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Figure 1. Photorealistic and real-time rendering of dynamic 3D scenes. Our proposed method reconstructs a 4D neural representation
from multi-view videos, which can be rendered at 1125×1536 resolution with a speed of over 200 FPS using an RTX 3090 GPU while
maintaining state-of-the-art quality on the DNA-Rendering [12] dataset. It is also noteworthy that our method reaches over 80 FPS when
rendering 4K images with an RTX 4090. Detailed performance under different resolutions using different GPUs can be found in Tab. 5.

Abstract

This paper targets high-fidelity and real-time view synthe-
sis of dynamic 3D scenes at 4K resolution. Recent methods
on dynamic view synthesis have shown impressive rendering
quality. However, their speed is still limited when rendering
high-resolution images. To overcome this problem, we
propose 4K4D, a 4D point cloud representation that supports
hardware rasterization and network pre-computation to
enable unprecedented rendering speed with a high rendering
quality. Our representation is built on a 4D feature grid
so that the points are naturally regularized and can be
robustly optimized. In addition, we design a novel hybrid
appearance model that significantly boosts the rendering
quality while preserving efficiency. Moreover, we develop a
differentiable depth peeling algorithm to effectively learn the
proposed model from RGB videos. Experiments show that
our representation can be rendered at over 400 FPS on the
DNA-Rendering dataset at 1080p resolution and 80 FPS on
the ENeRF-Outdoor dataset at 4K resolution using an RTX
4090 GPU, which is 30× faster than previous methods and
achieves the state-of-the-art rendering quality. Our project
page is available at https://zju3dv.github.io/4k4d.

The authors from Zhejiang University are affiliated with the State Key Lab
of CAD&CG. ∗Corresponding author: Xiaowei Zhou.

1. Introduction

Dynamic view synthesis aims to reconstruct dynamic 3D
scenes from captured videos and create free-viewpoint
and immersive virtual playback, which is a long-standing
research problem in computer vision and computer graphics.
Essential to the practicality of this technique is its ability
to be rendered in real-time with high fidelity. Traditional
methods [7, 13, 15, 16, 26, 61, 62, 84, 99, 100] represent
dynamic 3D scenes as textured mesh sequences which
can be rendered efficiently. However, high-quality mesh
reconstruction requires complicated capture hardware and is
limited to controlled environments.

Recently, implicit neural representations [19, 42, 58]
have shown great success in reconstructing dynamic 3D
scenes from RGB videos via differentiable rendering. For
example, Li et al. [42] model the target scene as a dynamic
neural radiance field and leverage volume rendering [17]
to synthesize images. Despite impressive view synthesis
results, existing approaches typically require seconds or even
minutes to render an image at 1080p resolution due to the
costly network evaluation, as discussed by Peng et al. [68].
Inspired by static view synthesis approaches [20, 33, 97],
some dynamic view synthesis methods [2, 49, 68, 89]
increase the rendering speed by decreasing either the
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network size or the number of network evaluations. With
these strategies, such methods achieve over 40 FPS when
rendering moderate-resolution images (384×512) [49, 68],
but are still not fast enough to achieve real-time performance
when rendering high-resolution images. For instance, when
rendering 4K resolution images, their speed reduces to only
1 or 2 FPS [2, 49, 68].

In this paper, we propose a novel neural representation,
named 4K4D, for modeling and rendering dynamic 3D
scenes. As illustrated in Fig. 1, 4K4D significantly outper-
forms previous dynamic view synthesis approaches [19, 49]
in terms of the rendering speed, while being competitive in
the rendering quality. Our core innovation lies in a 4D point
cloud representation and a hybrid appearance model.

