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Figure 1. (1) We enhance pre-trained diffusion features with 3D awareness by training a geometric ControlNet (Sec. 3.2). (2) We employ
a semantic ControlNet (Sec. 3.3) to refine generative features for targeted data and downstream tasks, specifically focusing on enhancing
features for 3D object detection. (3) During the inference process, we further enhance 3D detection accuracy by ensembling the bounding
box predictions from virtual views (Sec. 3.4).

Abstract
3DiffTection introduces a novel method for 3D object

detection from single images, utilizing a 3D-aware diffu-
sion model for feature extraction. Addressing the resource-
intensive nature of annotating large-scale 3D image data,
our approach leverages pretrained diffusion models, tradi-
tionally used for 2D tasks, and adapts them for 3D detection
through geometric and semantic tuning. Geometrically, we
enhance the model to perform view synthesis from single
images, incorporating an epipolar warp operator. This pro-
cess utilizes easily accessible posed image data, eliminating
the need for manual annotation. Semantically, the model is
further refined on target detection data. Both stages uti-
lize ControlNet, ensuring the preservation of original fea-
ture capabilities. Through our methodology, we obtain 3D-
aware features that excel in identifying cross-view point
correspondences. In 3D detection, 3DiffTection substan-
tially surpasses previous benchmarks, e.g., Cube-RCNN, by
9.43% in AP3D on the Omni3D-ARkitscene dataset. Fur-
thermore, 3DiffTection demonstrates robust label efficiency
and generalizes well to cross-domain data, nearly match-
ing fully-supervised models in zero-shot scenarios. Project
page: https://research.nvidia.com/labs/
toronto-ai/3difftection/.

1. Introduction

Detecting objects in 3D from a single image presents a sig-
nificant challenge in computer vision, involving not only
object recognition and localization but also depth and ori-
entation prediction. This task, crucial for applications in
robotics and augmented reality, demands advanced 3D rea-
soning from computational models.

Training a 3D detector from scratch is resource-intensive
due to the high labeling costs [5]. Recently, large self-
supervised models have emerged as compelling learners for
image representation [10, 16, 17]. They acquire robust se-
mantic features that can be fine-tuned on smaller, anno-
tated datasets. Image diffusion models, trained on internet-
scale data, have proven to be particularly effective in this
context [24, 46, 56]. However, these models often lack
3D awareness and exhibit a domain gap in 3D applica-
tions. Recent work have aimed to bridge this gap by lift-
ing 2D image features to 3D and refining them for specific
3D tasks. NeRF-Det [54] trained a view synthesis model
alongside a detection head using pretrained image feature
extractors. However, this approach is constrained by the
need for dense scene views and fully annotated data. Ef-
forts in novel view synthesis using diffusion models have
shown promise [7, 58]. Yet, these models are generally
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trained from scratch, thereby foregoing the advantages of
using pretrained semantic features.

To overcome these limitations, our work, 3DiffTection,
introduces a novel framework that repurposes pretrained 2D
diffusion models for 3D object detection (see overview Fig.
1). We enhance these models with 3D awareness through a
view synthesis task, employing epipolar geometry to warp
features from source images to target views. This pro-
cess utilizes ControlNet [57] to maintain the integrity of the
original features (See Fig. 3). Utilizing image pairs from
videos, which are abundant and do not require manual an-
notation, our approach is scalable and efficient. To demon-
strate that our approach successfully imparts 3D awareness
to the model, we assess the performance of its features in
establishing point correspondences across multiple views.
Our results indicate that these features outperform those of
the base model, both qualitatively and quantitatively. For
3D detection, 3DiffTection trains a standard detection head
with 3D box supervision, incorporating a second Control-
Net to adapt the features to specific detection tasks and do-
mains, preserving feature quality and view synthesis ca-
pabilities. At test time, we capitalize on both geometric
and semantic capabilities by generating detection propos-
als from multiple virtual synthesized views, which are then
consolidated through Non-Maximum Suppression (NMS).

Our primary contributions are as follows: (1) We intro-
duce a scalable technique for enhancing pretrained 2D dif-
fusion models with 3D awareness through a novel geomet-
ric ControlNet, enhanced with an epipolar warp operator;
(2) We adapt these features to a 3D detection task and target
domain by introducing a second, semantic ControlNet; and
(3) We integrate both view synthesis and 3D detection ca-
pabilities to further improve detection performance through
ensemble prediction.

