
4K4D: Real-Time 4D View Synthesis at 4K Resolution

Zhen Xu1 Sida Peng1 Haotong Lin1 Guangzhao He1

Jiaming Sun1 Yujun Shen2 Hujun Bao1 Xiaowei Zhou1∗

1Zhejiang University 2Ant Group

Ours LPIPS:
FPS: >200

0.055Ground Truth ENeRF LPIPS:
FPS: ~5

0.056 KPlanes LPIPS:
FPS: ~0.5

0.118

Figure 1. Photorealistic and real-time rendering of dynamic 3D scenes. Our proposed method reconstructs a 4D neural representation
from multi-view videos, which can be rendered at 1125×1536 resolution with a speed of over 200 FPS using an RTX 3090 GPU while
maintaining state-of-the-art quality on the DNA-Rendering [12] dataset. It is also noteworthy that our method reaches over 80 FPS when
rendering 4K images with an RTX 4090. Detailed performance under different resolutions using different GPUs can be found in Tab. 5.

Abstract

This paper targets high-fidelity and real-time view synthe-
sis of dynamic 3D scenes at 4K resolution. Recent methods
on dynamic view synthesis have shown impressive rendering
quality. However, their speed is still limited when rendering
high-resolution images. To overcome this problem, we
propose 4K4D, a 4D point cloud representation that supports
hardware rasterization and network pre-computation to
enable unprecedented rendering speed with a high rendering
quality. Our representation is built on a 4D feature grid
so that the points are naturally regularized and can be
robustly optimized. In addition, we design a novel hybrid
appearance model that significantly boosts the rendering
quality while preserving efficiency. Moreover, we develop a
differentiable depth peeling algorithm to effectively learn the
proposed model from RGB videos. Experiments show that
our representation can be rendered at over 400 FPS on the
DNA-Rendering dataset at 1080p resolution and 80 FPS on
the ENeRF-Outdoor dataset at 4K resolution using an RTX
4090 GPU, which is 30× faster than previous methods and
achieves the state-of-the-art rendering quality. Our project
page is available at https://zju3dv.github.io/4k4d.

The authors from Zhejiang University are affiliated with the State Key Lab
of CAD&CG. ∗Corresponding author: Xiaowei Zhou.

1. Introduction

Dynamic view synthesis aims to reconstruct dynamic 3D
scenes from captured videos and create free-viewpoint
and immersive virtual playback, which is a long-standing
research problem in computer vision and computer graphics.
Essential to the practicality of this technique is its ability
to be rendered in real-time with high fidelity. Traditional
methods [7, 13, 15, 16, 26, 61, 62, 84, 99, 100] represent
dynamic 3D scenes as textured mesh sequences which
can be rendered efficiently. However, high-quality mesh
reconstruction requires complicated capture hardware and is
limited to controlled environments.

Recently, implicit neural representations [19, 42, 58]
have shown great success in reconstructing dynamic 3D
scenes from RGB videos via differentiable rendering. For
example, Li et al. [42] model the target scene as a dynamic
neural radiance field and leverage volume rendering [17]
to synthesize images. Despite impressive view synthesis
results, existing approaches typically require seconds or even
minutes to render an image at 1080p resolution due to the
costly network evaluation, as discussed by Peng et al. [68].
Inspired by static view synthesis approaches [20, 33, 97],
some dynamic view synthesis methods [2, 49, 68, 89]
increase the rendering speed by decreasing either the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20029

network size or the number of network evaluations. With
these strategies, such methods achieve over 40 FPS when
rendering moderate-resolution images (384×512) [49, 68],
but are still not fast enough to achieve real-time performance
when rendering high-resolution images. For instance, when
rendering 4K resolution images, their speed reduces to only
1 or 2 FPS [2, 49, 68].

In this paper, we propose a novel neural representation,
named 4K4D, for modeling and rendering dynamic 3D
scenes. As illustrated in Fig. 1, 4K4D significantly outper-
forms previous dynamic view synthesis approaches [19, 49]
in terms of the rendering speed, while being competitive in
the rendering quality. Our core innovation lies in a 4D point
cloud representation and a hybrid appearance model.

Specifically, for the dynamic scene, we obtain the coarse
point cloud sequence using space carving [37] and model
the position of each point as a learnable vector. A 4D feature
grid is introduced for assigning a feature vector to each point,
which is fed into MLP networks to predict the point’s radius,
density, and spherical harmonics (SH) coefficients [59]. The
4D feature grid naturally applies spatial regularization on
the point clouds and makes the optimization more robust
(Sec. 5.2). During inference, the point’s radius, density and
SH coefficients can be pre-computed, which eliminates
network evaluations to achieve unprecedented rendering
speed. Moreover, we develop a differentiable depth peeling
algorithm that exploits the hardware rasterizer to further
significantly accelerate the rendering.

We empirically find that the image blending model [49]
achieves higher rendering quality than the SH model used by
3DGS [33]. However, the image blending model of previous
methods [48, 49, 90] requires slow network evaluations
during inference, limiting their rendering speed. To alleviate
this, we introduce a novel design where we make the image
blending network independent of the viewing direction, so
the network evaluation can be pre-computed and thereby
boost the rendering speed. As a two-edged sword, this
strategy makes the appearance model discrete along the
viewing direction. This downside is compensated for by
using another continuous SH model.

To validate the effectiveness of the proposed pipeline,
we evaluate 4K4D on multiple widely used datasets
for multi-view dynamic novel view synthesis, including
NHR [93], ENeRF-Outdoor [49], DNA-Rendering [12], and
Neural3DV [41]. Extensive experiments show that 4K4D
could not only be rendered orders of magnitude faster but
also notably outperform the baselines in terms of rendering
quality. With an RTX 4090 GPU, our method reaches 400
FPS on the DNA-Rendering dataset at 1080p resolution and
80 FPS on the ENeRF-Outdoor dataset at 4K resolution.