Specifically, for the dynamic scene, we obtain the coarse
point cloud sequence using space carving [37] and model
the position of each point as a learnable vector. A 4D feature
grid is introduced for assigning a feature vector to each point,
which is fed into MLP networks to predict the point’s radius,
density, and spherical harmonics (SH) coefficients [59]. The
4D feature grid naturally applies spatial regularization on
the point clouds and makes the optimization more robust
(Sec. 5.2). During inference, the point’s radius, density and
SH coefficients can be pre-computed, which eliminates
network evaluations to achieve unprecedented rendering
speed. Moreover, we develop a differentiable depth peeling
algorithm that exploits the hardware rasterizer to further
significantly accelerate the rendering.

We empirically find that the image blending model [49]
achieves higher rendering quality than the SH model used by
3DGS [33]. However, the image blending model of previous
methods [48, 49, 90] requires slow network evaluations
during inference, limiting their rendering speed. To alleviate
this, we introduce a novel design where we make the image
blending network independent of the viewing direction, so
the network evaluation can be pre-computed and thereby
boost the rendering speed. As a two-edged sword, this
strategy makes the appearance model discrete along the
viewing direction. This downside is compensated for by
using another continuous SH model.

To validate the effectiveness of the proposed pipeline,
we evaluate 4K4D on multiple widely used datasets
for multi-view dynamic novel view synthesis, including
NHR [93], ENeRF-Outdoor [49], DNA-Rendering [12], and
Neural3DV [41]. Extensive experiments show that 4K4D
could not only be rendered orders of magnitude faster but
also notably outperform the baselines in terms of rendering
quality. With an RTX 4090 GPU, our method reaches 400
FPS on the DNA-Rendering dataset at 1080p resolution and
80 FPS on the ENeRF-Outdoor dataset at 4K resolution.

2. Related Work

Traditional scene representations. In the domain of novel
view synthesis, various approaches based on different
representations have been proposed, including multi-view
image-based methods [6, 8, 18, 31, 69, 103], multi-plane
image representations [47, 56, 65, 83, 86, 86], light-field
techniques [14, 21, 39] as well as explicit surface or voxel-
based methods [5, 13, 15, 22, 44, 61, 62, 100]. The seminal
work [13] utilizes depth sensors and multi-view stereo
techniques to consolidate per-view depth information into a
coherent mesh sequence, producing high-quality volumetric
video. These methods require intricate hardware setups and
studio arrangements, thus constraining their accessibility.
Neural scene representations. Recently, implicit neural
scene representations[3, 24, 27, 30, 32, 51, 52, 58, 76, 79–81,
85, 91] have attracted significant interest among researchers.
NeRF[58] encodes the radiance fields of static scenes using
coordinate-based Multi-Layer Perceptrons (MLP), achieving
exceptional novel view synthesis quality. Building upon
NeRF, a collection of studies [28, 42, 45, 63, 64, 70, 93]
have made extensions to accommodate for dynamic scenes.
Another line of studies [10, 46, 90, 98] has focused on
integrating image features into the NeRF rendering pipeline.
This approach is easily applicable to dynamic scenes, as
multi-view videos can be directly decomposed into multi-
view images. However, NeRF-based approaches often suffer
from substantial network evaluation costs during the volume
rendering process, which significantly limits their rendering
speed and thus hinders their practicality.

Accelerating neural scene representations. To accelerate
NeRF’s rendering, multiple works propose to distill implicit
MLP networks into explicit structures that offer fast query
capabilities, including voxel grids [20, 25, 40, 60, 72, 96, 97],
explicit surfaces [11, 23, 29, 36, 54, 67] and point-based
representations [1, 33, 35, 38, 71, 73, 101]. These methods
effectively reduce the cost or the number of NeRF’s MLP
evaluations required. Inspired by their success, several
approaches [2, 9, 48, 49, 53, 68, 75, 82, 82, 87, 88] have
explored the possibility of real-time dynamic view synthesis.
HyperReel [2] employs a primitive prediction module to
reduce the number of network evaluations, thereby achieving
real-time speed at moderate resolutions. However, it should
be noted that their rendering speed decreases significantly
when rendering higher-resolution images.
Gaussian Splatting. One notable advancement for acceler-
ating NeRF is the development of 3D Gaussian Splatting
(3DGS) [33] which introduces a differentiable Gaussian el-
lipsoids splatting algorithm for fast and differentiable volume
rendering [4, 17]. By effectively eliminating the slow ray
marching operation of NeRF with forward splatting and SH
[59], they attain both high-fidelity and high-speed rendering.
However, the storage cost of 3DGS limits its application
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Figure 2. Overview of our proposed pipeline. (a) By applying the space-carving algorithm [37], we extract the initial cloud sequence
x, t of the target scene. A 4D feature grid [19] is predefined to assign a feature vector to each point, which is then fed into MLPs for the
scene geometry and appearance. (b) The geometry model is based on the point location, radius, and density, which forms a semi-transparent
point cloud. (c) The appearance model consists of a piece-wise constant IBR term cibr and a continuous SH model csh. (d) The proposed
representation is learned from multi-view RGB videos through the differentiable depth peeling algorithm.

