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Abstract

Video-based Unsupervised Domain Adaptation (VUDA)
method improves the generalization of the video model, en-
abling it to be applied to action recognition tasks in differ-
ent environments. However, these methods require contin-
uous access to source data during the adaptation process,
which are impractical in real scenarios where the source
videos are not available with concerns in transmission effi-
ciency or privacy issues. To address this problem, in this pa-
per, we focus on the Multimodal Video Test-Time Adaptation
(MVTTA) task. Existing image-based TTA methods cannot
be directly applied to this task because videos have domain
shifts in multimodal and temporal, which brings difficulties
to adaptation. To address the above challenges, we pro-
pose a Modality-Collaborative Test-Time Adaptation (MC-
TTA) Network. MC-TTA contains maintain teacher and
student memory banks respectively for generating pseudo-
prototypes and target-prototypes. In the teacher model,
we propose Self-assembled Source-friendly Feature Recon-
struction (SSFR) to encourage the teacher memory bank to
store features that are more likely to be consistent with the
source distribution. Through multimodal prototype align-
ment and cross-modal relative consistency, our method can
effectively alleviate domain shift in videos. We evaluate the
proposed model on four public video datasets. The results
show that our model outperforms existing state-of-the-art
methods.

1. Introduction
Action recognition is a very challenging task, which re-
quires complex motion analysis of video sequence infor-
mation. It has broad application prospects and important
research value in security monitoring, health management,
smart home and other fields. With the development of mul-
timodal technology, multimodal data fusion is a promising
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Figure 1. Main idea of the proposed Modality-collaborative Test-
Time Tdaptation (MC-TTA). Only pre-trained source model and
unlabeled target videos can be used for target model learning.
We propose Self-assembled Source-friendly Feature Reconstruc-
tion (SSFR) module to construct pseudo-source domain features
from target domain. In addition, modality correspondence is ex-
plored to maintain good discriminability for modalities susceptible
to domain shifts.

way to solve this task. In particular, RGB provides rich
scene context information, while optical flow captures key
motion attributes that complement the visual features for
more accurate action understanding.

Deep neural network has made significant progress in
the supervised learning of large-scale labeled data, and it
has achieved excellent performance in the task of action
recognition [15, 37, 42, 46, 47]. However, when there is
a distribution shift between the data of the test environment
(i.e. the target domain) and the data of the training envi-
ronment (i.e. the source domain), the multimodal action
recognition model is more vulnerable to the impact of dis-
tribution changes [3]. Therefore, it is very important for the
model to quickly adapt to the new multimodal data during
the test to obtain better performance, i.e., test-time adapta-
tion (TTA). This is different from the usual domain adaptive
action recognition task settings [8, 11], which can access
source data during training. In TTA, we only have access
to model parameters pre-trained on the source data and then
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use unlabeled data on the target domain for fast adaptation.
This usually refers to one training epoch, which is prac-
tical for real-world scenarios where the action recognition
model needs to run online with minimal delay under strict
hardware constraints [25].

Although the existing TTA-based action recognition
methods have made important progress [25], they only con-
sider the data with one modality in the source and target
domains, such as RGB. Due to the multimodal and tem-
poral characteristics of video, aligning multimodal video
data without source domain data is more challenging. As
shown in Figure 1, the domain shifts of different modal-
ities are always diverse, which poses challenges to main-
tain the discriminability when adapting the model. For ex-
ample, optical flow modality is more domain-invariant for
action recognition [20, 28] in changing backgrounds com-
pared with visual modality, which contains more domain-
specific semantic information of action performers and con-
text. Therefore, in video-based TTA task, it is very impor-
tant to comprehensively consider the domain shifts of dif-
ferent modalities. Although multimodal alignment schemes
have been widely studied in traditional video domain adap-
tation methods [33, 48], existing methods are not suitable
for video-based TTA task because they cannot quickly elim-
inate multimodal domain shifts when the source video is
unseen.

