruction approaches,
emphasizing the augmented model performance and gen-
eralization capabilities resulting from the increased avail-
ability of data. At last, in Sec. 4.3 and Sec. 4.4, we delve
into recent research tasks, specifically text-driven view-
unconstrained image generation and 3D human avatar gen-
erative model. Taking into account the size of the dataset,
hardware limitations, and data annotation constraints, we
performed experiments utilizing 62% of the available data.

Train
views

CTR-GCN[10] InfoGCN[14] FR-Head[82]

Top-1
(%)↑

1-view
2-views
4-views
8-views

33.85
60.33
72.16
76.73

25.23
55.89
73.59
76.55

30.25
59.16
71.74
78.19

Top-5
(%)↑

1-view
2-views
4-views
8-views

51.08
80.09
88.32
91.34

37.14
75.00
89.02
91.00

50.59
78.80
88.67
92.45

Table 2. Performance comparison of skeleton-based action recog-
nition SOTA methods on MVHumanNet. With the increase of the
views, the accuracy of the action prediction increases together.

More precisely, we employed 2800 identities, each repre-
senting a unique set of attire, amounting to a total of 5500
sets. Within this subset, 10% of the data was reserved ex-
clusively for testing purposes.

4.1. View-consistent Action Recognition

MVHumanNet provides action labels with 2D/3D skele-
ton annotations, which can verify its usefulness on action
recognition tasks. To simulate real-world scenarios, we em-
ployed single-view 2D skeletons as input and conducted
tests on a multi-view test set that accurately represented real
scenes. Our experimentation involved 8 viewpoints spaced
at 45-degree intervals. The training data encompassed ap-
proximately 4000 outfits, while the testing data included
400 outfits, covering a total of 500 action labels. The re-
sults, presented in Tab. 2, reveal that the accuracy of action
estimation was notably low for a single viewpoint, achiev-
ing a top-1 accuracy of only around 30%. However, as the
number of input viewpoints increased, the accuracy of ac-
tion estimation exhibited a significant improvement, peak-
ing at 78.19%. Given that the dataset covers a comprehen-
sive range of daily full-body actions, we possess confidence
in its efficacy for facilitating diverse understanding tasks.
Considering the challenges associated with acquiring 3D
skeletons in everyday life, see supplementary for the results
of 3D skeleton-based action recognition.

4.2. NeRF Reconstruction for Human

MVHumanNet can also be applied to NeRF reconstruc-
tion for human. Currently, human-centric methods, e.g. GP-
NeRF [8], are developed in the context of lacking multi-
view human data and their performance is still far from
satisfactory on more diverse testing cases. We hope our
proposed MVHumanNet can motivate more extensive stud-
ies of generalizable NeRF for human with sufficiently large
scale of data. We empirically explore the performance of
two distinct generalizable NeRFs methods, IBRNet [70]
which is designed for general scenes and GPNeRF [8]
which relies on human prior (i.e. SMPL [47]), using varying
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Number of
outfits

IBRNet [70] GPNeRF [8]
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

100 26.05 0.9571 0.0555 23.27 0.8688 0.2077
2000 27.45 0.9638 0.0486 24.14 0.8779 0.2137
5000 29.00 0.9706 0.0377 24.69 0.8878 0.1961

Table 3. Quantitative comparison of generalizable NeRFs with
different scales of data for training. We compare the results of
methods with human prior and without human prior. We refer
human prior to the commonly used SMPL model.

Figure 5. The novel view synthesis results of IBRNet and GPN-
eRF on unseen data of MVHumanNet. GT means ground truth.
The number of 100, 2000, and 5000 indicate the respective quan-
tities of outfits utilized during the training process.

Method IBRNet [70] GPNeRF [8]
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Train from scratch 28.06 0.9679 0.0437 20.95 0.9049 0.1809
w/o fintune 27.48 0.9663 0.0440 20.15 0.8921 0.2050
w/ fintune 29.46 0.9734 0.0323 21.89 0.9252 0.1364

Table 4. Using MVHumanNet to pretrain a strong model.
We first train the representative methods on MVHumanNet, and
then finetune the trained models on the train set of HuMMan [5].
We compare the performance of the finetuned models and models
trained from scratch on the test set of HuMMan.

amounts of data for training. In our experiment, both ap-
proaches utilize four evenly distributed views as input and
inference the novel view results. The quantitative compar-
isons of the outcomes are presented in Tab. 3, while the
visualization results can be found in Fig. 5. Experimental
results confirm that as the training data increases, the model
exhibits enhanced generalization capabilities for new cases,
especially when facing rare poses and complex garments.
Moreover, we provided empirical evidence that MVHuman-
Net can also serve for pretraining strong models, facilitat-
ing methods to perform better on out-of-domain scenarios.
The corresponding results are presented in Tab. 4. Please
note that the quantitative results of IBRNet [70] and GPN-
eRF [8] cannot be directly compared, as they have different
evaluation settings. More detailed explanations are in Supp.