3DiffTection emerges as a powerful 3D detector, sub-
stantially surpassing previous benchmarks, e.g., Cube-
RCNN, by 9.43% in AP3D on the Omni3D-ARkitscene
dataset. Furthermore, 3DiffTection demonstrates robust la-
bel efficiency, achieving a 2.28 AP3D-N improvement over
previous methods trained with full supervision while us-
ing only 50% of the labels. 3DiffTection also exhibits the
ability to generalize to cross-domain data, nearly matching
the performance of previously established fully-supervised
models without any tuning (zero-shot).

2. Related works
3D Object Detection from Images. 3D object detection
from posed images is widely explored [26, 32, 37, 51, 54].
However, assuming given camera extrinsic is not a common
scenario, especially in applications such as AR/VR and mo-
bile devices. The task of 3D detection from single images,
relying solely on camera intrinsics, presents a more gen-
eralized yet significantly more challenging problem. The

model is required to inherently learn 3D structures and har-
ness semantic knowledge. While representative methods
[8, 21, 23, 31, 47, 50] endeavor to enforce 3D detectors to
learn 3D cues from diverse geometric constraints, the dearth
of semantics stemming from the limited availability of 3D
datasets still impede the generalizability of 3D detectors.
Brazil et al. [5], in an effort to address this issue, embarked
on enhancing the dataset landscape by introducing Omni3D
dataset. Rather than focusing on advancing generalizable
3D detection by increasing annotated 3D data, we propose a
new paradigm, of enhancing semantic-aware diffusion fea-
tures with 3D awareness.

Diffusion Models for 2D Perception. Trained diffusion
models [30, 34, 36, 39] have been shown to have internal
representations suitable for dense perception tasks, partic-
ularly in the realm of image segmentation [6, 14, 45, 56].
These models demonstrate impressive label efficiency [2].
Similarly, we observe strong base performance in both 2D
and 3D detection (see Tab. 3); our method also benefits from
high label efficiency. Diffusion models have further been
trained to perform 2D segmentation tasks [11, 22, 53]. In
[1] the model is trained to output a segmentation map using
an auxiliary network that outputs residual features. Sim-
ilarly, we use a ControlNet to refine the diffusion model
features to endow them with 3D awareness. We note that
several works utilize multiple generations to achieve a more
robust prediction [1], we go a step further by using our con-
trollable view generation to ensemble predictions from mul-
tiple views. Few works have studied tasks other than seg-
mentation. DreamTeacher [24] proposed to distil the diffu-
sion features to an image backbone and demonstrated ex-
cellent performance when tuned on perception tasks[24].
[40] trained a diffusion model for dense depth prediction
from a single image. Recently, DiffusionDet [9] proposed
an interesting method for using diffusion models for 2D
detection by directly denoising the bounding boxes condi-
tioned on the target image. Diffusion features have been
analyzed in [49] showing that different UNet layer activa-
tions are correlated with different level of image details. We
utilize this property when choosing which UNet layer out-
puts to warp in our geometric conditioning. Remarkably,
[46] have shown strong point correspondence ability with
good robustness to view change. Here we demonstrate that
our 3D-aware features can further boost this robustness.

Novel View Synthesis with Diffusion Models Image syn-
thesis has undergone a significant transformation with the
advent of 2D diffusion models, as demonstrated by notable
works [12, 18, 19, 28, 29, 33, 36, 38, 43, 44]. These mod-
els have extended their capabilities to the Novel View Syn-
thesis (NVS) task, where 3DiM [52] and Zero-123 [25]
model NVS of objects as a viewpoint-conditioned image-
to-image translation task with diffusion models. The mod-
els are trained on a synthetic dataset with camera anno-
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Figure 2. Visualization of semantic correspondence prediction using different features Given a Red Source Point in the left most
reference image, we predict the corresponding points in the images from different camera views on the right (Blue Dot). The ground
truth points are marked by Red Stars. Our method, 3DiffTection, is able to identify precise correspondences in challenging scenes with
repetitive visual patterns.

tation and demonstrate zero-shot generalization to in-the-
wild images. NerfDiff [15] distills the knowledge of a 3D-
aware conditional diffusion model into a Nerf. RealFu-
sion [27] uses a diffusion model as a conditional prior with
designed prompts. NeuralLift [55] uses language-guided
priors to guide the novel view synthesis diffusion model.
Most recently, inspired by the idea of video diffusion mod-
els [4, 20, 42], MVDream [41] adapts the attention layers
to model the cross-view 3D dependency. The most rele-
vant work to our approaches is SparseFusion [58], where
authors propose to incorporate geometry priors with epipo-
lar geometries. However, while their model is trained from
scratch, in our approach, we use NVS merely as an auxil-
iary task to enhance the pre-trained diffusion features with
3D awareness and design the architecture for tuning a min-
imal number of parameters by leveraging a ControlNet.