2. Related Work

Traditional scene representations. In the domain of novel
view synthesis, various approaches based on different
representations have been proposed, including multi-view
image-based methods [6, 8, 18, 31, 69, 103], multi-plane
image representations [47, 56, 65, 83, 86, 86], light-field
techniques [14, 21, 39] as well as explicit surface or voxel-
based methods [5, 13, 15, 22, 44, 61, 62, 100]. The seminal
work [13] utilizes depth sensors and multi-view stereo
techniques to consolidate per-view depth information into a
coherent mesh sequence, producing high-quality volumetric
video. These methods require intricate hardware setups and
studio arrangements, thus constraining their accessibility.
Neural scene representations. Recently, implicit neural
scene representations[3, 24, 27, 30, 32, 51, 52, 58, 76, 79–81,
85, 91] have attracted significant interest among researchers.
NeRF[58] encodes the radiance fields of static scenes using
coordinate-based Multi-Layer Perceptrons (MLP), achieving
exceptional novel view synthesis quality. Building upon
NeRF, a collection of studies [28, 42, 45, 63, 64, 70, 93]
have made extensions to accommodate for dynamic scenes.
Another line of studies [10, 46, 90, 98] has focused on
integrating image features into the NeRF rendering pipeline.
This approach is easily applicable to dynamic scenes, as
multi-view videos can be directly decomposed into multi-
view images. However, NeRF-based approaches often suffer
from substantial network evaluation costs during the volume
rendering process, which significantly limits their rendering
speed and thus hinders their practicality.

Accelerating neural scene representations. To accelerate
NeRF’s rendering, multiple works propose to distill implicit
MLP networks into explicit structures that offer fast query
capabilities, including voxel grids [20, 25, 40, 60, 72, 96, 97],
explicit surfaces [11, 23, 29, 36, 54, 67] and point-based
representations [1, 33, 35, 38, 71, 73, 101]. These methods
effectively reduce the cost or the number of NeRF’s MLP
evaluations required. Inspired by their success, several
approaches [2, 9, 48, 49, 53, 68, 75, 82, 82, 87, 88] have
explored the possibility of real-time dynamic view synthesis.
HyperReel [2] employs a primitive prediction module to
reduce the number of network evaluations, thereby achieving
real-time speed at moderate resolutions. However, it should
be noted that their rendering speed decreases significantly
when rendering higher-resolution images.
Gaussian Splatting. One notable advancement for acceler-
ating NeRF is the development of 3D Gaussian Splatting
(3DGS) [33] which introduces a differentiable Gaussian el-
lipsoids splatting algorithm for fast and differentiable volume
rendering [4, 17]. By effectively eliminating the slow ray
marching operation of NeRF with forward splatting and SH
[59], they attain both high-fidelity and high-speed rendering.
However, the storage cost of 3DGS limits its application

20030

(a) Point Cloud Sequence (c) Appearance

(b) Geometry

SH MLP SH

Feature Vector

Discrete IBR

Point Radius

Point Density

Radius MLP

Density MLP

View-Dependent RGB

Distance

Density

View Direction RGB Value

RGB Value

RGB Value

View Direction

View Direction

(d) Differentiable Depth Peeling
4D Feature Grid

Figure 2. Overview of our proposed pipeline. (a) By applying the space-carving algorithm [37], we extract the initial cloud sequence
x, t of the target scene. A 4D feature grid [19] is predefined to assign a feature vector to each point, which is then fed into MLPs for the
scene geometry and appearance. (b) The geometry model is based on the point location, radius, and density, which forms a semi-transparent
point cloud. (c) The appearance model consists of a piece-wise constant IBR term cibr and a continuous SH model csh. (d) The proposed
representation is learned from multi-view RGB videos through the differentiable depth peeling algorithm.

on dynamic scenes. In contrast, the 4D feature grid and
image blending model of 4K4D could not only maintain
similar rendering quality but also significantly reduce the
storage cost for modeling dynamic scenes. Moreover, the
simpler point cloud representation and the 4D feature grid
regularization also make 4K4D less prone to overfitting
training views than 3DGS. Some recent concurrent works
[43, 55, 92, 94, 95] have also reported real-time rendering
speeds by incorporating temporal correspondence or time-
dependency into 3DGS. However, these methods either do
not show results on datasets with large and fast motions
[43, 95] (like NHR [93]) or only report real-time speed at
moderate resolution (800×800 [92] and 640×480 [55]). In
contrast, 4K4D is capable of real-time rendering even at 4K
resolution while concurrently maintaining state-of-the-art
view-synthesis quality on large-motion data.

3. Proposed Approach

Given a multi-view video capturing a dynamic 3D scene,
our goal is to reconstruct the target scene and perform novel
view synthesis in real time. To this end, we extract coarse
point clouds of the scene using the space-carving algorithm
[37] (Sec. 4) and build a point cloud-based neural scene
representation, which can be robustly learned from input
videos and enable the hardware-accelerated rendering.

The overview of the proposed model is presented in
Fig. 2. In this section, we first describe how to represent the
geometry and appearance of dynamic scenes based on point
clouds and neural networks (Sec. 3.1). Then, we develop
a differentiable depth peeling algorithm for rendering our
representation (Sec. 3.2), which is supported by the hardware
rasterizer, thereby significantly improving the rendering
speed. Finally, we discuss how to optimize the proposed
model on input RGB videos (Sec. 3.3).

3.1. Modeling Dynamic Scenes with Point Clouds

4D embedding. Given the coarse point clouds of the target
scene, we represent its dynamic geometry and appearance
using neural networks and feature grids. Specifically, our
method first defines six feature planes θxy , θxz , θyz , θtx, θty ,
and θtz . To assign a feature vector f to any point x at frame t,
we adopt the strategy of K-Planes [19] to model a 4D feature
field Θ(x, t) using these six planes:

f = Θ(x, t) = θxy(x, y)⊕ θxz(x, z)⊕ θyz(y, z)⊕
θtx(t, x)⊕ θty(t, y)⊕ θtz(t, z), (1)

where x = (x, y, z) is the input point, and ⊕ indicates the
concatenation operator. Please refer to K-Planes [19] for
more implementation details.
Geometry model. Based on coarse point clouds, the
dynamic scene geometry is represented by learning three
entries on each point: position p ∈ R3, radius r ∈ R, and
density σ ∈ R. Using these point entries, we calculate the
volume density of space point x with respect to an image
pixel u for the volume rendering, which will be described in
Sec. 3.2. The point position p is modeled as an optimizable
vector. The radius r and density σ are predicted by feeding
the feature vector f in Eq. (1) to an MLP network.
Appearance model. As illustrated in Fig. 2c, we use the
image blending technique and the spherical harmonics (SH)
model [59, 97] to build a hybrid appearance model, where
the image blending technique represents the discrete view-
dependent appearance cibr and the SH model represents the
continuous view-dependent appearance csh. For point x at
frame t, its color with viewing direction d is:

c(x, t,d) = cibr(x, t,d) + csh(s,d), (2)

where s means SH coefficients at point x.