Figure 6. Qualitative comparison of IBRNet and GPNeRF on
the test set of HuMMan. Without finetuning, the models only
trained on MVHumanNet may suffer from domain gap. With some
time for finetuning, the models outperform the ones trained merely
on the train set of HuMMan.

4.3. Text-driven Image Generation

MVHumanNet is able to serves as a fundamental re-
source for our text-driven image generation method. The in-
clusion of comprehensive pose variations within our dataset
enhances the potential for generating diverse human images
in accordance with text descriptions. We finetune the pow-
erful text-to-image model, Stable Diffusion [58] on MVHu-
manNet dataset to enable text-driven realistic human image
generation. As shown in Fig. 7, given a text description and
a target SMPL pose, we can produce high-quality results
with the same consistency as text description and SMPL.

Based on the results derived from the text-driven image
generation, it becomes evident that the utilization of large-
scale multi-view data from real capture contributes to the
efficacy of text-driven realistic human image generation.

4.4. Human Generative Model

Recently, generative models have become a promi-
nent and highly researched area. Methods such as Style-
GAN [21, 37] have emerged as leading approaches for gen-
erating 2D digital human. More recently, the introduction of
GET3D [22] has expanded this research area to encompass
the realm of 3D generation. With the availability of massive
data in MVhumanNet, we embark on an exploratory jour-
ney as pioneers, aiming to investigate the potential applica-
tions of existing 2D and 3D generative models by leverag-
ing a large-scale dataset comprising real-world data.
2D Generative Model Giving a latent code sampled from
Guassian distribution, StyleGAN2 outputs a reasonable 2D
images. In this part, we feed approximately 198,000 multi-
view A-pose images (5500 outfits) and crop to 1024×1024
resolution into the network with camera conditions for
training. Fig. 8 visualizes the results. Our model not only
produces frontage full-body images but also demonstrates
the capability to generate results from other views, includ-
ing the back and side views.
3D Generative Model Unlike StyleGAN2, GET3D [22] in-
troduces a distinct requirement of one latent code for geom-
etry and another for texture. We use the same amount of
data as training StyleGAN2 to train GET3D. The visual-
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Figure 7. The visualization of images generated by text-to-
image model trained on MVHumanNet with SMPL condition
and text prompts as input. The results demonstrate that training
on our large-scale high-quality human dataset enables the gener-
ation of high-resolution human images using textual description
and SMPL conditions. Supp. shows more results.

Figure 8. Visualize the results of StyleGAN2 trained with
MVHumanNet. We randomly sample latent codes from Gaussian
distribution and obtain the results. See supp. for more results.

Number of Subjects FID↓
StyleGAN2 [37] GET3D [22]

3000 14.05 41.54
5500 7.08 (-6.97) 25.12 (-16.42)

Table 5. Quantitative comparison of generative models with
different data scale. The performance of both 2D and 3D gener-
ative models exhibits obvious improvement with scaling up data.

ization results are shown in Fig. 9. The model exhibits the
ability to generate reasonable geometry and texture in the
A-pose, thereby enabling its application in various down-
stream tasks. With the substantial support provided by
MVHumanNet, various fields, including 3D human gener-
ation, can embark on further exploration by transitioning
from the use of synthetic data or single-view images to the
incorporation of authentic multi-view data. We also conduct
experiments to prove that the performance of the generative
model will become more powerful with the increase in the
amount of data. The quantitative results are shown in Tab. 5.
We have reason to believe that with the further increase of
data, the ability of trained models can further improve.

Figure 9. The visualization results of GET3D trained with
MVHumanNet rendered by Blender [16]. The first and third
rows represent the geometry, while the second and fourth row
shows the texture corresponding to geometry.

5. Conclusion
In this work, we present MVHumanNet, a large-scale

multi-view dataset containing 4,500 human identities, 9,000
daily outfits and 645 million frames with extensive annota-
tions. We primarily focus on the domain of collecting daily
dressing, which allows us to easily scale up the human data.
To probe the potential of the proposed large-scale dataset,
we design four experiments to show how MVHumanNet
can be used to power these 3D human-centric tasks. We
plan to release the MVHumanNet dataset with annotations
publicly and hope that it will serve as a foundation for fur-
ther research in the 3D digital human community. To mit-
igate potential negative social impacts, we will implement
strict regulations on the utilization of our data.
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