3. 3DiffTection
We introduce 3DiffTection, designed to harness diffusion
model features for 3D detection. As depicted in Fig. 1,
3DiffTection comprises three core components: 1) Instill-
ing 3D awareness into the diffusion features by training a
geometric ControlNet for view synthesis. 2) Bridging the
domain and task gaps using a semantic ControlNet, which
is concurrently trained with a 3D detection head on the tar-
get data distribution. 3) Amplifying 3D box predictions
through a virtual view ensembling strategy. We further de-
tail each of these steps in the subsequent sections.

3.1. Diffusion Model as a Feature Extractor
Recent works demonstrate that features extracted from text-
to-image diffusion models, such as Stable Diffusion [36],
capture rich semantics suitable for dense perception tasks,
including image segmentation [56] and point correspon-

dences [46]. In this work, our interest lies in 3D object
detection. However, since Stable Diffusion is trained on
2D image-text pairs—a pre-training paradigm proficient in
aligning textual semantics with 2D visual features—it might
lack 3D awareness. We aim to explore this by examining
point correspondences between views. We hypothesize that
features with 3D awareness should demonstrate the capa-
bility to identify correspondences that point to the same 3D
locations when provided with multi-view images.

Following [46, 56] we employ a single forward step for
feature extraction. However, unlike these works, we only
input images without textual captions, given that in real-
world scenarios, textual input is typically not provided for
object detection. Formally, given an image x, we sample a
noise image xt at time t, and obtain the diffusion features

f = F(xt; Θ),xt =
√
ᾱtx+

√
1− ᾱtϵt, ϵt ∼ N(0, 1),

(1)
where f represents the multi-scale features from the decoder
module of UNet F (parameterized by Θ), and αt represents
a pre-defined noise schedule, satisfying ᾱt =

∏t
k=1 αk.

Interestingly, as illustrated in Fig. 2, the point localiza-
tion of Stable Diffusion features depends on 2D appearance
matching. This can lead to confusion in the presence of re-
peated visual patterns, indicating a deficiency in 3D spatial
understanding. Given this observation, we aim to integrate
3D awareness into the diffusion features.

3.2. Injecting 3D Awareness to Diffusion Features

ControlNet [57] is a powerful tool that allows the addi-
tion of conditioning into a pre-trained, static Stable Diffu-
sion (SD) model. It has been demonstrated to support var-
ious types of dense input conditioning, such as depth and
semantic images. This is achieved through the injection
of conditional image features into trainable copies of the
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Figure 3. Architecture of Geometric ControlNet. Left: Original Stable Diffusion UNet encoder block. Right: We train novel view
image synthesis by adding a geometric ControlNet to the original Stable Diffusion encoder blocks. The geometric ControlNet receives the
conditional view image as an additional input. Using the camera pose, we introduce an epipolar warp operator, which warps intermediate
features into the target view. With the geometric ControlNet, we significantly improve the 3D awareness of pre-trained diffusion features.

original SD blocks. A significant attribute of ControlNet
is its ability to resist overfitting to the dataset used for tun-
ing while preserving the original model’s performance. As
a result, ControlNet is well-suited for enhancing diffusion
features with 3D awareness without compromising their 2D
semantic quality.

Formally, we denote one block of UNet F as Fs(·; Θs)
parameterized by Θs. In particular, the original Control-
Net block copies each pre-trained Stable Diffusion mod-
ule Fs(·; Θs) denoted as F ′

s(·; Θ′
s), and accompanying with

two zero convolutions Zs1 and Zs2, parameterized by Θzs1

and Θzs2, respectively. We slightly abuse the notation of
x ∈ RH×W×C as the arbitrary middle features of xt in
F . Then a ControlNet block with the corresponding frozen
Stable Diffusion block is given by

ys = Fs(x; Θs) + Zs2(F ′
s(x+ Zs1(c; Θzs1); Θ

′
s); Θzs2),

(2)
where c ∈ RH×W×C is the condition image feature and
ys ∈ RH×W×C is the output.