20031

The discrete view-dependent appearance cibr is inferred
based on input images. Specifically, for a point x, we first
project it into the input image to retrieve the corresponding
RGB color ciimg. Then, to blend input RGB colors, we
calculate the corresponding blending weight wi based on the
point coordinate and the input image. Note that the blending
weight is independent from the viewing direction. Next, to
achieve the view-dependent effect, we select the N ′ nearest
input views according to the viewing direction. Finally,
the color cibr is computed as

∑N ′

i=1 w
iciimg. Because the

N ′ input views are obtained through the nearest neighbor
retrieval, the cibr is inevitably discrete along the viewing
direction. To achieve the continuous view-dependent effect,
we append the fine-level color csh represented by the SH
model, as shown in Fig. 2c.

In practice, our method regresses the SH coefficients s by
passing the point feature f in Eq. (1) into an MLP network.
To predict the blending weight wi in the image blending
model cibr, we first project point x onto the input image to
retrieve the image feature f iimg , and then concatenate it with
the point feature f , which is fed into another MLP network
to predict the blending weight. The image feature f iimg is
extracted using a 2D CNN network.
Discussion. Our appearance model is the key to achieving
the low-storage, high-fidelity, and real-time view synthesis of
dynamic scenes. There are three alternative ways to represent
the dynamic appearance, but they cannot perform on par
with our model. 1) Defining explicit SH coefficients on each
point, as in 3D Gaussian splatting [33]. When the degree of
SH coefficients is high and the amount of points of dynamic
scenes is large, this model’s size could be too big to train on a
consumer GPU. 2) MLP-based SH model. Using an MLP to
predict SH coefficients of each point can effectively decrease
the model size. However, our experiments found that MLP-
based SH model struggles to render high-quality images
(Sec. 5.2). 3) Continuous view-dependent image blending
model, as in ENeRF [49]. We found that representing the
appearance with the image blending model exhibits better
rendering quality than only with the MLP-based SH model.
However, the color network in ENeRF takes the viewing
direction as input and thus cannot be easily pre-computed,
limiting the rendering speed during inference.

In contrast to these three methods, our appearance model
combines a discrete image blending model cibr with a
continuous SH model csh. The image blending model cibr
boosts the rendering performance. In addition, it supports
the pre-computation, as its network does not take the
viewing direction as input. The SH model csh enables the
view-dependent effect for any viewing direction. During
training, our model represents the scene appearance using
networks, so its model size is reasonable. During inference,
we pre-compute the network outputs to achieve the real-time
rendering, which will be described in Sec. 3.4.

3.2. Differentiable Depth Peeling

Our proposed dynamic scene representation can be rendered
into images by performing volume rendering [17] on raster-
ized points. This forward process is much faster than NeRF’s
backward ray-marching operation [57] since it requires
no network evaluation and explicit sampling. The volume
rendering equation requires the color and transparency
values to be integrated in order [4], thus we utilize the depth-
peeling algorithm for acquiring the corresponding ordered
points for pixels. Thanks to the point cloud representation,
we can leverage the hardware rasterizer to significantly speed
up the depth peeling and blending process. Moreover, it is
easy to make this rendering process differentiable, enabling
us to learn our model from input RGB videos.

We develop a custom shader to implement the depth
peeling algorithm that consists of K rendering passes.
Consider a particular image pixel u. In the first pass, our
method first uses the hardware rasterizer to render point
clouds onto the image, which assigns the closest-to-camera
point x0 to the pixel u. Denote the depth of point x0

as t0. Subsequently, in the k-th rendering pass, all points
with depth value tk smaller than the recorded depth of the
previous pass tk−1 are discarded, thereby resulting in the
k-th closest-to-camera point xk for the pixel u. Discarding
closer points is implemented in our custom shader, so it
still supports the hardware rasterization. After K rendering
passes, pixel u has a set of sorted points {xk|k = 1, ...,K}.

Based on the sorted points, we use the volume rendering
technique to synthesize the color of pixel u. The densities
of these points for pixel u are defined based on the distance
between the projected point and pixel u on the 2D image:

α(u,x) = σ ·max(1− ||π(x)− u||22
r2

, 0), (3)

where π is the camera projection function. σ and r are
the density and radius of point x, which are described in
Sec. 3.1. Intuitively, Eq. (3) defines a semi-transparent point
representation where the density is the highest around the
center and quadratically decreases along its radius. During
training, we implement the projection function π using the
PyTorch [66], so Eq. (3) is naturally differentiable. During
inference, we leverage the hardware rasterization process
to efficiently obtain the distance ||π(x) − u||22, which is
implemented using OpenGL [77].

Denote the density of point xk as αk. The color of pixel
u from the volume rendering is formulated as:

C(u) =

K∑
k=1

Tkαkck, where Tk =

k−1∏
j=1

(1− αj), (4)

where ck is the color of point xk, as described in Eq. (2).

20032

3.3. Training

Given the rendered pixel color C(u), we compare it with the
ground-truth pixel color Cgt(u) to optimize our model in an
end-to-end fashion using the following loss function:

Limg =
∑
u∈U

||C(u)− Cgt(u)||22, (5)

where U is the set of image pixels. In addition to the MSE
loss Limg , we also apply the perceptual loss Llpips [102].