on dynamic scenes. In contrast, the 4D feature grid and
image blending model of 4K4D could not only maintain
similar rendering quality but also significantly reduce the
storage cost for modeling dynamic scenes. Moreover, the
simpler point cloud representation and the 4D feature grid
regularization also make 4K4D less prone to overfitting
training views than 3DGS. Some recent concurrent works
[43, 55, 92, 94, 95] have also reported real-time rendering
speeds by incorporating temporal correspondence or time-
dependency into 3DGS. However, these methods either do
not show results on datasets with large and fast motions
[43, 95] (like NHR [93]) or only report real-time speed at
moderate resolution (800×800 [92] and 640×480 [55]). In
contrast, 4K4D is capable of real-time rendering even at 4K
resolution while concurrently maintaining state-of-the-art
view-synthesis quality on large-motion data.

3. Proposed Approach

Given a multi-view video capturing a dynamic 3D scene,
our goal is to reconstruct the target scene and perform novel
view synthesis in real time. To this end, we extract coarse
point clouds of the scene using the space-carving algorithm
[37] (Sec. 4) and build a point cloud-based neural scene
representation, which can be robustly learned from input
videos and enable the hardware-accelerated rendering.

The overview of the proposed model is presented in
Fig. 2. In this section, we first describe how to represent the
geometry and appearance of dynamic scenes based on point
clouds and neural networks (Sec. 3.1). Then, we develop
a differentiable depth peeling algorithm for rendering our
representation (Sec. 3.2), which is supported by the hardware
rasterizer, thereby significantly improving the rendering
speed. Finally, we discuss how to optimize the proposed
model on input RGB videos (Sec. 3.3).

3.1. Modeling Dynamic Scenes with Point Clouds

4D embedding. Given the coarse point clouds of the target
scene, we represent its dynamic geometry and appearance
using neural networks and feature grids. Specifically, our
method first defines six feature planes θxy , θxz , θyz , θtx, θty ,
and θtz . To assign a feature vector f to any point x at frame t,
we adopt the strategy of K-Planes [19] to model a 4D feature
field Θ(x, t) using these six planes:

f = Θ(x, t) = θxy(x, y)⊕ θxz(x, z)⊕ θyz(y, z)⊕
θtx(t, x)⊕ θty(t, y)⊕ θtz(t, z), (1)

where x = (x, y, z) is the input point, and ⊕ indicates the
concatenation operator. Please refer to K-Planes [19] for
more implementation details.
Geometry model. Based on coarse point clouds, the
dynamic scene geometry is represented by learning three
entries on each point: position p ∈ R3, radius r ∈ R, and
density σ ∈ R. Using these point entries, we calculate the
volume density of space point x with respect to an image
pixel u for the volume rendering, which will be described in
Sec. 3.2. The point position p is modeled as an optimizable
vector. The radius r and density σ are predicted by feeding
the feature vector f in Eq. (1) to an MLP network.
Appearance model. As illustrated in Fig. 2c, we use the
image blending technique and the spherical harmonics (SH)
model [59, 97] to build a hybrid appearance model, where
the image blending technique represents the discrete view-
dependent appearance cibr and the SH model represents the
continuous view-dependent appearance csh. For point x at
frame t, its color with viewing direction d is:

c(x, t,d) = cibr(x, t,d) + csh(s,d), (2)

where s means SH coefficients at point x.
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The discrete view-dependent appearance cibr is inferred
based on input images. Specifically, for a point x, we first
project it into the input image to retrieve the corresponding
RGB color ciimg. Then, to blend input RGB colors, we
calculate the corresponding blending weight wi based on the
point coordinate and the input image. Note that the blending
weight is independent from the viewing direction. Next, to
achieve the view-dependent effect, we select the N ′ nearest
input views according to the viewing direction. Finally,
the color cibr is computed as

∑N ′

i=1 w
iciimg. Because the

N ′ input views are obtained through the nearest neighbor
retrieval, the cibr is inevitably discrete along the viewing
direction. To achieve the continuous view-dependent effect,
we append the fine-level color csh represented by the SH
model, as shown in Fig. 2c.

In practice, our method regresses the SH coefficients s by
passing the point feature f in Eq. (1) into an MLP network.
To predict the blending weight wi in the image blending
model cibr, we first project point x onto the input image to
retrieve the image feature f iimg , and then concatenate it with
the point feature f , which is fed into another MLP network
to predict the blending weight. The image feature f iimg is
extracted using a 2D CNN network.
Discussion. Our appearance model is the key to achieving
the low-storage, high-fidelity, and real-time view synthesis of
dynamic scenes. There are three alternative ways to represent
the dynamic appearance, but they cannot perform on par
with our model. 1) Defining explicit SH coefficients on each
point, as in 3D Gaussian splatting [33]. When the degree of
SH coefficients is high and the amount of points of dynamic
scenes is large, this model’s size could be too big to train on a
consumer GPU. 2) MLP-based SH model. Using an MLP to
predict SH coefficients of each point can effectively decrease
the model size. However, our experiments found that MLP-
based SH model struggles to render high-quality images
(Sec. 5.2). 3) Continuous view-dependent image blending
model, as in ENeRF [49]. We found that representing the
appearance with the image blending model exhibits better
rendering quality than only with the MLP-based SH model.
However, the color network in ENeRF takes the viewing
direction as input and thus cannot be easily pre-computed,
limiting the rendering speed during inference.

In contrast to these three methods, our appearance model
combines a discrete image blending model cibr with a
continuous SH model csh. The image blending model cibr
boosts the rendering performance. In addition, it supports
the pre-computation, as its network does not take the
viewing direction as input. The SH model csh enables the
view-dependent effect for any viewing direction. During
training, our model represents the scene appearance using
networks, so its model size is reasonable. During inference,
we pre-compute the network outputs to achieve the real-time
rendering, which will be described in Sec. 3.4.

3.2. Differentiable Depth Peeling

Our proposed dynamic scene representation can be rendered
into images by performing volume rendering [17] on raster-
ized points. This forward process is much faster than NeRF’s
backward ray-marching operation [57] since it requires
no network evaluation and explicit sampling. The volume
rendering equation requires the color and transparency
values to be integrated in order [4], thus we utilize the depth-
peeling algorithm for acquiring the corresponding ordered
points for pixels. Thanks to the point cloud representation,
we can leverage the hardware rasterizer to significantly speed
up the depth peeling and blending process. Moreover, it is
easy to make this rendering process differentiable, enabling
us to learn our model from input RGB videos.

We develop a custom shader to implement the depth
peeling algorithm that consists of K rendering passes.
Consider a particular image pixel u. In the first pass, our
method first uses the hardware rasterizer to render point
clouds onto the image, which assigns the closest-to-camera
point x0 to the pixel u. Denote the depth of point x0

as t0. Subsequently, in the k-th rendering pass, all points
with depth value tk smaller than the recorded depth of the
previous pass tk−1 are discarded, thereby resulting in the
k-th closest-to-camera point xk for the pixel u. Discarding
closer points is implemented in our custom shader, so it
still supports the hardware rasterization. After K rendering
passes, pixel u has a set of sorted points {xk|k = 1, ...,K}.