Epipolar warp operator. We utilize ControlNet to en-
hance the 3D awareness of diffusion features by training
it to perform view synthesis. Specifically, we select pairs
of images with known relative camera poses and train the
ControlNet conditioned on the source view to produce the
output view. Since the features induced by the condition
in ControlNet are additive, it is a common practice to en-
sure alignment between these features and the noisy input
features. However, the input for our view synthesis task is,
by definition, not aligned with the noisy input of the target

view. As a solution, we propose to warp the source view
features to align with the target using epipolar geometry.
We denote the epipolar warp operator as G(·, Tn), and our
geometric ControlNet is formulated as:

ys = Fs(x; Θs)+Zs2(G(F ′
s(x+Zs1(c; Θzs1); Θ

′
s), Tn); Θzs2),

(3)
Formally, to obtain the target novel-view image at posi-

tion (u, v), we assume that relative camera extrinsic from
the source view is described by Tn = [[Rn, 0]

T , [tn, 1]
T ],

and the intrinsic parameters are represented as K. The
equation for the epipolar line is:

lc = K−T ([tn]×Rn)K
−1[u, v, 1]T , (4)

Here, lc denotes the epipolar line associated with the
source conditional image. We sample a set of features
along the epipolar line, denoted as {c(pi)}, where the pi are
points on the epipolar line. These features are then aggre-
gated at the target view position (u, v) via a differentiable
aggregator function, resulting in the updated features:

c′(u, v) = aggregator({c(pi)}), pi ∼ lc. (5)

The differentiable aggregator can be as straightforward as
average/max functions or something more complex like a
transformer, as demonstrated in [13, 58], and c′ is the
warped condition image features, i.e., the output of epipo-
lar warp operator G. The geometric warping procedure is
illustrated in Fig. 3.

Interestingly, we found it beneficial to avoid warping fea-
tures across all the UNet decoder blocks. As highlighted by
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[48], middle-layer features in Stable Diffusion emphasize
high-level semantics, while top stages capture appearance
and geometry. Given the shared semantic content in novel-
view synthesis, even amidst pixel deviations, we warp fea-
tures only in the final two stages of Stable-Diffusion. This
maintains semantic consistency while accommodating ge-
ometric warping shifts. Our geometric ControlNet notably
enhances the 3D awareness of diffusion features, evident in
the 3DiffTection examples in Fig. 2.

3.3. Bridging the Task and Domain Gap
We leverage the 3D-enhanced features for 3D detection by
training a standard detection head with 3D box supervision.
To further verify the efficacy of our approach in adapting
diffusion features for 3D tasks, we train a 3D detection
head, keeping our fine-tuned features fixed. Notably, we
observe a substantial improvement compared to the base-
line SD feature. We report details in Tab. 3.

Nevertheless, we acknowledge two potential gaps.
Firstly, our view synthesis tuning is conceptualized as a uni-
versal 3D feature augmentation method. Hence, it is de-
signed to work with a vast collection of posed image pairs,
which can be inexpensively gathered (e.g., from videos)
without the need for costly labeling. Consequently, there
might be a domain discrepancy when comparing to target
data, which could originate from a smaller, fully annotated
dataset. Secondly, since the features aren’t specifically fine-
tuned for detection, there is further potential for optimiza-
tion towards detection, in tandem with the detection head.
As before, we aim to retain the robust feature characteristics
already achieved and choose to deploy a second ControlNet.

Specifically, we freeze both the original SD and the ge-
ometric ControlNet modules. We then introduce another
trainable ControlNet, which we refer to as semantic Con-
trolNet. For our model to execute single-image 3D detec-
tion, we utilize the input image x in three distinct ways.
First, we extract features from it using the pretrained SD,
denoted as F(x), through a single SD denoising forward
step. Next, we feed it into our geometric ControlNet, repre-
sented as Fgeo(x, Tn), with an identity pose (Tn = [Id, 0])
to obtain our 3D-aware features. Lastly, we introduce it to
the semantic ControlNet, denoted by Fsem(x), to produce
trainable features fine-tuned for detection within the target
data distribution. We aggregate all the features and pass
them to a standard 3D detection head, represented as D [5].
The semantic ControlNet is trained with 3D detection head.

y = D(F(x) + Fgeo(x, [Id, 0]) + Fsem(x)) (6)

The figure overview is in the supplementary material.