Llpips = ||Φ(I)− Φ(Igt)||1, (6)

where Φ is the perceptual function (a VGG16 network) and
I, Igt are the rendered and ground-truth images, respectively.
The perceptual loss [102] computes the difference in
image features extracted from the VGG model [78]. Our
experiments in Sec. 5.2 show that it effectively improves the
perceived quality of the rendered image.

To regularize the optimization process of our proposed
representation, we additionally apply mask supervision to
dynamic regions of the target scene. We solely render point
clouds of dynamic regions to obtain their masks, where the
pixel value is obtained by:

M(u) =

K∑
k=1

Tkαk, where Tk =

k−1∏
j=1

(1− αj). (7)

The mask loss is defined as:

Lmsk = −
∑
u∈U ′

||M(u)−Mgt(u)||22, (8)

where U′ means the set of pixels of the rendered mask, and
Mgt is the ground-truth mask of 2D dynamic regions. This
effectively regularizes the optimization of the geometry of
dynamic regions by confining it to the visual hulls.

The final loss function is defined as

L = Limg + λlpipsLlpips + λmskLmsk, (9)

where λlpips and λmsk are hyperparameters controlling
weights of correspondings losses.

3.4. Inference

After training, we apply a few acceleration techniques to
boost the rendering speed of our model. First, we precompute
the point location p, radius r, density σ, SH coefficients
s and color blending weights wi before inference, which
are stored at the main memory. During rendering, these
properties are asynchronously streamed onto the graphics
card, overlapping rasterization with memory copy to achieve
an optimal rendering speed [74, 77]. After applying this
technique, the runtime computation is reduced to only a

depth peeling evaluation (Sec. 3.2) and a spherical harmonics
evaluation (Eq. (2)). Second, we convert the model from
32-bit floats to 16-bits for efficient memory access, which
increases FPS by 20 and leads to no visible performance
loss. Third, the number of rendering passes K for the
differentiable depth peeling algorithm is reduced from 15 to
12, also leading to a 20 FPS speedup with no visual quality
change. Detailed analyses of rendering speed can be found
in Sec. 5.2 and the supplementary material.

4. Implementation Details
Optimization. 4K4D is trained using the PyTorch frame-
work [66]. Using the Adam optimizer [34] with a learning
rate 5e−3, our models typically converge after 800k iter-
ations for a sequence length of 200 frames, which takes
around 24 hours on a single RTX 4090 GPU. Specifically,
the learning rate of point positions is set to 1e−5, and
the regularization loss weights λlpips and λmsk are set to
1e−3. During training, the number of passes K for the
differentiable depth peeling is set to 15, and the number
of nearest input views N ′ is set to 4. The rendering speed
of our method is reported on an RTX 3090 GPU for the
experiments in Sec. 5 unless otherwise stated.
Initialization of point clouds. We leverage existing multi-
view reconstruction methods to initialize the point clouds.
For dynamic regions, we use segmentation methods [50]
to obtain their masks in input images and utilize the space
carving algorithm [37] to extract their coarse geometry. For
static background regions, we leverage foreground masks to
compute the mask-weighted average of background pixels
along all frames, producing background images without the
foreground content. Then, an Instant-NGP [60] model is
trained on these images, from which we obtain the initial
point clouds. After the initialization, the number of points
for the dynamic regions is typically 250k per frame, and the
static background regions typically consist of 300k points.

5. Experiments
Datasets. We train and evaluate our method 4K4D on
multiple widely used multi-view datasets, including DNA-
Rendering [12], ENeRF-Outdoor [49] and NHR [93]. DNA-
Rendering [12] records 10-second clips of dynamic humans
and objects at 15 FPS using 4K and 2K cameras with 60
views. This dataset is very challenging due to the complex
clothing and fast motions. We conduct experiments on 4
sequences of DNA-Rendering, with 90% of the views as
training set and the rest as evaluation set. ENeRF-Outdoor
[49] records multiple dynamic humans and objects in an
outdoor environment at 30FPS using 1080p cameras. We
select three 100-frame sequences with 6 different actors
(2 for each sequence) holding objects for evaluation. This
dataset is difficult for dynamic view synthesis in that not

20033

Ours (141.7 FPS) ENeRF (11.3 FPS) KPlanes (1.4 FPS)Ground Truth

Figure 3. Qualitative comparison on the ENeRF-Outdoor [49] dataset that contains 960 × 540 images. Our method achieves much
higher rendering quality and can be rendered 14× faster than ENeRF[49]. More dynamic results can be found in the supplementary video.

only are there multiple moving humans and objects, but
the background is also dynamic due to cast shadows. More
details can be found in the supplementary.

5.1. Comparison Experiments

Comparison on DNA-Rendering [12]. Qualitative and
quantitative comparisons on DNA-Rendering [12] are shown
in Fig. 4 and Tabs. 1 and 3 respectively. As evident in
Tab. 1, our method renders 30x faster than the SOTA real-
time dynamic view synthesis method ENeRF [49] with
superior quality. Even when compared with concurrent
work [48], our method still achieves 13x speedup and
produces consistently higher quality images. As shown in
Fig. 4, KPlanes [19] could not recover the highly detailed
appearance and geometry of the 4D dynamic scene. Other
image-based methods [48, 49, 90] produce high-quality
appearance. However, they tend to produce blurry results
around occlusions and edges, leading to degradation of the
visual quality while maintaining interactive framerate at
best. When compared with 3DGS [33] on the first frame
of each sequence, our method achieves a much better storage
efficiency (50×) thanks to our compact 4D feature grid and
image blending model. Moreover, due to the simplicity of
our point-based representation, our method is less prone to
overfit the training views. More details of the comparison
with 3DGS can be found in the supplementary material.
Comparison on ENeRF-Outdoor [49]. Fig. 3 and Tabs. 2
and 3 provides qualitative and quantitaive results on the
ENeRF-Outdoor [49] dataset. Even on the challenging
ENeRF-Outdoor dataset with multiple actors and the back-