In this paper, we propose a Modality-Collaborative Test-
Time Adaptation (MC-TTA) network, to solve the Multi-
modal Video Test-Time Adaptation task (MVTTA). Specif-
ically, in the pre-training step, we utilize labeled source
videos to separately learn the corresponding feature extrac-
tor and classifier for each modality, and the multimodal
classifier for the fused multimodal learning. In the adap-
tation step, we construct the teacher and student models of
the target domain through pre-trained model. The teacher
model maintains a teacher memory bank to create pseudo-
prototypes representing the pseudo-source domain feature
distribution. The student model maintains a student mem-
ory bank to create target-prototypes representing the target
domain feature distribution. We can mitigate domain shift
by reducing the difference between the pseudo-source and
target distributions. In the teacher model, we propose Self-
assembled Source-friendly Feature Reconstruction (SSFR)
module to encourage the teacher memory bank to store fea-
tures that are more likely to be consistent with the source
distribution. Specifically, to imitate the source distribution,
SSFR utilizes the consistency and confidence scores of log-
its predicted for different modalities of a target video by the
source classifiers to find the video clips that are more simi-
lar to source videos. Then, the features of selected clips are
aggregated to represent the source-friendly features. Next,
we use multimodal prototype alignment to push the target-
prototypes closer to the pseudo-prototypes to reduce mul-

timodal domain shift. Due to the lack of supervision in
the target domain data, it may lead to the decrease of dis-
criminability in adaptation. Therefore, we propose a cross-
modal relative consistency loss to leverage the correspon-
dence between modalities to maintain good discriminabil-
ity for the modality that is susceptible to the domain shift.
We conduct extensive experiments on four public video
datasets, UCF–HMDBsmall [19], UCF–Olympic [36],
UCF-HMDBfull [8] and Epic-Kitchens [13]. The results
demonstrate that the proposed MC-TTA achieves the state-
of-the-art performance on the MVTTA task.

Our main contributions are summarized as follows:
(1) We propose Self-assembled Source-friendly Feature
Reconstruction (SSFR) module to identify source-friendly
video clips to generate pseudo-source distributions. (2) We
propose multimodal prototype alignment and cross-modal
consistency constraint to efficiently alleviate the domain
shift among multimodal videos. (3) We evaluate the pro-
posed method on four datasets and demonstrate its effec-
tiveness with extensive experimental results.

2. Related Work
2.1. Action Recognition

Video action classification is more challenging than im-
age recognition due to the high complexity of video data.
TSN [39] obtains video-level representation by utilizing 2D
convolutional networks in spatial and temporal dimensions,
and then fusing features. TRN [49] generates video-level
feature vectors through the temporal transformation and de-
pendence of frames at different time scales. Another repre-
sentative method, I3D [6], extends the idea of dual-stream
networks by using 3D convolution kernels on RGB and op-
tical flow. Recently, transformer-based models have also
been applied to video recognition [1, 26, 29, 44]. For exam-
ple, ViViT [1] adds several temporal transformer encoders
based on the spatial encoder. Different from our work,
all the above studies solve the traditional supervised action
recognition problem (without domain shift).

2.2. Video Unsupervised Domain Adaptation

Video unsupervised domain adaptation(VUDA) aims to
learn a model of labeled video samples from the source
domain that generalizes well on the target domain with
large distribution shift [16, 21, 43, 45]. VUDA research
lags behind image-based UDA research, mainly due to
the challenges brought by video temporal and multimodal.
However, with the introduction of various cross-domain
video datasets such as UCF-HMDBfull [8] and Epic-
Kitchens [13], there has been a significant increase in re-
search interests for VUDA [9, 12, 27]. TA3N [8] uses
an integrated temporal relation module that can simultane-
ously learn temporal dynamics and achieve domain align-
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ment. TCoN [32] uses a deep architecture with a cross-
domain attention module to match the distribution of tem-
porally aligned features between source and target domains.
SAVA [11] used an attention mechanism to determine dis-
criminative clips and used this information for video-level
alignment within an adversarial learning framework. MM-
SADA [28] uses a domain adaptation method based on self-
supervision and multi-modal learning (RGB+optical flow)
for fine-grained first-person view action recognition. Al-
though VUDA methods bring improvements in video model
robustness, all these methods require access to source data
during the adaptation process. Given the amount of private
information surrounding the topics and scenes in the video,
such a request could raise serious privacy concerns.