3.4. Ensemble Prediction
ControlNet is recognized for its ability to retain the capa-
bilities of the pre-tuned model. As a result, our semanti-
cally tuned model still possesses view synthesis capabili-

ties. We exploit this characteristic to introduce a test-time
prediction ensembling that further enhances detection per-
formance. Specifically, our box prediction y is dependent
on the input view. Although our detection model is trained
with this pose set to the identity (i.e., no transformation), at
test time, we can incorporate other viewing transformations
denoted as ξi,

y(ξ) = D(F(x) + Fgeo(x, ξ) + Fsem(x)). (7)

The final prediction is derived through a non-maximum sup-
pression of individual view predictions:

yfinal = NMS({y(ξi}). (8)

We note that our objective isn’t to create a novel view at this
stage but to enrich the prediction using views that are close
to the original pose. The underlying intuition is that the
detection and view synthesis capabilities complement each
other. Certain objects might be localized more precisely
when observed from a slightly altered view.

4. Experiments
In this section, we present a comprehensive experimental
evaluation of 3DiffTection and its constituent components.
Initially, in Section 4.1, we establish 3DiffTection as a pow-
erful 3D detection framework, particularly when fine-tuned
on a specific target dataset. We then validate its capacity for
generalization to new datasets, both with and without tun-
ing of the detection head (Section 4.2). Subsequently, we
demonstrate its ability to maintain strong performance with
limited labels (Section 4.3). Finally, in Section 4.4, we con-
firm 3DiffTection’s enhanced 3D awareness by measuring
its feature correspondence accuracy. We also validate the
importance of each module in our design and conclude with
visualizations of our auxiliary view synthesis ability.
Datasets and implementation details For all our exper-
iments, we train the geometric ControlNet on the official
ARKitscene datasets [3], which provide around 450K posed
low-resolution (256 × 256) images. We sample around
40K RGB images along with their intrinsics and extrin-
sics. Note that in the following experiments, the pre-
trained geometric ControlNet is kept frozen. For train-
ing 3D object detection, we use Omni3D-ARkitscenes as
our primary in-domain experiment dataset, and Omni3D-
SUNRGBD for our cross-dataset experiments. To eval-
uate the performance, we compute a mean AP3D across
all categories in Omni3D-ARkitscenes and over a range of
IoU3D thresholds in [0.05, 0.10, ..., 0.50], simply denoted
as AP3D. We also report AP3D at IoU 15, 25, and 50
(AP3D@15, AP3D@25 and AP3D@50) as following [5].
We take the publicly available text-to-image LDM [36], Sta-
ble Diffusion as the preliminary backbone. Unlike previous
diffusion models which require multiple images for training
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Methods Resolution NVS Train Views Det. Train Views AP3D↑ AP3D@15↑ AP3D@25↑ AP3D@50↑
CubeRCNN-DLA 256×256 - 1 31.75 43.10 34.68 11.07
DreamTchr-Res50 256×256 - 1 33.20 44.54 37.10 12.35
NeRF-Det-R50 256×256 ≥ 10 ≥ 10 33.13 46.81 36.03 13.58
ImVoxelNet 256×256 - ≥ 10 32.09 46.71 35.62 11.94
3DiffTection 256×256 2 1 39.22 50.58 43.18 16.40

CubeRCNN-DLA 512×512 - 1 34.32 46.06 36.02 12.51
DreamTchr-Res50 512×512 - 1 36.14 49.82 40.51 15.48
3DiffTection 512×512 2 1 43.75 57.13 47.32 20.30

CubeRCNN-DLA-Aug 512×512 - 1 41.72 53.09 45.42 19.26

Table 1. 3D Object Detection Results on Omni3D-ARKitScenes testing set. 3DiffTection significantly outperforms baselines, including
CubeRCNN-DLA-Aug, which is trained with 6x more supervision data.

a novel-view synthesis task, we only take two views, one as
the source view and another one as the target view. More-
over, we only consider two views with an overlap of less
than 30%. Regarding novel-view synthesis ensemble, we
use pseudo camera rotations, i.e., ±15 deg and ensemble
the predicted bounding boxes via NMS.