Table 1. Quantitative comparison on the DNA-Rendering
[12] dataset. Image resolutions are 1024×1224 and 1125×1536.
Metrics are averaged over all scenes. Green and yellow cell colors
indicate the best and the second best results, respectively.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS

ENeRF [49] 28.108 0.972 0.056 6.011
IBRNet [90] 27.844 0.967 0.081 0.100
KPlanes [19] 27.452 0.952 0.118 0.640
Im4D [48] 28.991 0.973 0.062 15.360

Ours 31.173 0.976 0.055 203.610

Table 2. Quantitative comparison on the ENeRF-Ourdoor [49]
dataset. This dataset includes 960×540 images. Green and yellow
cell colors indicate the best and the second-best results, respectively.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS

ENeRF [49] 25.452 0.809 0.273 11.309
IBRNet [90] 24.966 0.929 0.172 0.140
KPlanes [19] 21.310 0.735 0.454 1.370

Ours 25.815 0.898 0.147 141.665

ground, our method still achieves notably better results while
rendering at over 140 FPS. ENeRF [49] produces blurry
results on this challenging dataset, and the rendering results
of IBRNet [90] contain black artifacts around the edges
of the images as shown in Fig. 3. K-Planse [19] fails to
reconstruct the dynamic humans and varying background
regions. 3DGS [33] not only introduces much higher storage
cost than our method (45×), but also faces even more
pronounced overfitting problem with smaller number of
views (18 for ENeRF-Outdoor). As evident in Tab. 3 and the

20034

Ground Truth Ours (203.6 FPS) ENeRF (6.0 FPS) IBRNet (0.1 FPS) Im4D (15.4 FPS) KPlanes (0.6 FPS)

Figure 4. Qualitative comparison on the DNA-Rendering [12] dataset that contains 1024×1224 (and 1125×1536) images. Our method
can produce high-fidelity images at over 200 FPS while other competitors fail to produce high-quality results for highly dynamic scenes.

supplementary material, the overfitting severely degrades the
rendering quality. Their rendering speed is slower than ours
due to excessive point count. More details of the comparison
with 3DGS are present in the supplementary material.

5.2. Ablation Studies

We perform ablation studies on the proposed components on
the 150-frame 0013 01 sequence of the DNA-Rendering [12]
dataset. Our method can be rendered at over 200 FPS with
state-of-the-art quality and maintains a only 2MB per frame
storage overhead. More detailed rendering speed analysis
and breakdown and storage cost analysis can be found in the
supplementary material.
Ablation study on the 4D embedding. The “w/o f” variant
removes the proposed 4D embedding (Sec. 3.1) module
and replaces it with a per-frame and per-point optimizable
position, radius, density, and scale. As shown in Fig. 5
and Tab. 4, the “w/o f” variant produces blurry and noisy
geometry without the 4D embedding Θ, which leads to the
inferior rendering quality.
Ablation study on the hybrid appearance model. The “w/o
cibr” variant removes cibr in the appearance formulation
Eq. (2), which not only leads to less details on the recovered
appearance but also significantly impedes the quality of
the geometry. Adding an additional degree for the SH

Table 3. Quantitative comparison on the first frame of all se-
quences of DNA-Rendering [12] (1024×1224 (and 1125×1536)
images) and ENeRF-Outdoor [49] (960×540 images). Metrics
are averaged for each dataset. “Storage” indicates the disk file size
of the trained models (including source images for our method).

Dataset Method PSNR LPIPS FPS Storage Training

DNA-Rendering 3DGS [33] 31.16 0.049 113.2 224 MB 5min
Ours 31.87 0.046 241.7 4.7 MB 15min

ENeRF-Outdoor 3DGS [33] 21.63 0.349 88.4 715 MB 10min
Ours 26.54 0.145 148.6 16.0 MB 30min

coefficients does not lead to a significant performance change
(PSNR 30.129 vs. 30.259). Comparatively, our proposed
method produces high-fidelity rendering with better details.
A visualization of the view-dependent effect produced by
csh can be found in the supplementary material.

Ablation study on loss functions. As shown in Tab. 4,
removing the Llpips term not only reduces the perceptual
quality (LPIPS score) but also leads to the degradation of
other performance metrics. For the highly dynamic DNA-
Rendering [12] dataset, the mask loss Lmsk helps with
regularizing the optimization of the dynamic geometry.

Rendering speed on different GPUs and resolutions. We
additionally report the rendering speed of our method on
different hardware (RTX 3060, RTX 3090, and RTX 4090)

20035

Ground Truth Ours w/o w/o w/ow/o

Figure 5. Ablation studies on the 0013 01 sequence of DNA-Rendering [12]. Removing our proposed components leads to noisy geometry
and blurry appearance. Our method produces high-fidelity results with perceptually accurate shapes and colors. See Sec. 5.2 for more details.

with different resolutions (720p, 1080p, and 4K (2160p))
in Tab. 5. The rendering speed reported here contains the
overhead of the interactive GUI. 4K4D achieves real-time
rendering speed even when rendering 4K (2160p) images on
commodity hardware as shown in the table. More real-time
rendering demos can be found in the supplementary video.

6. Conclusion and Discussion

In this paper, we provide a neural point cloud-based
representation, 4K4D, for real-time rendering of dynamic
3D scenes at 4K resolution. We build 4K4D upon a 4D
feature grid to naturally regularize the points and develop a
novel hybrid appearance model for high-quality rendering.
Furthermore, we develop a differentiable depth peeling
algorithm that utilizes the hardware rasterization pipeline
to effectively optimize and efficiently render the proposed
model. In our experiments, we demonstrate that 4K4D not
only achieves state-of-the-art rendering quality but also
exhibits a more than 30× increase in rendering speed (over
200FPS at 1080p on an RTX 3090 GPU).

However, our method still has some limitations. For one,
4K4D cannot produce correspondences of points across
frames, which are important for some downstream tasks.
Moreover, the storage cost for 4K4D increases linearly
with the number of video frames, so our method has
difficulty in modeling long volumetric videos. How to
model correspondences and reduce the storage cost for long
videos could be two interesting problems for future works.
Moreover, the rendering quality of our method also depends
on the resolution of input images. While our method achieves
real-time rendering at 4K resolution, 4K-quality rendering
can only be achieved with sufficient input resolution.