2.3. Test-time Adaptation

Test-time adaptation (TTA) is designed to enable existing
models to quickly adapt to new target data without ac-
cessing source domain data. As an important challenge
to deal with dynamic domain transfer in the real world,
TTA has received increasing attention in many tasks [5, 7,
10, 23, 25, 34]. Tent [38] uses minimizing entropy to up-
date trainable parameters in the batch normalization layer.
SHOT [24] uses entropy minimization and diversity regu-
larizers for test-time adaptation. LAME [4] uses Laplacian
adjusted maximum likelihood estimation to adjust the out-
put of the model rather than the parameters. There are some
works [31, 40] combing test time adaptation and continual
learning to maintain the performance on the source domain.
TSD [41] uses test-time self-distillation to make the target
features as consistent as possible during adaptation. MM-
TTA [34] uses two complementary modules to obtain and
select more reliable pseudo labels (from 2D and 3D modal-
ities) as self-learning signals during TTA. ViTTA [25] is
similar to our task, aligning the statistical data at different
temporal augmentations of the same video consistent with
the statistical data seen during training. Compared with the
above work, we have studied similar TTA settings, but in the
different context of using multimodal video action recog-
nition, we consider the challenges of temporal and multi-
modal in video.

3. Methodology
3.1. Problem Definition

In Multimodal Video Test-Time Adaptation(MVTTA) task,
we use Ds =

{
xis, y

i
s

}ns

i=1
to denote the source domain

dataset, where xis denotes a multimodal video instance and
ns is the number of source video instances. yis ∈ RC is the
corresponding class label, where C denotes the total num-
ber of classes. In addition, we denote the target domain
by Dt =

{
xit
}nt

i=1
, where nt is the number of unlabelled

video instances. We use the labelled target domain video

instances only for evaluation. Ds and Dt have the same un-
derlying label distribution, but belong to different data dis-
tributions. To comprehensively capture the important infor-
mation of action recognition, we use the RGB modality and
optical flow modality in video. For each multimodal video
instance x, we first segment it into T equal-length clips. We
can obtain T RGB clips and optical flow clips. The goal
of MVTTA is to adapt the multimodal video classification
model based on the unlabeled target domain video with the
help of the pre-trained model in the source domain. It is
worth noting that we can only access target domain unla-
beled video instances Dt and the source model in an online
manner.

3.2. Modality-Collaborative Test-Time Adaptation

To solve the MVTTA task, we propose a Modality-
Collaborative Test-Time Adaptation (MC-TTA) network, as
shown in Figure 2. To reduce the domain shift between
the target domain and the source domain, we maintain
separate memory banks for the teacher and student mod-
els. The teacher memory bank is used to generate pseudo-
prototypes, and the student memory bank is used to gener-
ate target-prototypes. The purpose of the pseudo-prototype
is to imitate the feature distribution of the pseudo-source
domain, while the purpose of the target prototype is to rep-
resent the feature distribution of the target domain, reduc-
ing domain differences through alignment between proto-
types. We hope that the teacher memory bank stores source-
friendly features to make the pseudo-prototype closer to
the source domain. We propose Self-assembled Source-
friendly Feature Reconstruction (SSFR) module to encour-
age the teacher memory bank to store features that are
more likely to be consistent with the source distribution.
However, directly minimizing the feature distance between
pseudo-prototypes and target-prototypes will lose the dis-
criminative information. Due to the lack of supervision in
the target domain data, it may lead to the decrease of dis-
criminability in adaptation. Therefore, we propose a cross-
modal relative consistency loss to leverage the correspon-
dence between modalities to maintain good discriminability
for the modality that is susceptible to the domain shift.

3.2.1 Network Architecture

We follow the setting of test-time adaptation, where we are
not able to access the source data but only the source pre-
trained action recognition classification model. This model
consists of two branches and a multimodal classifier. Each
branch includes a feature extraction network ϕr/ϕo and a
classifier ψr/ψo for feature encoding and single-modality
classification of RGB/optical flow. In addition, the mul-
timodal classifier ψm achieves the final multimodal clas-
sification of video by concatenating the feature represen-
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Figure 2. Overview of the proposed Modality-Collaborative Test-Time Adaptation (MC-TTA) network. SSFR:Self-Assembled Source-
Friendly Feature Reconstruction. MPA:Multimodal Prototype Alignment.

tations obtained from the two branches. We use the ϕr

and ϕo networks to extract the RGB clip-level features
Xr = [r1, r2, ..., rT ]

T and optical flow clip-level features
Xo = [o1, o2, . . . , oT ]

T for all video clips, where T repre-
sents the number of video clips, ri, oi ∈ Rd and Xr, Xo ∈
RT×d.