Methods in comparison. CubeRCNN [5] extends Fast-
RCNN [35] to 3D object detection by incorporating a cube
head. In our work, we aim to provide a stronger 3D-aware
image backbone, and compare it with other image back-
bones using the Cube-RCNN framework. Specifically, we
compare with DreamTeacher [24], which distills knowledge
from a Pre-trained Stable Diffusion to a lighter network,
ResNet-50. We also compare with DIFT [46], which di-
rectly employs the frozen Stable Diffusion as the image fea-
ture extractor. Additionally, we evaluate methods designed
for multi-view 3D detection, such as NeRF-Det [54] and
ImVoxelNet [37]. While these methods typically require
more images during training, we use them for single-image
3D object detection during testing.

4.1. 3D Object Detection on Omni3D-ARKitscenes
In Tab. 1, we analyze the 3D object detection performance
of 3DiffTection compared to several baseline methods. No-
tably, 3DiffTection significantly outperforms CubeRCNN-
DLA [5], a prior art in single-view 3D detection on the
Omni3D-ARKitScenes dataset, achieving a margin of 7.4%
at a resolution of 256×256 and 9.43% at a resolution of
512×512 on the AP3D metric. We further compare our ap-
proach to NeRF-Det-R50 [54] and ImVoxelNet [37], both
of which utilize multi-view images during training (in-
dicated in Tab. 1 as NVS Train Views and Det. Train
Views). In contrast, 3DiffTection which does not rely on
multi-view images for training the detection network and
uses only view-pairs for geometric network training, sur-
passes these methods by 6.09% and 7.13% on the AP3D
metric, respectively. Additionally, we compare our ap-
proach to DreamTeacher-Res50 [24], which distills Sta-
bleDiffusion feature prediction into a ResNet backbone to
make it amenable for perception tasks. 3DiffTection ex-
ceeds DreamTeacher by 6.02% and 7.61% at resolutions
of 256×256 and 512×512, respectively. Lastly, we eval-

uate our model against CubeRCNN-DLA-Aug, which de-
notes the training of CubeRCNN on the complete Omni3D
dataset, comprising 234,000 RGB images with a more ro-
bust training recipe. Remarkably, our model outperforms
CubeRCNN-DLA-Aug by 2.03% on AP3D while using
nearly 6x less data, demonstrating its data efficiency.

We also show visualization results in Fig. 4. Com-
pared to CubeRCNN, our proposed 3DiffTection predicts
3D bounding boxes with better pose, localization and sig-
nificantly fewer false defections. As seen in the middle col-
umn, our model can even handle severe occlusion cases, i.e.,
the sofa in the middle image and the sink in the right image.

4.2. Cross-dataset Generalization

To assess the capability of 3DiffTection’s geometric Con-
trolNet to carry its 3D awareness to other datasets, we em-
ployed a 3DiffTection model with its geometric ControlNet
trained on the OMni3D-ARKitscene dataset, and conduct
cross-dataset experiments on the Ommni3D-SUNRGBD
dataset. We evaluate it with two settings: (1) finetune the
parameters on the Omni3D-SUNRBGD dataset and test the
performance on Omni3D-SUNRGBD dataset, and (2) train
the parameters on the Omni3D-ARKitscenes dataset and di-
rectly test the performance on Omni3D-SUNRGBD dataset
in a zero-shot setting. The performance is shown in Tab. 2.

In the first setting (shown in the fourth column), as a
baseline, we trained the 3D head using DIFT-SD features.
3DiffTection w/o Semantic-ControlNet and w/ Semantic-
ControlNet outperform DIFT-SD by 1.21% and 5.99%, re-
spectively. We further compare our approach with CubeR-
CNN. To ensure a fair comparison, we take CubeRCNN-
DLA trained on Omni3D-ARKitscene datasets and fine-
tuned its entire model on the Omni3D-SUNRGBD. With-
out any training of the geometric ControlNet on the Omni-
SUNRGBD, 3DiffTection (w/o Semantic-ControlNet) with
only tuned a 3D head surpasses the fully fine-tuned
CubeRCNN-DLA by 0.39%. Then, we reintegrate the se-
mantic ControlNet and jointly train it with the 3D head.
This yield a performance boost of 5.09%. These results
indicate that even without training the geometric Control-
Net in the target domain, the semantic ControlNet adeptly
adapts features for perception tasks.
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Cube-RCNN

3DiffTection3DiffTection

Cube-RCNNCube-RCNN
Figure 4. Qualitative results on Omni3D-ARKitScene 3D Detection. In contrast to Cube-RCNN (bottom), our approach (top) accurately
predicts both the box class and 3D locations. The bird’s-eye-view visualization further demonstrates that our predictions surpass the
baseline performance of Cube-RCNN.