Based on the sorted points, we use the volume rendering
technique to synthesize the color of pixel u. The densities
of these points for pixel u are defined based on the distance
between the projected point and pixel u on the 2D image:

α(u,x) = σ ·max(1− ||π(x)− u||22
r2

, 0), (3)

where π is the camera projection function. σ and r are
the density and radius of point x, which are described in
Sec. 3.1. Intuitively, Eq. (3) defines a semi-transparent point
representation where the density is the highest around the
center and quadratically decreases along its radius. During
training, we implement the projection function π using the
PyTorch [66], so Eq. (3) is naturally differentiable. During
inference, we leverage the hardware rasterization process
to efficiently obtain the distance ||π(x) − u||22, which is
implemented using OpenGL [77].

Denote the density of point xk as αk. The color of pixel
u from the volume rendering is formulated as:

C(u) =

K∑
k=1

Tkαkck, where Tk =

k−1∏
j=1

(1− αj), (4)

where ck is the color of point xk, as described in Eq. (2).
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3.3. Training

Given the rendered pixel color C(u), we compare it with the
ground-truth pixel color Cgt(u) to optimize our model in an
end-to-end fashion using the following loss function:

Limg =
∑
u∈U

||C(u)− Cgt(u)||22, (5)

where U is the set of image pixels. In addition to the MSE
loss Limg , we also apply the perceptual loss Llpips [102].

Llpips = ||Φ(I)− Φ(Igt)||1, (6)

where Φ is the perceptual function (a VGG16 network) and
I, Igt are the rendered and ground-truth images, respectively.
The perceptual loss [102] computes the difference in
image features extracted from the VGG model [78]. Our
experiments in Sec. 5.2 show that it effectively improves the
perceived quality of the rendered image.

To regularize the optimization process of our proposed
representation, we additionally apply mask supervision to
dynamic regions of the target scene. We solely render point
clouds of dynamic regions to obtain their masks, where the
pixel value is obtained by:

M(u) =

K∑
k=1

Tkαk, where Tk =

k−1∏
j=1

(1− αj). (7)

The mask loss is defined as:

Lmsk = −
∑
u∈U ′

||M(u)−Mgt(u)||22, (8)

where U′ means the set of pixels of the rendered mask, and
Mgt is the ground-truth mask of 2D dynamic regions. This
effectively regularizes the optimization of the geometry of
dynamic regions by confining it to the visual hulls.

The final loss function is defined as

L = Limg + λlpipsLlpips + λmskLmsk, (9)

where λlpips and λmsk are hyperparameters controlling
weights of correspondings losses.

3.4. Inference

After training, we apply a few acceleration techniques to
boost the rendering speed of our model. First, we precompute
the point location p, radius r, density σ, SH coefficients
s and color blending weights wi before inference, which
are stored at the main memory. During rendering, these
properties are asynchronously streamed onto the graphics
card, overlapping rasterization with memory copy to achieve
an optimal rendering speed [74, 77]. After applying this
technique, the runtime computation is reduced to only a

depth peeling evaluation (Sec. 3.2) and a spherical harmonics
evaluation (Eq. (2)). Second, we convert the model from
32-bit floats to 16-bits for efficient memory access, which
increases FPS by 20 and leads to no visible performance
loss. Third, the number of rendering passes K for the
differentiable depth peeling algorithm is reduced from 15 to
12, also leading to a 20 FPS speedup with no visual quality
change. Detailed analyses of rendering speed can be found
in Sec. 5.2 and the supplementary material.