At the beginning of training, the the teacher model (hΘ̂t
)

and the student model (hΘt
) share the same weight, i.e.,

Θt=Θ̂t=Θs, where Θs represents the source domain model
parameters, Θ contains the parameters of ϕr, ϕo, ψr, ψo,
and ψm.

3.2.2 Self-Assembled Source-Friendly Feature Recon-
struction

In our method, the teacher model maintain a teacher mem-
ory bank that stores source-friendly features to simulate
pseudo-source domain feature distribution. For each video
clip, the high correlation between the predictions of the
two modalities indicates that the source domain model per-
forms similar judgments in predicting each modality. This
shows the relationship between the two modalities of this
clip is closer to the feature distribution of the source do-
main. Furthermore, we select predictions with low en-
tropy, as lower entropy typically signifies that the target clip
features are closer to the source domain feature distribu-
tion [18, 41]. Therefore, their features are more conducive
for constructing pseudo-source domain features. Based on
the above purposes, we propose Self-Assembled Source-

Friendly Feature Reconstruction (SSFR) module. SSFR uti-
lizes the consistency and confidence scores of logits pre-
dicted for different modalities of a target video by the source
classifiers to find the video clips that are more similar to
source videos. Then, the features of selected clips are aggre-
gated to represent the source-friendly features. Specifically,
each branch uses the teacher feature extractor ϕ̂rt /ϕ̂ot to ex-
tract the features X̂r

t /X̂o
t of the multimodal video instance

in the target domain. Before averaging the clip-level fea-
tures, each clip features input to the teacher single-modality
classifier ψ̂r

t /ψ̂o
t to obtain the clip-level logits. For each clip

of RGB and optical flow logits, we calculate the modality
correlation cosine distance between the two modalities:

d = cos(p̂rt , p̂
o
t ), (1)

Where p̂rt is RGB modality clip-level logits, and p̂ot is opti-
cal flow modality clip-level logits. d represents the similar-
ity of the two modality classification results.

For each clip, we calculate the clip-level logits confi-
dence score conf (p̂t) of the teacher single-modality classi-
fication results:

conf (p̂t) = −p̂⊤t log p̂t, (2)

where p̂t ∈ (prt , p
o
t ). Finally, we determine the clip

is source-friendly through modality correlation and confi-
dence score:

µ =

{
1, if conf (p̂t) ≥ β and d ≤ α

0, otherwise,
(3)
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where α and β are the thresholds. For each clip of the tar-
get domain video, when the modality correlation cosine dis-
tance is less than α and the confidence score is greater than
the β (i.e., µ = 1), we consider this clip is source-friendly.
By merging the video-level source-friendly features of both
modalities, we obtain the multimodal feature representation
X̂M

t = concat(X̂R
t , X̂

O
t ), where X̂R

t /X̂
O
t means averag-

ing all source-friendly clip features of the RGB/optical flow
modality. Then, we can obtain the target video instances
pseudo-labels ŷ = argmax p̂mt , where p̂mt = ψ̂m

t (X̂M
t ).

In the process of adaptation, given an unlabeled mul-
timodal video target instance, we can obtain the video-
level RGB and optical flow feature and logits through the
teacher model. It is worth noting that the features and log-
its are averaged from the source-friendly clips obtained by
the above method. We maintain a teacher memory bank
M̂t = {(X̂R

t , p̂
R
t )(X̂

O
t , p̂

O
t )} to store the source-friendly

features and logits of target domain video instances. Fol-
lowing T3A [18] and TSD [41], the teacher memory bank
is initialized with the weights of the source single-modality
classifier ψr

s and ψo
s . Through the teacher memory bank

to build up the relations between the current instances and
all of the previous instances, the pseudo-prototypes shall be
generated for each class.

The prototype of class c can be formulated as:

X̂R
c =

∑
i X̂

R
t,i1(ŷi = c)∑

i 1(ŷi = c)
, X̂O

c =

∑
i X̂

O
t,i1(ŷi = c)∑

i 1(ŷi = c)
, (4)

where 1(·) is an indicator function, output value 1 if ŷi = c
or 0 otherwise. We hope to generate class prototypes from
the teacher memory bank that have high similarity to source
domain features. With the input of memory bank, we make
entropy judgments based on the stored video-logits. To fur-
ther improve the similarity, we select the top-K low entropy
feature average to obtain pseudo-prototypes.