Methods Backbone Pretrained on ARKit Tuned on SUNRGBD Zero-shot(w/o 2D GT) Zero-shot(w/ 2D GT)

DIFT-SD StableDiff ✗ 21.92 16.74 25.31
CubeRCNN DLA34 ✓ 22.72 16.81 25.05
3DiffTection StableDiff+Geo-Ctr ✓ 23.11 17.37 26.94
3DiffTection StableDiff+Geo-Ctr+Sem-Ctr ✓ 27.81 22.64 30.14

Table 2. Cross-domain experiment on the Omni3D-SUNRGBD dataset. The "Pre-trained on ARKit" denotes we pre-train the backbone
on Omni3D-ARkitscenes. For CubeCNN, we pre-train it with 3D detection supervision. For all zero-shot experiments, the methods are
first trained on Omni3D-ARKitscenes for 3D detection and then directly tested on Omni3D-SUNRGBD dataset. "2D GT" means we
use ground-truth 2D bounding box to crop ROI image features. The results are reported for overlapped 14 classes between Omni3D-
SUNRGBD and Omni3D-ARKiSscenes dataset.

To further demonstrate the transferrability of 3DiffTec-
tion, we train the models for 3D detection on Omni3D-
ARkitscenes and directly test it on Omni3D-SUNRGBD
datset without any further tuning. The results are shown
in Column 3 and column 4 of Tab. 2. We observe that
if we have ground truth 2D bounding boxes, 3DiffTection
with semantic-ControlNet can even achieve the best perfor-
mance. Without ground truth 2D bounding boxes, 3Diff-
Tection is also able to outperform DIFT-SD and CubeR-
CNN by 5.90% and 5.83%, respectively. These results
demonstrate the notable transferrability of our 3DiffTection.

4.3. Label Efficiency

We hypothesize that our usage of semantic ControlNet for
tuning 3DiffTection towards a target dataset should main-
tain high label efficiency. We test this by using 50% and
10% labels from the Omni3D-ARKitscene datasets. The
results are shown in Tab. ?? of supplementary materials.
In low-data regime (for both 50% and 10% label setting),
3DiffTection demonstrates significantly better performance,
and more modest degradation than baselines. Notably, even
with 50% of the labels, our proposed 3DiffTection achieves
2.28 AP3D-N improvement over previous methods trained

on 100% label. Additionally, when tuning only the 3D
head 3DiffTection performs better than CubeRCNN and
DreamTeacher with tuning all parameters.

4.4. Analysis and Ablation

Feature correspondence fidelity (Fig. 2). As described
in 3.1, we conducted a feature correspondence experiment.
We hypothesize that if our model is 3D aware, it should be
find 3D correspondences. As can be seen, our method yields
a more accurate point-matching result, primarily because
our geometric ControlNet is trained to infer 3D correspon-
dences through our Epipolar warp operator to successfully
generate novel views. To provide further insights, we visu-
alize a heatmap demonstrating the similarity of target image
features to the reference key points. Notably, our 3DiffTec-
tion features exhibit better concentration around the target
point. Furthermore, we quantitatively evaluate the corre-
spondence performance on ScanNet dataset, which is never
accessed by both our 3DiffTection and DIFT for fair com-
parison. The experiment results are shown in supplemen-
tary material. The results also demonstrate our hypothesis.
Novel-view synthesis visualization (Fig. 5). To further
validate our geometric ControlNet ability to maintain geo-
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Backbone NVS Train Views Geo-Ctr Sem-Ctr NV-Ensemble AP2D AP3D↑ AP3D@15↑ AP3D@25↑ AP3D@50↑
VIT-B (MAE) - - - - 26.14 25.23 36.04 28.64 8.11
Res50 (DreamTchr) - - - - 25.27 24.36 34.16 25.97 7.93
StableDiff. (DIFT) - - - - 29.35 28.86 40.18 32.07 8.86