4. Implementation Details
Optimization. 4K4D is trained using the PyTorch frame-
work [66]. Using the Adam optimizer [34] with a learning
rate 5e−3, our models typically converge after 800k iter-
ations for a sequence length of 200 frames, which takes
around 24 hours on a single RTX 4090 GPU. Specifically,
the learning rate of point positions is set to 1e−5, and
the regularization loss weights λlpips and λmsk are set to
1e−3. During training, the number of passes K for the
differentiable depth peeling is set to 15, and the number
of nearest input views N ′ is set to 4. The rendering speed
of our method is reported on an RTX 3090 GPU for the
experiments in Sec. 5 unless otherwise stated.
Initialization of point clouds. We leverage existing multi-
view reconstruction methods to initialize the point clouds.
For dynamic regions, we use segmentation methods [50]
to obtain their masks in input images and utilize the space
carving algorithm [37] to extract their coarse geometry. For
static background regions, we leverage foreground masks to
compute the mask-weighted average of background pixels
along all frames, producing background images without the
foreground content. Then, an Instant-NGP [60] model is
trained on these images, from which we obtain the initial
point clouds. After the initialization, the number of points
for the dynamic regions is typically 250k per frame, and the
static background regions typically consist of 300k points.

5. Experiments
Datasets. We train and evaluate our method 4K4D on
multiple widely used multi-view datasets, including DNA-
Rendering [12], ENeRF-Outdoor [49] and NHR [93]. DNA-
Rendering [12] records 10-second clips of dynamic humans
and objects at 15 FPS using 4K and 2K cameras with 60
views. This dataset is very challenging due to the complex
clothing and fast motions. We conduct experiments on 4
sequences of DNA-Rendering, with 90% of the views as
training set and the rest as evaluation set. ENeRF-Outdoor
[49] records multiple dynamic humans and objects in an
outdoor environment at 30FPS using 1080p cameras. We
select three 100-frame sequences with 6 different actors
(2 for each sequence) holding objects for evaluation. This
dataset is difficult for dynamic view synthesis in that not
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Ours (141.7 FPS) ENeRF (11.3 FPS) KPlanes (1.4 FPS)Ground Truth

Figure 3. Qualitative comparison on the ENeRF-Outdoor [49] dataset that contains 960 × 540 images. Our method achieves much
higher rendering quality and can be rendered 14× faster than ENeRF[49]. More dynamic results can be found in the supplementary video.

only are there multiple moving humans and objects, but
the background is also dynamic due to cast shadows. More
details can be found in the supplementary.

5.1. Comparison Experiments

Comparison on DNA-Rendering [12]. Qualitative and
quantitative comparisons on DNA-Rendering [12] are shown
in Fig. 4 and Tabs. 1 and 3 respectively. As evident in
Tab. 1, our method renders 30x faster than the SOTA real-
time dynamic view synthesis method ENeRF [49] with
superior quality. Even when compared with concurrent
work [48], our method still achieves 13x speedup and
produces consistently higher quality images. As shown in
Fig. 4, KPlanes [19] could not recover the highly detailed
appearance and geometry of the 4D dynamic scene. Other
image-based methods [48, 49, 90] produce high-quality
appearance. However, they tend to produce blurry results
around occlusions and edges, leading to degradation of the
visual quality while maintaining interactive framerate at
best. When compared with 3DGS [33] on the first frame
of each sequence, our method achieves a much better storage
efficiency (50×) thanks to our compact 4D feature grid and
image blending model. Moreover, due to the simplicity of
our point-based representation, our method is less prone to
overfit the training views. More details of the comparison
with 3DGS can be found in the supplementary material.
Comparison on ENeRF-Outdoor [49]. Fig. 3 and Tabs. 2
and 3 provides qualitative and quantitaive results on the
ENeRF-Outdoor [49] dataset. Even on the challenging
ENeRF-Outdoor dataset with multiple actors and the back-

Table 1. Quantitative comparison on the DNA-Rendering
[12] dataset. Image resolutions are 1024×1224 and 1125×1536.
Metrics are averaged over all scenes. Green and yellow cell colors
indicate the best and the second best results, respectively.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS

ENeRF [49] 28.108 0.972 0.056 6.011
IBRNet [90] 27.844 0.967 0.081 0.100
KPlanes [19] 27.452 0.952 0.118 0.640
Im4D [48] 28.991 0.973 0.062 15.360

Ours 31.173 0.976 0.055 203.610

Table 2. Quantitative comparison on the ENeRF-Ourdoor [49]
dataset. This dataset includes 960×540 images. Green and yellow
cell colors indicate the best and the second-best results, respectively.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS

ENeRF [49] 25.452 0.809 0.273 11.309
IBRNet [90] 24.966 0.929 0.172 0.140
KPlanes [19] 21.310 0.735 0.454 1.370

Ours 25.815 0.898 0.147 141.665

ground, our method still achieves notably better results while
rendering at over 140 FPS. ENeRF [49] produces blurry
results on this challenging dataset, and the rendering results
of IBRNet [90] contain black artifacts around the edges
of the images as shown in Fig. 3. K-Planse [19] fails to
reconstruct the dynamic humans and varying background
regions. 3DGS [33] not only introduces much higher storage
cost than our method (45×), but also faces even more
pronounced overfitting problem with smaller number of
views (18 for ENeRF-Outdoor). As evident in Tab. 3 and the
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Ground Truth Ours (203.6 FPS) ENeRF (6.0 FPS) IBRNet (0.1 FPS) Im4D (15.4 FPS) KPlanes (0.6 FPS)

Figure 4. Qualitative comparison on the DNA-Rendering [12] dataset that contains 1024×1224 (and 1125×1536) images. Our method
can produce high-fidelity images at over 200 FPS while other competitors fail to produce high-quality results for highly dynamic scenes.

supplementary material, the overfitting severely degrades the
rendering quality. Their rendering speed is slower than ours
due to excessive point count. More details of the comparison
with 3DGS are present in the supplementary material.

5.2. Ablation Studies

We perform ablation studies on the proposed components on
the 150-frame 0013 01 sequence of the DNA-Rendering [12]
dataset. Our method can be rendered at over 200 FPS with
state-of-the-art quality and maintains a only 2MB per frame
storage overhead. More detailed rendering speed analysis
and breakdown and storage cost analysis can be found in the
supplementary material.
Ablation study on the 4D embedding. The “w/o f” variant
removes the proposed 4D embedding (Sec. 3.1) module
and replaces it with a per-frame and per-point optimizable
position, radius, density, and scale. As shown in Fig. 5
and Tab. 4, the “w/o f” variant produces blurry and noisy
geometry without the 4D embedding Θ, which leads to the
inferior rendering quality.
Ablation study on the hybrid appearance model. The “w/o
cibr” variant removes cibr in the appearance formulation
Eq. (2), which not only leads to less details on the recovered
appearance but also significantly impedes the quality of
the geometry. Adding an additional degree for the SH

Table 3. Quantitative comparison on the first frame of all se-
quences of DNA-Rendering [12] (1024×1224 (and 1125×1536)
images) and ENeRF-Outdoor [49] (960×540 images). Metrics
are averaged for each dataset. “Storage” indicates the disk file size
of the trained models (including source images for our method).

Dataset Method PSNR LPIPS FPS Storage Training

DNA-Rendering 3DGS [33] 31.16 0.049 113.2 224 MB 5min
Ours 31.87 0.046 241.7 4.7 MB 15min

ENeRF-Outdoor 3DGS [33] 21.63 0.349 88.4 715 MB 10min
Ours 26.54 0.145 148.6 16.0 MB 30min

coefficients does not lead to a significant performance change
(PSNR 30.129 vs. 30.259). Comparatively, our proposed
method produces high-fidelity rendering with better details.
A visualization of the view-dependent effect produced by
csh can be found in the supplementary material.

Ablation study on loss functions. As shown in Tab. 4,
removing the Llpips term not only reduces the perceptual
quality (LPIPS score) but also leads to the degradation of
other performance metrics. For the highly dynamic DNA-
Rendering [12] dataset, the mask loss Lmsk helps with
regularizing the optimization of the dynamic geometry.