3.2.3 Relationship-Aware Multimodal Adaptation

In the teacher model, we propose self-assembled source-
friendly feature reconstruction to target domain videos, ex-
tracting source-friendly video-level features that are stored
in the teacher memory bank to simulate the distribution of
source domain features.

To reduce domain shift, we need to push target do-
main features toward source domain features. Therefore,
we maintain a student memory bank Mt = {XR

t , X
O
t } in

the student model to store target domain features, where
XR

t /XO
t represent the video-level RGB/optical flow fea-

tures obtained by averaging all clip-level features. When
each XR

t /XO
t comes, we average it with the correspond-

ing class prototype to obtain new class target-prototype
XR

c /XO
c , where the pseudo-label of XR

t /XO
t is generated

by the teacher model. Compared to the teacher memory

bank, the student memory bank differ in two aspects: (1)
Its purpose is to store video-level features of target domain
videos to obtain target-prototypes. These video-level fea-
tures are obtained by averaging the features from all clips
within each video; (2) It is initialized with zero weights.

Multimodal Prototype Alignment. To clearly reduce
the multimodal domain shift between the source video do-
main and the target video domain, we need to push the tar-
get domain features to the source distribution. Since the
teacher memory bank is composed of prototypes close to
the distribution of source domain features, we can regard it
as a pseudo-source domain for domain adaptation. Then we
use a multimodal prototype alignment loss to align the class
prototypes of the two modalities in the two memory banks,
as follows:

Lma =

C∑
i=1

(
∥∥∥X̂R

i −XR
i

∥∥∥
2
+

∥∥∥X̂O
i −XO

i

∥∥∥
2
), (5)

where XR
i and XO

i represent the RGB prototype and optical
flow prototype of i-th class in the student memory bank.
With this constraint, the multimodal video feature can learn
to explicitly reduce the domain shift.

Cross-Modal Relative Consistency. The domain shift
of different modalities are always diverse, in MVTTA task,
it is important to comprehensively consider the domain shift
of different modalities. During the adaptation stage, the tar-
get domain data lacks supervisory information, which may
lead to reduced class discriminability. We need to take ad-
vantage of the correspondence between modalities and let
the modality with good discriminability guide the modality
with serious loss of discriminability. For example, in scenes
with fast motion or large background changes, the optical
flow modality will perform more stably and robustly, while
in scenes with rich textures and details, the visual informa-
tion provided by the RGB modality will be more stable.
Therefore, we propose a cross-modal relative consistency
loss to leverage the correspondence between modalities to
maintain good discriminability for the modality that is sus-
ceptible to the domain shift. Different from multimodal
prototype alignment, this module focuses on modality col-
laboration, making it still have good discriminability after
adaptation.

Specifically, we calculate the Euclidean distance be-
tween prototypes of each class in the student memory bank
Mt and constructed a relationship matrix between proto-
types as follows:

AR
ij = E(XR

i ,XR
j ), AO

ij = E(XO
i ,XO

j ), (6)

where E(·) is the Euclidean distance formula, AR, AO ∈
RC×C represent the relationship matrices of RGB and opti-
cal flow respectively. Xi, Xj is the prototype of class i and
class j in student memory bank respectively.
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We then implement adaptation of the relationships be-
tween modalities via consistency loss between the AR and
AO relationship matrices:

Lcmr = KL
(
AR∥AO

)
+KL

(
AO∥AR

)
. (7)

where KL(·) denotes the Kullback-Leibler divergence.
Classification constraint. In addition to the above oper-

ations, we compute the cross-entropy loss for two single-
modality and one multimodal classifiers using pseudo-
labels generated by the teacher model:

LCE = −ŷ(log σ(pRt ) + log σ(pOt ) + log σ(pmt )), (8)

where σ denotes the softmax operation. pRt /pOt is the pre-
diction from the student single-modality classifier ψr

t /ψo
t ,

and pmt is the prediction from the student multimodal clas-
sifier ψm

t . Minimizing LCE enhances consistency between
teacher and student predictions.

3.2.4 Training Objective Function

Combing Eq.5, Eq.7, and Eq.8, we formulate the final ob-
jective function as:

L = LCE + λ1Lma + λ2Lcmr (9)

where λ is the trade-off parameter to balance different loss
functions.

