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Abstract

Estimating the 6D object pose from a single RGB image
often involves noise and indeterminacy due to challenges
such as occlusions and cluttered backgrounds. Mean-
while, diffusion models have shown appealing performance
in generating high-quality images from random noise with
high indeterminacy through step-by-step denoising. In-
spired by their denoising capability, we propose a novel
diffusion-based framework (6D-Diff) to handle the noise
and indeterminacy in object pose estimation for better per-
formance. In our framework, to establish accurate 2D-3D
correspondence, we formulate 2D keypoints detection as a
reverse diffusion (denoising) process. To facilitate such a
denoising process, we design a Mixture-of-Cauchy-based
forward diffusion process and condition the reverse process
on the object appearance features. Extensive experiments
on the LM-O and YCB-V datasets demonstrate the effec-
tiveness of our framework.

1. Introduction
6D object pose estimation aims to estimate the 6D pose
of an object including its location and orientation, which
has a wide range of applications, such as augmented reality
[39, 47], robotic manipulation [3, 45], and automatic driv-
ing [62]. Recently, various methods [4, 5, 19, 22, 27, 44,
53, 61, 64] have been proposed to conduct RGB-based 6D
object pose estimation since RGB images are easy to ob-
tain. Despite the increased efforts, a variety of challenges
persist in RGB-based 6D object pose estimation, including
occlusions, cluttered backgrounds, and changeable environ-
ments [8, 40, 44, 60, 63]. These challenges can introduce
significant noise and indeterminacy into the pose estimation
process, leading to error-prone predictions [8, 40, 44].

Meanwhile, diffusion models [18, 52] have achieved ap-
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Figure 1. Overview of our proposed 6D-Diff framework. As
shown, given the 3D keypoints from the object 3D CAD model, we
aim to detect the corresponding 2D keypoints in the image to ob-
tain the 6D object pose. Note that when detecting keypoints, there
are often challenges such as occlusions (including self-occlusions)
and cluttered backgrounds that can introduce noise and indetermi-
nacy into the process, impacting the accuracy of pose prediction.

pealing results in various generation tasks such as image
synthesis [7, 18] and image editing [41]. Specifically, dif-
fusion models are able to recover high-quality determinate
samples (e.g., clean images) from a noisy and indetermi-
nate input data distribution (e.g., random noise) via a step-
by-step denoising process [18, 52]. Motivated by such a
strong denoising capability [11, 12, 18], we aim to leverage
diffusion models to handle the RGB-based 6D object pose
estimation task, since this task also involves tackling noise
and indeterminacy. However, it can be difficult to directly
use diffusion models to estimate the object pose, because
diffusion models often start denoising from random Gaus-
sian noise [18, 52]. Meanwhile, in RGB-based 6D object
pose estimation, the object pose is often extracted from an
intermediate representation, such as keypoint heatmaps [5],
pixel-wise voting vectors [44], or object surface keypoint
features [4]. Such an intermediate representation encodes
useful distribution priors about the object pose. Thus start-
ing denoising from such an representation shall effectively
assist the diffusion model in recovering accurate object
poses [11]. To achieve this, we propose a novel diffusion-
based object pose estimation framework (6D-Diff) that can
exploit prior distribution knowledge from the intermediate
representation for better performance.
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Overall, our framework is a correspondence-based
framework, in which to predict an object pose, given the
3D keypoints pre-selected from the object 3D CAD model,
we first predict the coordinates of the 2D image keypoints
corresponding to the pre-selected 3D keypoints. We then
use the 3D keypoints together with the predicted 2D key-
points coordinates to compute the 6D object pose using a
Perspective-n-Point (PnP) solver [10, 31]. As shown in
Fig. 1, to predict the 2D keypoints coordinates, we first
extract an intermediate representation (the 2D keypoints
heatmaps) through a keypoints distribution initializer. As
discussed before, due to various factors, there often exists
noise and indeterminacy in the keypoints detection process
and the extracted heatmaps can be noisy as shown in Fig. 2.
Thus we pass the distribution modeled from these keypoints
heatmaps into a diffusion model to perform the denoising
process to obtain the final keypoints coordinates prediction.

Analogous to non-equilibrium thermodynamics [50],
given a 2D image keypoint, we can consider all its possi-
ble locations in the image as particles in thermodynamics.
Under low indeterminacy, the particles (possible locations)
w.r.t. each 2D keypoint gather, and each keypoint can be
determinately and accurately localized. In contrast, under
high indeterminacy, these particles can stochastically spread
over the input image, and it is difficult to localize each key-
point. The process of converting particles from low indeter-
minacy to high indeterminacy is called the forward process
of the diffusion model. The goal of the diffusion model is
to reverse the above forward process (through a reverse pro-
cess), i.e., converting the particles from high indeterminacy
to low indeterminacy. Here in our case, we aim to convert
the indeterminate keypoints coordinates distribution mod-
eled from the heatmaps into the determinate distribution.
Below we briefly introduce the forward process and the re-
verse process in our diffusion model.