Table 4. Ablation studies on the 150-frame 0013 01 sequence
of the DNA-Rendering dataset [12]. “w/o f” indicates replacing
the 4D embedding with a per-frame and per-point optimizable
position, radius, density, and scale. See Sec. 5.2 for more detailed
descriptions for the abbreviations.

PSNR ↑ SSIM ↑ LPIPS ↓ Model Size

w/o f 29.779 0.967 0.057 1304.0 MiB
w/o cibr 30.259 0.973 0.054 225.0 MiB
w/o csh 31.946 0.981 0.040 225.0 MiB
w/o Llpips 31.661 0.979 0.063 225.0 MiB
w/o Lmsk 29.115 0.965 0.073 225.0 MiB

Ours 31.990 0.982 0.040 225.0 MiB

Table 5. Rendering speed on different GPUs and resolutions.
The results are recorded on the first frame of the 0013 01 sequence
of DNA-Rendering [12] and the actor1 4 sequence of ENeRF-
Outdoor [49] with the interactive GUI. Resolutions are set to 720p
(720 × 1280), 1080p (1080 × 1920), and 4K (2160 × 3840).
Even with the overhead of the interactive GUI (“w/ GUI”), our
method still achieves unprecedented rendering speed. More real-
time rendering results can be found in the supplementary video.

Dataset Res. RTX 3060 RTX 3090 RTX 4090

DNA-Rendering [12]
w/ GUI

720p 173.8 FPS 246.9 FPS 431.0 FPS
1080p 138.7 FPS 233.1 FPS 409.8 FPS
4K 90.0 FPS 147.4 FPS 288.8 FPS

ENeRF-Outdoor [49]
w/ GUI

720p 90.5 FPS 130.5 FPS 351.5 FPS
1080p 66.1 FPS 103.6 FPS 249.7 FPS
4K 25.1 FPS 47.2 FPS 85.1 FPS

Acknowledgement
The authors would like to acknowledge support from NSFC
(No. 62172364) and Information Technology Center and
State Key Lab of CAD&CG, Zhejiang University.

20036

References
[1] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graphics.
In Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXII 16, pages 696–712. Springer, 2020. 2

[2] Benjamin Attal, Jia-Bin Huang, Christian Richardt, Michael
Zollhoefer, Johannes Kopf, Matthew O’Toole, and Changil
Kim. Hyperreel: High-fidelity 6-dof video with ray-
conditioned sampling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16610–16620, 2023. 1, 2

[3] Benjamin Attal, Jia-Bin Huang, Michael Zollhöfer, Johannes
Kopf, and Changil Kim. Learning neural light fields with
ray-space embedding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 19819–19829, 2022. 2

[4] Louis Bavoil and Kevin Myers. Order independent trans-
parency with dual depth peeling. NVIDIA OpenGL SDK,
1:12, 2008. 2, 4

[5] Michael Broxton, John Flynn, Ryan Overbeck, Daniel
Erickson, Peter Hedman, Matthew Duvall, Jason Dourgarian,
Jay Busch, Matt Whalen, and Paul Debevec. Immersive
light field video with a layered mesh representation. ACM
Transactions on Graphics (TOG), 39(4):86–1, 2020. 2

[6] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph
rendering. In Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’01, page 425–432, New York, NY, USA, 2001.
Association for Computing Machinery. 2

[7] Dan Casas, Marco Volino, John Collomosse, and Adrian
Hilton. 4d video textures for interactive character appear-
ance. In Computer Graphics Forum, pages 371–380. Wiley
Online Library, 2014. 1

[8] Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung,
and George Drettakis. Depth synthesis and local warps for
plausible image-based navigation. ACM TOG, 2013. 2

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. arXiv, 2022. 2

[10] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast
generalizable radiance field reconstruction from multi-view
stereo. In ICCV, 2021. 2

[11] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and
Andrea Tagliasacchi. Mobilenerf: Exploiting the polygon
rasterization pipeline for efficient neural field rendering
on mobile architectures. arXiv preprint arXiv:2208.00277,
2022. 2

[12] Wei Cheng, Ruixiang Chen, Wanqi Yin, Siming Fan, Keyu
Chen, Honglin He, Huiwen Luo, Zhongang Cai, Jingbo
Wang, Yang Gao, et al. Dna-rendering: A diverse neural
actor repository for high-fidelity human-centric rendering.
arXiv preprint arXiv:2307.10173, 2023. 1, 2, 5, 6, 7, 8

[13] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett,
Dennis Evseev, David Calabrese, Hugues Hoppe, Adam
Kirk, and Steve Sullivan. High-quality streamable free-
viewpoint video. ACM Transactions on Graphics (ToG),

34(4):1–13, 2015. 1, 2
[14] Abe Davis, Marc Levoy, and Fredo Durand. Unstructured

light fields. In Computer Graphics Forum, pages 305–314.
Wiley Online Library, 2012. 2

[15] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip
Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts
Escolano, Christoph Rhemann, David Kim, Jonathan Taylor,
et al. Fusion4d: Real-time performance capture of challeng-
ing scenes. ACM TOG, 2016. 1, 2

[16] Mingsong Dou, Jonathan Taylor, Henry Fuchs, Andrew
Fitzgibbon, and Shahram Izadi. 3d scanning deformable
objects with a single rgbd sensor. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 493–501, 2015. 1

[17] Robert A Drebin, Loren Carpenter, and Pat Hanrahan.
Volume rendering. ACM Siggraph Computer Graphics,
22(4):65–74, 1988. 1, 2, 4

[18] John Flynn, Ivan Neulander, James Philbin, and Noah
Snavely. Deepstereo: Learning to predict new views from
the world’s imagery. In CVPR, June 2016. 2

[19] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12479–12488, 2023.
1, 2, 3, 6

[20] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14346–
14355, 2021. 1, 2

[21] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F Cohen. The lumigraph. In SIGGRAPH, 1996. 2