After the update of the student model hΘt
(Θt,j →

Θt,(j+1)), we update the weights of the teacher model hΘ̂t

using the student weights by exponential moving average
(EMA):

Θ̂t,(j+1) = γΘ̂t,j + (1− γ)Θt,(j+1), (10)

where γ is a smoothing factor that controls the degree of
change we require at each update.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments on the following four
common benchmarks in this field. (1) UCF–Olympic has 6
shared classes, respectively from the UCF101 dataset [35]
and the Olympic dataset [30]. Following [17], we use a
7:3 train-test split, which results in 432/168 train/test ac-
tion videos for the UCF domain and 260/55 train/test ac-
tion videos for the Olympic domain. (2) UCF–HMDBsmall

has 5 shared classes, respectively from the UCF101
dataset [35] and HMDB51 dataset [22], which contains
432/168 train/test action videos for the UCF domain and
482/189 train/test action videos for the HMDB domain. (3)
UCF–HMDBfull is one of the most widely used cross-
domain video data sets. It contains a total of 3209 videos

Table 1. Results on UCF–Olympic, UCF–HMDBsmall and
UCF–HMDBfull datasets.

UCF–Olympic UCF–HMDBsmall UCF–HMDBfull

Methods U→O O→U U→H H→U U→H H→U
Source-only 92.73 90.48 93.65 94.05 81.39 85.29

Tent [38] 92.73 92.26 94.71 94.64 83.89 86.16
LAME [4] 92.73 93.45 95.24 95.23 84.44 87.39
T3A [18] 94.55 94.05 96.30 95.83 84.72 86.87
TSD [41] 92.73 94.05 95.76 97.02 85.27 87.92

ViTTA [25] 94.55 95.23 97.35 97.62 86.39 89.14
MM-TTA [34] 92.73 92.86 95.76 95.23 85.56 88.97

MC-TTA 94.55 95.23 97.88 98.21 88.61 91.07

in 12 action class, with 2 cross-domain action recognition
tasks. All videos are from the UCF101 [35] dataset and
HMDB dataset [22]. We follow the split provided by [8],
which results in 1438/571 train/test action videos for the
UCF domain and 840/360 train/test action videos for the
HMDB domain. (4) Epic-Kitchens is a more challenging
dataset, which is a fine-grained action recognition dataset
collected from a first-person view in a kitchen scene [13].
Following [28], we conducted experiments on three do-
main partitions (D1, D2, and D3) of the 8 largest action
classes. It contains 2495/313 train/test action videos on D1,
1543/417 train/test action videos on D2, and 3897/1030 on
D3 train/test action videos.

Baseline. We compared MVTTA with start-of-the-
art TTA methods, i.e., Tent [38], LAME [4], T3A [18],
TSD [41], ViTTA [25], and MM-TTA [34]. Since exist-
ing TTA methods cannot be directly used in multimodal
video scenarios, for a fair comparison, we combine the
same model architecture with different TTA methods. In
addition, we also compared Source-only, which means that
only the source model is used for prediction without adap-
tation.

Implementation details. Given the success of video
classification by CNNs, we use the I3D [6] architectures as
the backbone feature extractors for each clip of both source
and target videos for different datasets, and the backbone
are initialized with the ImageNet [14] dataset and the Kinet-
ics dataset [2] pre-trained models, respectively. Each video
clip consists of 8 frames with 224×224 pixels. Specially,
the channel numbers of RGB and optical flow frame stacks
are 3 (Red, Green and Blue) and 2 (u and v), respectively.
The number of clips T is set to 10. For RGB/optical flow
single-modality classifier and multimodal classifier, we de-
fine them as two-layer perceptrons with ReLU activation
functions and Softmax outputs. It should be noted that in
the adaptation step, the parameters of the last classification
layer are fixed, with the aim of aligning the representation
of the target video with the source distribution, so that the
domain shift is reduced. We extract the clip features with
the same dimension (i.e., d=1024) for different modalities.
We set the hidden layer dimension of all classifiers to 1024.

For all baselines, we use the publicly released code, and
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Table 2. Results on Epic-Kitchens dataset.