In the forward process, we aim to generate supervision
signals that will be used to optimize the diffusion model
during the reverse process. Specifically, given a set of pre-
selected 3D keypoints, we first acquire ground-truth coordi-
nates of their corresponding 2D keypoints using the ground-
truth object pose. Then these determinate ground-truth 2D
coordinates are gradually diffused towards the indetermi-
nate distribution modeled from the intermediate representa-
tion, and the distributions generated along the way will be
used as supervision signals. Note that, as the distribution
modeled from the intermediate representation can be com-
plex and irregular, it is difficult to characterize such a distri-
bution via the Gaussian distribution. This means that sim-
ply applying diffusion models in most existing generation
works [7, 18, 52], which start denoising from the random
Gaussian noise, can introduce potentially large errors. To
tackle this challenge, we draw inspiration from the fact that
the Mixture of Cauchy (MoC) model can effectively char-

Figure 2. Above we show two examples of keypoint heatmaps,
which serve as the intermediate representation [4, 5, 44] in our
framework. The red dots indicate the ground-truth locations of the
keypoints. In the example (a), the target object is the pink cat,
which is heavily occluded in the image and is shown in a different
pose compared to the 3D model. As shown above, due to occlu-
sions and cluttered backgrounds, the keypoint heatmaps are noisy,
which reflects the noise and indeterminacy during the keypoints
detection process.

acterize complex and intractable distributions. Moreover,
the MoC model is robust to potential outliers in the distri-
bution to be characterized [26]. Thus we propose to model
the intermediate representation using a MoC distribution in-
stead of simply treating it as a random Gaussian noise. In
this way, we gradually diffuse the determinate distribution
(ground truth) of keypoints coordinates towards the mod-
eled MoC distribution during the forward process.

Correspondingly, in the reverse process, starting from
the MoC distribution modeled in the forward process, we
aim to learn to recover the ground-truth keypoints coordi-
nates. To achieve this, we leverage the distributions gen-
erated step-by-step during the forward process as the su-
pervision signals to train the diffusion model to learn the
reverse process. In this way, the diffusion model can learn
to convert the indeterminate MoC distribution of keypoints
coordinates into a determinate one smoothly and effectively.
After the reverse process, the 2D keypoints coordinates ob-
tained from the final determinate distribution are used to
compute the 6D object pose with the pre-selected 3D key-
points. Moreover, we further facilitate the model learning of
such a reverse process by injecting object appearance fea-
tures as context information.

Our work makes the following contributions. 1) We pro-
pose a novel 6D-Diff framework, in which we formulate
keypoints detection for 6D object pose estimation as a re-
verse diffusion process to effectively eliminate the noise and
indeterminacy in object pose estimation. 2) To take advan-
tage of the intermediate representation that encodes useful
prior distribution knowledge for handling this task, we pro-
pose a novel MoC-based diffusion process. Besides, we fa-
cilitate the model learning by utilizing object features.
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2. Related Work

RGB-based 6D Object Pose Estimation has received a lot
of attention [4, 13–16, 23, 32, 33, 36, 38, 43, 44, 46, 53,
54, 56, 63–67]. Some works [22, 27, 61, 63] proposed to
directly regress object poses. However, the non-linearity of
the rotation space makes direct regression of object poses
difficult [32]. Compared to this type of direct methods,
correspondence-based methods [5, 19, 43, 44, 46, 53, 56]
often demonstrate better performance, which estimate 6D
object poses via learning 2D-3D correspondences between
the observed image and the object 3D model.

Among correspondence-based methods, several works
[42, 44, 46, 48, 56] aim to predict the 2D keypoints coor-
dinates corresponding to specific 3D keypoints. BB8 [46]
proposed to detect the 2D keypoints corresponding to the
8 corners of the object’s 3D bounding box. Later, PVNet
[44] achieved better performance by estimating 2D key-
points for sampled points on the surface of the object 3D
model via pixel-wise voting. Moreover, various methods
[19, 43, 53, 61, 67] establish 2D-3D correspondences by
localizing the 3D model point corresponding to each ob-
served object pixel. Among these methods, DPOD [67] ex-
plored the use of UV texture maps to facilitate model train-
ing, and ZebraPose [53] proposed to encode the surface of
the object 3D model efficiently through a hierarchical bi-
nary grouping. Besides, several pose refinement methods
[23, 33, 38, 64] have been proposed, which conducted pose
refinement given an initial pose estimation.