StableDiff. (Ours) 1 ✓ - - 29.51 26.05 35.81 29.86 6.95
StableDiff. (Ours) 2 ✓ - - 30.16 31.20 41.87 33.53 10.14
StableDiff. (Ours) 2 ✓ ✓ - 37.12 38.72 50.38 42.88 16.18
StableDiff. (Ours) 2 ✓ ✓ ✓ 37.19 39.22 50.58 43.18 16.40

Table 3. Analysis of 3DiffTection Modules on Omni3D-ARKitScenes testing set. We first compare different backbones by freezing the
backbone and only training the 3D detection head. Then, we perform ablative studies on each module of our architecture systematically.
Starting with the baseline vanilla stable diffusion model, we incrementally incorporate improvements: Geometry-ControlNet (Geo-Ctr),
the number of novel view synthesis training views (NVS Train Views), Semantic-ControlNet (Sem-Ctr), and the novel view synthesis
ensemble (NV-Ensemble).

Condition Image Generated Image GT Condition Image Generated Image GT

Figure 5. Novel-view synthesis visualization on Omni3D-ARKitScenes testing set. Our model with Geometry-ControlNet synthesizes
realistic novel views from a single input image.

metric consistency of the source view content, we visualize
novel-view synthesis results. The results demonstrate that
our proposed epipolar warp operator is effective in synthe-
sizing the scene with accurate geometry and layout com-
pared to the ground truth images. We note that scene-level
NVS from a single image is a challenging task, and we
observe that our model may introduce artifacts. While en-
hancing performance is an interesting future work, here we
utilize NVS as an auxiliary task which is demonstrated to
effectively enhance our model’s 3D awareness.

3DiffTection modules. We analyze the unique modules and
design choices in 3DiffTection: the Stable Diffusion back-
bone, geometric and semantic ControlNets targeting NVS
and detection, and the multi-view prediction ensemble.
All results are reported using the Omni3D-ARKitscenes
in Tab. 3. We first validate our choice of using a Stable
Diffusion backbone. While diffusion features excel in 2D
segmentation tasks [24, 56], they have not been tested in
3D detection. We analyze this choice independently from
the other improvements by keeping the backbone frozen
and only training the 3D detection head. The vanilla Sta-
ble Diffusion features achieve a 28.86% AP3D, exceed-
ing CubeRCNN-VIT-B (MAE pretrained) by 3.63% and
ResNet-50 DreamTeacher by 4.5% in AP30. This perfor-
mance is mirrored in AP2D results, affirming Stable Diffu-
sion’s suitability for perception tasks. Our geometric Con-
trolNet, is aimed at instilling 3D awareness via NVS train-
ing. A performance boost of 2.34% on AP3D and 0.81%
on AP2D indicates that the geometric ControlNet imparts
3D awareness knowledge while preserving its 2D knowl-

edge. To ensure our improvement is attributed to our view
synthesis training, we limited the geometric ControlNet to
single-view data by setting the source and target views to
be identical (denoted by ’1’ in the NVS train view column
of Tab. 3), which reduces the training to be denoising train-
ing [6]. This indicate a 2.81% decrease in AP3D compared
to the standard Stable Diffusion, affirming our hypothesis.
Further, the semantic ControlNet, co-trained with the 3D
detection head enhances both AP2D and AP3D by around
7% confirming its efficacy in adapting the feature for opti-
mal use by the detection head. Lastly, using NVS-ensemble
results in additional 0.5% increase in AP3D.=

5. Conclusion and Limitations
3DiffTection, utilizing a 3D-aware diffusion model, en-
ables efficient 3D detection from single images, overcom-
ing large-scale data annotation challenges. With its geo-
metric and semantic tuning strategies, it surpasses previ-
ous benchmarks, showing high label efficiency and cross-
domain adaptability. 3DiffTection has limitations, includ-
ing the need for image pairs with accurate camera poses and
challenges in handling dynamic objects from in-the-wild
videos. Additionally, its use of the Stable Diffusion archi-
tecture demands substantial memory and runtime, achieving
about 7.5 fps on a 3090Ti GPU. Suitable for offline tasks, it
requires further optimization for online detection.
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