Methods D1→D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 Mean
Source-only 37.32 45.92 43.80 42.07 50.75 32.86 42.12

Tent [38] 36.60 45.72 43.96 41.43 49.87 32.49 41.68
LAME [4] 37.79 46.97 44.36 42.43 51.67 33.41 42.77
T3A [18] 39.05 47.93 45.24 42.96 51.61 33.96 43.46
TSD [41] 38.45 47.10 45.16 42.78 50.83 33.06 42.90

ViTTA [25] 38.99 48.80 45.81 43.30 52.26 34.62 43.96
MM-TTA [34] 37.93 46.55 44.87 42.36 50.30 32.82 42.47

MC-TTA 40.84 50.73 45.46 43.94 53.68 36.46 45.19

Table 3. Ablation studies on four datasets.

SSFR Loss UCF–Olympic UCF–HMDBsmall UCF–HMDBfull Epic-Kitchens
Lma Lcmr U→O O→U U→H H→U U→H H→U Mean

× × × 92.73 91.67 94.18 94.05 84.17 86.87 42.36
✓ × × 92.73 92.26 94.71 94.64 85.00 87.22 42.65
✓ ✓ × 92.73 94.05 96.30 97.02 86.94 88.44 43.96
✓ × ✓ 94.55 94.64 96.83 97.62 87.50 89.31 44.52
✓ ✓ ✓ 94.55 95.23 97.88 98.21 88.61 91.07 45.19

all the extra hyper-parameters involved in the compared
methods use their best settings. Our model and baselines
are all trained with SGD optimizer, where the weight de-
cay is set to 1e − 4 and the momentum is set to 0.9. In the
self-assembled source-friendly feature reconstruction mod-
ule, the value of α is set to 0.3, and the value of β is set
to 0.6. The average number of features K selected by the
teacher memory bank is set to 5. On all datasets, the learn-
ing rate and the batch size are set to 0.01 and 64, respec-
tively. The balance weights λ1 and λ2 of the loss function
are set to 1.0 and 0.5.

4.2. Comparison with State-of-the-art Methods

We first reported the results obtained by comparing our
method with state-of-the-art methods. Table 1 and ta-
ble 2 respectively show our performance in UCF–Olympic,
UCF–HMDBsmall, UCF–HMDBfull, and Epic-Kitchens.
In all tables, the best results are presented in bold.

As shown in table 1, the proposed MC-TTA is compet-
itive compared to other state-of-the-art methods on these
three datasets. The accuracy of the results in U→O and
O→U is 94.55% and 95.23%, respectively. In addition, on
the UCF-HMDBsmall dataset, the U→H and H→U settings
performed better than all other methods, with accuracy rates
of 97.88% and 98.21%, respectively. The UCF-HMDBfull

dataset has greater domain shift compared to the previous
two datasets, making it more effective to evaluate the ef-
fectiveness of different methods in solving MVTTA task.
Compared with other TTA methods, MC-TTA achieved bet-
ter performance in U→H and H→U settings, with improve-
ments of 2.22% and 1.93%, respectively. Because the pro-
posed method can explicitly reduce the domain shift of mul-
timodal information in the source and target video domains.

As shown in Table 2, since the Epic-Kitchens dataset is
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Figure 3. Visualization of the accuracy of different methods during
adaptation on the UCF–HMDBfull dataset (target domain:UCF).
The batch numbers indicate the batch of videos for which the
model has been updated.

more challenging than the other three datasets, all meth-
ods cannot achieve high accuracy. MC-TTA achieves the
best accuracy results on 5 domain adaptation tasks. On the
D1→D3 and D3→D2 settings, the accuracy of MC-TTA is
1.93% and 1.84% higher than ViTTA. The mean accuracy
of MC-TTA on the 6 domain adaptation tasks is 45.19%,
outperforming the second-best ViTTA method by 1.23%.

It is worth noting that although MM-TTA [34] is a TTA
method designed for multimodal, its performance is not
ideal in temporal data scenarios. In addition, the effective-
ness of the ViTTA [25] method is limited on datasets with
large domain shift.

We also visualized the accuracy changes of different
methods throughout the adaptation process, as shown in
Figure 3. We can see that our method can adjust data faster
and achieve higher accuracy in the target domain.