In this paper, we also regard object pose estimation as
a 2D-3D correspondence estimation problem. Different
from previous works, here by formulating 2D-3D corre-
spondence estimation as a distribution transformation pro-
cess (denoising process), we propose a new framework (6D-
Diff) that trains a diffusion model to perform progressive
denoising from an indeterminate keypoints distribution to
the desired keypoints distribution with low indeterminacy.

Diffusion Models [7, 9, 18, 50, 52] are originally intro-
duced for image synthesis. Showing appealing generation
capabilities, diffusion models have also been explored in
various other tasks [11, 12, 20, 25, 30, 37, 41, 58], such as
image editing [41] and image impainting [37]. Here we ex-
plore a new framework that tackles object pose estimation
with a diffusion model. Different from previous generation
works [7, 37, 41] that start denoising from random noise,
to aid the denoising process for 6D object pose estimation,
we design a novel MoC-based diffusion mechanism that en-
ables the diffusion model to start denoising from a distribu-
tion containing useful prior distribution knowledge regard-
ing the object pose. Moreover, we condition the denoising
process on the object appearance features, to further guide
the diffusion model to obtain accurate predictions.

3. Method
To handle the noise and indeterminacy in RGB-based 6D
object pose estimation, inspired by [11], from a novel per-
spective of distribution transformation with progressive de-
noising, we propose a framework (6D-Diff) that repre-
sents a new brand of diffusion-based solution for 6D ob-
ject pose estimation. Below we first revisit diffusion mod-
els in Sec. 3.1. Then we discuss our proposed framework
in Sec. 3.2, and introduce its training and testing scheme in
Sec. 3.3. We finally detail the model architecture in Sec. 3.4.

3.1. Revisiting Diffusion Models

The diffusion model [18, 52], which is a kind of probabilis-
tic generative model, consists of two parts, namely the for-
ward process and the reverse process. Specifically, given an
original sample d0 (e.g., a clean image), the process of dif-
fusing the sample d0 iteratively towards the noise (typically
Gaussian noise) dK ∼ N (0, I) (i.e., d0 → d1 → ... → dK)
is called the forward process. In contrast, the process of de-
noising the noise dK iteratively towards the sample d0 (i.e.,
dK → dK−1 → ... → d0) is called the reverse process.
Each process is defined as a Markov chain.
Forward Process. To obtain supervision signals for train-
ing the diffusion model to learn to perform the reverse pro-
cess in a stepwise manner, we need to acquire the interme-
diate step results {dk}K−1

k=1 . Thus the forward process is
first performed to generate these intermediate step results
for training purpose. Specifically, the posterior distribution
q(d1:K |d0) from d1 to dK is formulated as:

q(d1:K |d0) =
K∏

k=1

q(dk|dk−1)

q(dk|dk−1) = N (dk;
√
1− βkdk−1, βkI)

(1)

where {βk ∈ (0, 1)}Kk=1 denotes a set of fixed variance con-
trollers that control the scale of the injected noise at differ-
ent steps. According to Eq. (1), we can derive q(dk|d0) in
closed form as:

q(dk|d0) = N (dk;
√
αkd0, (1− αk)I) (2)

where αk = 1− βk and αk =
∏k

s=1 αs. Based on Eq. (2),
dk can be further expressed as:

dk =
√
αkd0 +

√
1− αkϵ (3)

where ϵ ∼ N (0, I). From Eq. (3), we can observe that
when the number of diffusion steps K is sufficiently large
and αK correspondingly decreases to nearly zero, the dis-
tribution of dK is approximately a standard Gaussian dis-
tribution, i.e., dK ∼ N (0, I). This means d0 is gradually
corrupted into Gaussian noise, which conforms to the non-
equilibrium thermodynamics phenomenon of the diffusion
process [50].
Reverse Process. With the intermediate step results
{dk}K−1

k=1 acquired in the forward process, the diffusion
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model is trained to learn to perform the reverse process.
Specifically, in the reverse process, each step can be for-
mulated as a function f that takes dk and the diffusion
model Mdiff as inputs and generate dk−1 as the output,
i.e., dk−1 = f(dk,Mdiff ).

After training the diffusion model, during inference, we
do not need to conduct the forward process. Instead, we
only conduct the reverse process, which converts a random
Gaussian noise dK ∼ N (0, I) into a sample d0 of the de-
sired distribution using the trained diffusion model.

3.2. Proposed Framework

Similar to previous works [21, 44, 53], our framework pre-
dicts 6D object poses via a two-stage pipeline. Specifically,
(i) we first select N 3D keypoints on the object CAD model
and detect the corresponding N 2D keypoints in the image;
(ii) we then compute the 6D pose using a PnP solver. Here
we mainly focus on the first stage and aim to produce more
accurate keypoint detection results.