[22] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch,
Xueming Yu, Matt Whalen, Geoff Harvey, Sergio Orts-
Escolano, Rohit Pandey, Jason Dourgarian, et al. The
relightables: Volumetric performance capture of humans
with realistic relighting. ACM Transactions on Graphics
(ToG), 38(6):1–19, 2019. 2

[23] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg.
Shape, light, and material decomposition from images using
monte carlo rendering and denoising. Advances in Neural
Information Processing Systems, 35:22856–22869, 2022. 2

[24] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM TOG, 2018. 2

[25] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural
radiance fields for real-time view synthesis. In ICCV, 2021.
2

[26] Anna Hilsmann, Philipp Fechteler, Wieland Morgenstern,
Wolfgang Paier, Ingo Feldmann, Oliver Schreer, and Peter
Eisert. Going beyond free viewpoint: creating animatable
volumetric video of human performances. IET Computer
Vision, pages 350–358, 2020. 1

[27] Tao Hu, Tao Yu, Zerong Zheng, He Zhang, Yebin Liu,
and Matthias Zwicker. Hvtr: Hybrid volumetric-textural
rendering for human avatars. In 2022 International
Conference on 3D Vision (3DV), pages 197–208. IEEE, 2022.

20037

2
[28] Mustafa Işık, Martin Rünz, Markos Georgopoulos, Taras

Khakhulin, Jonathan Starck, Lourdes Agapito, and Matthias
Nießner. Humanrf: High-fidelity neural radiance fields for
humans in motion. arXiv preprint arXiv:2305.06356, 2023.
2

[29] Shubhendu Jena, Franck Multon, and Adnane Boukhayma.
Neural mesh-based graphics. In European Conference on
Computer Vision, pages 739–757. Springer, 2022. 2

[30] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.
Sdfdiff: Differentiable rendering of signed distance fields
for 3d shape optimization. In CVPR, 2020. 2

[31] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi
Ramamoorthi. Learning-based view synthesis for light field
cameras. ACM TOG, 2016. 2

[32] Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer,
Kari Pulli, and Gordon Wetzstein. Neural lumigraph
rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4287–
4297, 2021. 2

[33] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(TOG), 42(4):1–14, 2023. 1, 2, 4, 6, 7

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[35] Georgios Kopanas, Julien Philip, Thomas Leimkühler, and
George Drettakis. Point-based neural rendering with per-
view optimization. In Computer Graphics Forum, volume 40,
pages 29–43. Wiley Online Library, 2021. 2

[36] Jonas Kulhanek and Torsten Sattler. Tetra-nerf: Representing
neural radiance fields using tetrahedra. arXiv preprint
arXiv:2304.09987, 2023. 2

[37] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape
by space carving. International journal of computer vision,
38:199–218, 2000. 2, 3, 5

[38] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient
sphere-based neural rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1440–1449, 2021. 2

[39] Marc Levoy and Pat Hanrahan. Light field rendering. In
SIGGRAPH, 1996. 2

[40] Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo
Kanazawa. Nerfacc: Efficient sampling accelerates nerfs.
arXiv preprint arXiv:2305.04966, 2023. 2

[41] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, and Zhaoyang Lv.
Neural 3d video synthesis. arXiv preprint arXiv:2103.02597,
2021. 2

[42] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5521–5531, 2022. 1,
2

[43] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime

gaussian feature splatting for real-time dynamic view
synthesis. arXiv preprint arXiv:2312.16812, 2023. 3

[44] Zhong Li, Yu Ji, Wei Yang, Jinwei Ye, and Jingyi Yu. Robust
3d human motion reconstruction via dynamic template
construction. In 2017 International Conference on 3D Vision
(3DV), pages 496–505. IEEE, 2017. 2

[45] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of
dynamic scenes. In CVPR, 2021. 2

[46] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker,
and Noah Snavely. Dynibar: Neural dynamic image-based
rendering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4273–4284,
2023. 2

[47] Zhengqi Li, Wenqi Xian, Abe Davis, and Noah Snavely.
Crowdsampling the plenoptic function. In ECCV, 2020. 2

[48] Haotong Lin, Sida Peng, Zhen Xu, Tao Xie, Xingyi He,
Hujun Bao, and Xiaowei Zhou. High-fidelity and real-time
novel view synthesis for dynamic scenes. In SIGGRAPH
Asia Conference Proceedings, 2023. 2, 6

[49] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai,
Hujun Bao, and Xiaowei Zhou. Efficient neural radiance
fields for interactive free-viewpoint video. In SIGGRAPH
Asia Conference Proceedings, 2022. 1, 2, 4, 5, 6, 7, 8

[50] Shanchuan Lin, Linjie Yang, Imran Saleemi, and Soumyadip
Sengupta. Robust high-resolution video matting with
temporal guidance. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 238–
247, 2022. 5

[51] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li.
Learning to infer implicit surfaces without 3d supervision.
NeurIPS, 2019. 2

[52] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
In SIGGRAPH, 2019. 2

[53] Stephen Lombardi, Tomas Simon, Gabriel Schwartz,
Michael Zollhoefer, Yaser Sheikh, and Jason Saragih. Mix-
ture of volumetric primitives for efficient neural rendering.
ACM Transactions on Graphics (TOG), 40(4):1–13, 2021. 2

[54] Fan Lu, Yan Xu, Guang Chen, Hongsheng Li, Kwan-Yee Lin,
and Changjun Jiang. Urban radiance field representation
with deformable neural mesh primitives. arXiv preprint
arXiv:2307.10776, 2023. 2

[55] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by
persistent dynamic view synthesis. arXiv preprint
arXiv:2308.09713, 2023. 3

[56] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view
synthesis with prescriptive sampling guidelines. ACM TOG,
2019. 2

[57] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view
synthesis. 2020. 4

[58] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

20038

Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65(1):99–106, 2021.
1, 2

[59] Claus Müller. Spherical harmonics, volume 17. Springer,
2006. 2, 3

[60] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a
multiresolution hash encoding. ACM Transactions on
Graphics (ToG), 41(4):1–15, 2022. 2, 5