4.3. Ablation Study

In this section, the effectiveness of the proposed modality-
collaborative test-time adaptation network is further evalu-
ated by analyzing the impact of three key components of
MC-TTA (i.e., self-assembled source-friendly feature re-
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Figure 4. Sensitivity analysis about the two hyperparameters α
and β in the SSFR module, and the number of Top-K features for
the average prototype in the teacher memory bank.

construction (SSFR), multimodal prototype alignment, and
cross-modal relative consistency) on four datasets. The ab-
lation experiments are shown in Table 3. We find that our
method performs better than source-only when the three
components are not used, which illustrates the effective-
ness of the self-distillation architecture. When we increase
SSFR, we observe that model performance improves on all
three datasets. This shows that this SSFR can first allevi-
ate the problem of pseudo-label noise in multimodal videos.
We found that the SSFR module is not effective on the UCF-
Olympic datasets. The reason may be that the performance
of the two small datasets is somewhat saturated. When
using multimodal prototype alignment or cross-modal rel-
ative consistency schemes can improve the performance on
four datasets. We observe that cross-modal relative consis-
tency loss performs better on the UCF-HMDBfull dataset
than on the Epic-Kitchens dataset. We think that the UCF-
HMDBfull dataset has large differences in motion between
different classes, making it easier to constrain the corre-
spondence between modalities. Moreover, when using both
these two schemes, the performance of our MC-TTA can be
further improved. The above results demonstrate the impor-
tance of three components in our method.

4.4. Further Remarks

Sensitivity to hyperparameter. We analyzed three hyper-
parameters in our method on the UCF-HMDBfull dataset:
the two hyperparameters α and β in the self-assembled
source-friendly feature reconstruction (SSFR) method, and
the number of Top-K features for the average pseudo-
prototypes in the teacher memory bank. Figure 4 shows the
hyperparameter sensitivity analysis. Firstly, for the SSFR
module, good performance is achieved when the cosine dis-
tance d ∈ [0.2, 0.4] of the two modality prediction results
and the prediction confidence score conf (p̂t) ∈ [0.5, 0.7].
However, d ≥ 0.4 or conf (p̂t) ≤ 0.5 results in perfor-
mance degradation. We speculate that too large cosine dis-
tance and too small confidence score will not only increase
the probability of pseudo-labels prediction error, but also
select non-source-friendly clips. Then, we analyze the num-
ber of features K ∈ (1, 3, 5, 10,NA) in the teacher mem-
ory bank for constructing pseudo-prototypes, where NA de-
notes no feature filtering. We can observe that good per-

formance is achieved when K ∈ {3, 5}. As K increases,
using too many features may reduce the accuracy of pseudo-
prototypes.

SSFR threshold selection strategy. In the proposed
MC-TTA, we propose the SSFR module, SSFR utilizes the
consistency and confidence scores of logits predicted for
different modalities of a target video by the source classi-
fiers to find the video clips that are more similar to source
videos. In SSFR, we manually adjust the threshold to ensure
the performance of the model. In addition, we designed an
adaptive update threshold method that takes the cosine dis-
tance and confidence score average of a batch data as the
threshold. This method eliminates the need for hyperpa-
rameter adjustment and makes the source-friendly selection
process adaptive. As shown in Table 4, the adaptive results
are not as effective as manually setting hyperparameters.
We speculate that the mean is greatly affected by negative
instances, leading to a decrease in performance.

Table 4. Hyperparameter Selection Strategy.

Selection Strategy UCF–HMDBfull Epic-Kitchens
U→H H→U Mean

Adaptive 88.06 90.72 44.72
Hard(MC-TTA) 88.61 91.07 45.19

5. Conclusions
In this paper, we propose a simple and effective Modality-
Collaborative Test-Time Adaptation (MC-TTA) to solve
the multimodal video test-time adaptation (MVTTA) task,
where only pre-trained source model and unlabeled tar-
get videos are available for learning the multimodal video
classification model. In the adaptation stage, we con-
struct the teacher and student models of the target do-
main through pre-trained source model. We maintain
teacher and student memory banks respectively for gen-
erating pseudo-prototypes and target-prototypes. We pro-
pose Self-assembled Source-friendly Feature Reconstruc-
tion (SSFR) module to encourage the teacher memory bank
to store features that are more likely to be consistent with
the source distribution. We use multimodal prototype align-
ment to push the target-prototype closer to the pseudo-
prototype to reduce multimodal domain shift. We propose
a cross-modal relative consistency loss to maintain good
discriminability for the modality that is susceptible to the
domain shift. Extensive experimental results demonstrate
the effectiveness of the proposed method. In future work,
we would like to extend our MC-TTA to other applications,
such as video segmentation and video retrieval.
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