Rendering speed on different GPUs and resolutions. We
additionally report the rendering speed of our method on
different hardware (RTX 3060, RTX 3090, and RTX 4090)
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Ground Truth Ours w/o w/o w/ow/o

Figure 5. Ablation studies on the 0013 01 sequence of DNA-Rendering [12]. Removing our proposed components leads to noisy geometry
and blurry appearance. Our method produces high-fidelity results with perceptually accurate shapes and colors. See Sec. 5.2 for more details.

with different resolutions (720p, 1080p, and 4K (2160p))
in Tab. 5. The rendering speed reported here contains the
overhead of the interactive GUI. 4K4D achieves real-time
rendering speed even when rendering 4K (2160p) images on
commodity hardware as shown in the table. More real-time
rendering demos can be found in the supplementary video.

6. Conclusion and Discussion

In this paper, we provide a neural point cloud-based
representation, 4K4D, for real-time rendering of dynamic
3D scenes at 4K resolution. We build 4K4D upon a 4D
feature grid to naturally regularize the points and develop a
novel hybrid appearance model for high-quality rendering.
Furthermore, we develop a differentiable depth peeling
algorithm that utilizes the hardware rasterization pipeline
to effectively optimize and efficiently render the proposed
model. In our experiments, we demonstrate that 4K4D not
only achieves state-of-the-art rendering quality but also
exhibits a more than 30× increase in rendering speed (over
200FPS at 1080p on an RTX 3090 GPU).

However, our method still has some limitations. For one,
4K4D cannot produce correspondences of points across
frames, which are important for some downstream tasks.
Moreover, the storage cost for 4K4D increases linearly
with the number of video frames, so our method has
difficulty in modeling long volumetric videos. How to
model correspondences and reduce the storage cost for long
videos could be two interesting problems for future works.
Moreover, the rendering quality of our method also depends
on the resolution of input images. While our method achieves
real-time rendering at 4K resolution, 4K-quality rendering
can only be achieved with sufficient input resolution.

Table 4. Ablation studies on the 150-frame 0013 01 sequence
of the DNA-Rendering dataset [12]. “w/o f” indicates replacing
the 4D embedding with a per-frame and per-point optimizable
position, radius, density, and scale. See Sec. 5.2 for more detailed
descriptions for the abbreviations.

PSNR ↑ SSIM ↑ LPIPS ↓ Model Size

w/o f 29.779 0.967 0.057 1304.0 MiB
w/o cibr 30.259 0.973 0.054 225.0 MiB
w/o csh 31.946 0.981 0.040 225.0 MiB
w/o Llpips 31.661 0.979 0.063 225.0 MiB
w/o Lmsk 29.115 0.965 0.073 225.0 MiB

Ours 31.990 0.982 0.040 225.0 MiB

Table 5. Rendering speed on different GPUs and resolutions.
The results are recorded on the first frame of the 0013 01 sequence
of DNA-Rendering [12] and the actor1 4 sequence of ENeRF-
Outdoor [49] with the interactive GUI. Resolutions are set to 720p
(720 × 1280), 1080p (1080 × 1920), and 4K (2160 × 3840).
Even with the overhead of the interactive GUI (“w/ GUI”), our
method still achieves unprecedented rendering speed. More real-
time rendering results can be found in the supplementary video.

Dataset Res. RTX 3060 RTX 3090 RTX 4090

DNA-Rendering [12]
w/ GUI

720p 173.8 FPS 246.9 FPS 431.0 FPS
1080p 138.7 FPS 233.1 FPS 409.8 FPS
4K 90.0 FPS 147.4 FPS 288.8 FPS

ENeRF-Outdoor [49]
w/ GUI

720p 90.5 FPS 130.5 FPS 351.5 FPS
1080p 66.1 FPS 103.6 FPS 249.7 FPS
4K 25.1 FPS 47.2 FPS 85.1 FPS
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