[61] Richard A Newcombe, Dieter Fox, and Steven M Seitz.
Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In CVPR, 2015. 1, 2

[62] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello,
Wayne Chang, Adarsh Kowdle, Yury Degtyarev, David Kim,
Philip L Davidson, Sameh Khamis, Mingsong Dou, et al.
Holoportation: Virtual 3d teleportation in real-time. In UIST,
2016. 1, 2

[63] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In ICCV, 2021. 2

[64] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 2

[65] Steven Parker, Peter Shirley, and Brian Smits. Single sample
soft shadows. Technical report, Technical Report UUCS-
98-019, Computer Science Department, University of Utah,
1998. 2

[66] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In NeurIPS, 2019. 4, 5

[67] Nikolay Patakin, Dmitry Senushkin, Anna Vorontsova, and
Anton Konushin. Neural global illumination for inverse
rendering. In 2023 IEEE International Conference on Image
Processing (ICIP), pages 1580–1584. IEEE, 2023. 2

[68] Sida Peng, Yunzhi Yan, Qing Shuai, Hujun Bao, and
Xiaowei Zhou. Representing volumetric videos as dynamic
mlp maps. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4252–4262,
2023. 1, 2

[69] Eric Penner and Li Zhang. Soft 3d reconstruction for view
synthesis. ACM TOG, 2017. 2

[70] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In CVPR, 2021. 2

[71] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lem-
pitsky, and Evgeny Burnaev. Npbg++: Accelerating neural
point-based graphics. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15969–15979, 2022. 2

[72] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with

thousands of tiny mlps. In ICCV, pages 14335–14345, 2021.
2

[73] Darius Rückert, Linus Franke, and Marc Stamminger. Adop:
Approximate differentiable one-pixel point rendering. ACM
Transactions on Graphics (ToG), 41(4):1–14, 2022. 2

[74] Jason Sanders and Edward Kandrot. CUDA by example:
an introduction to general-purpose GPU programming.
Addison-Wesley Professional, 2010. 5

[75] Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu,
Hongwen Zhang, and Yebin Liu. Tensor4d: Efficient neural
4d decomposition for high-fidelity dynamic reconstruction
and rendering. arXiv, 2022. 2

[76] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In CVPR, 2020. 2

[77] Dave Shreiner et al. OpenGL programming guide: the
official guide to learning OpenGL, versions 3.0 and 3.1.
Pearson Education, 2009. 4, 5

[78] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014. 5

[79] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neural
scene representations with single-evaluation rendering. Ad-
vances in Neural Information Processing Systems, 34:19313–
19325, 2021. 2

[80] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
voxels: Learning persistent 3d feature embeddings. In CVPR,
2019.

[81] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.
Scene representation networks: Continuous 3d-structure-
aware neural scene representations. In NeurIPS, 2019. 2

[82] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen,
Lele Chen, Junsong Yuan, Yi Xu, and Andreas Geiger.
Nerfplayer: A streamable dynamic scene representation with
decomposed neural radiance fields. IEEE Transactions on
Visualization and Computer Graphics, 29(5):2732–2742,
2023. 2

[83] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 175–184, 2019. 2

[84] Zhuo Su, Lan Xu, Zerong Zheng, Tao Yu, Yebin Liu, and
Lu Fang. Robustfusion: Human volumetric capture with
data-driven visual cues using a rgbd camera. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part IV 16, pages
246–264. Springer, 2020. 1

[85] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Light field neural rendering. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8269–8279,
June 2022. 2

[86] Richard Szeliski and Polina Golland. Stereo matching with
transparency and matting. In Sixth International Conference
on Computer Vision (IEEE Cat. No. 98CH36271), pages
517–524. IEEE, 1998. 2

20039

[87] Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, and
Huaping Liu. Mixed neural voxels for fast multi-view video
synthesis. arXiv preprint arXiv:2212.00190, 2022. 2

[88] Liao Wang, Qiang Hu, Qihan He, Ziyu Wang, Jingyi Yu,
Tinne Tuytelaars, Lan Xu, and Minye Wu. Neural residual
radiance fields for streamably free-viewpoint videos. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 76–87, 2023. 2

[89] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao,
Yanshun Zhang, Yingliang Zhang, Minye Wu, Jingyi Yu,
and Lan Xu. Fourier plenoctrees for dynamic radiance field
rendering in real-time. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13524–13534, 2022. 1

[90] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P
Srinivasan, Howard Zhou, Jonathan T Barron, Ricardo
Martin-Brualla, Noah Snavely, and Thomas Funkhouser.
Ibrnet: Learning multi-view image-based rendering. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4690–4699, 2021. 2,
6

[91] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time
view synthesis with neural basis expansion. In CVPR, 2021.
2

[92] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Wang Xinggang.
4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023. 3

[93] Minye Wu, Yuehao Wang, Qiang Hu, and Jingyi Yu. Multi-
view neural human rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1682–1691, 2020. 2, 3, 5

[94] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. arXiv
preprint arXiv:2309.13101, 2023. 3

[95] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li
Zhang. Real-time photorealistic dynamic scene representa-
tion and rendering with 4d gaussian splatting. arXiv preprint
arXiv 2310.10642, 2023. 3

[96] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. CVPR, 2022. 2

[97] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5752–
5761, 2021. 1, 2, 3

[98] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 2

[99] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qiong-
hai Dai, and Yebin Liu. Function4d: Real-time human
volumetric capture from very sparse consumer rgbd sensors.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5746–5756, 2021. 1

[100] Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai
Dai, Hao Li, Gerard Pons-Moll, and Yebin Liu. Doublefu-

sion: Real-time capture of human performances with inner
body shapes from a single depth sensor. In CVPR, 2018. 1,
2

[101] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz,
and Felix Heide. Differentiable point-based radiance fields
for efficient view synthesis. In SIGGRAPH Asia 2022
Conference Papers, pages 1–12, 2022. 2

[102] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 586–595, 2018. 5

[103] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,
Simon Winder, and Richard Szeliski. High-quality video
view interpolation using a layered representation. ACM
TOG, 2004. 2

20040