When detecting 2D keypoints, factors like occlusions
and cluttered backgrounds can bring noise and indetermi-
nacy into this process, and affect the accuracy of detection
results [21, 44]. To handle this problem, inspired by that
diffusion models can iteratively reduce indeterminacy and
noise in the initial distribution (e.g., standard Gaussian dis-
tribution) to generate determinate and high-quality samples
of the desired distribution [11, 12], we formulate keypoints
detection as generating a determinate distribution of key-
points coordinates (D0) from an indeterminate initial distri-
bution (DK) via a diffusion model.

Moreover, to effectively adapt to the 6D object pose es-
timation task, the diffusion model in our framework does
not start the reverse process from the common initial distri-
bution (i.e., the standard Gaussian distribution) as in most
existing diffusion works [7, 18, 52]. Instead, inspired by
recent 6D object pose estimation works [4, 5, 61], we first
extract an intermediate representation (e.g., heatmaps), and
use this representation to initialize a keypoints coordinates
distribution (i.e., DK), which will serve as the starting point
of the reverse process. Such an intermediate representation
encodes useful prior distribution information about key-
points coordinates. Thus by starting the reverse process
from this representation, we effectively exploit the distribu-
tion priors in the representation to aid the diffusion model
in recovering accurate keypoints coordinates [11]. Below,
we first describe how we initialize the keypoints distribu-
tion DK , and then discuss the corresponding forward and
reverse processes in our new framework.
Keypoints Distribution Initialization. We initialize
the keypoints coordinates distribution DK with extracted
heatmaps. Specifically, similar to [29, 34, 53], we first use
an off-the-shelf object detector (e.g., Faster RCNN [49]) to
detect the bounding box of the target object, and then crop

the detected Region of Interest (ROI) from the input image.
We send the ROI into a sub-network (i.e., the keypoints dis-
tribution initializer) to predict a number of heatmaps where
each heatmap corresponds to one 2D keypoint. We then
normalize each heatmap to convert it to a probability distri-
bution. In this way, each normalized heatmap naturally rep-
resents the distribution of the corresponding keypoint co-
ordinates, and thus we can use these heatmaps to initialize
DK .
Forward Process. After distribution initialization, the next
step is to iteratively reduce the noise and indeterminacy
in the initialized distribution DK by performing the re-
verse process (DK → DK−1 → ... → D0). To train
the diffusion model to perform such a reverse process, we
need to obtain the distributions generated along the way
(i.e., {Dk}K−1

k=1 ) as the supervision signals. Thus, we first
need to conduct the forward process to obtain samples from
{Dk}K−1

k=1 . Specifically, given the ground-truth keypoints
coordinates distribution D0, we define the forward process
as: D0 → D1 → ... → DK , where K is the number
of diffusion steps. In this forward process, we iteratively
add noise to the determinate distribution D0, i.e., increasing
the indeterminacy of generated distributions, to transform it
into the initialized distribution DK with indeterminacy. Via
this process, we can generate {Dk}K−1

k=1 along the way and
use them as supervision signals to train the diffusion model
to perform the reverse process.

However, in our framework, we do not aim to transform
the ground-truth keypoints coordinates distribution D0 to-
wards a standard Gaussian distribution via the forward pro-
cess, because our initialized distribution DK is not a ran-
dom noise. Instead, as discussed before, DK is initialized
with heatmaps (as shown in Fig. 3), since the heatmaps can
provide rough estimations about the keypoints coordinates
distribution. To effectively utilize such priors in DK to fa-
cilitate the reverse process, we aim to enable the diffusion
model to start the reverse process (denoising process) from
DK instead of random Gaussian noise [11]. Thus, the ba-
sic forward process (described in Sec. 3.1) in existing gen-
erative diffusion models is not suitable in our framework,
which motivates us to design a new forward process for our
task.

However, it is non-trivial to design such a forward pro-
cess, as the initialized distribution DK is based on extracted
heatmaps, and thus DK can be complex and irregular, as
shown in Fig. 4. Hence modeling DK as a Gaussian distri-
bution can result in potentially large errors. To handle this
challenge, motivated by that the Mixture of Cauchy (MoC)
model can effectively and reliably characterize complex and
intractable distributions [26], we leverage MoC to charac-
terize DK . Based on the characterized distribution, we can
then perform a corresponding MoC-based forward process.

Specifically, we denote the number of Cauchy kernels
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Figure 3. Illustration of our framework. During testing, given an input image, we first crop the Region of Interest (ROI) from the image
through an object detector. After that, we feed the cropped ROI to the keypoints distribution initializer to obtain the heatmaps that can
provide useful distribution priors about keypoints, to initialize DK . Meanwhile, we can obtain object appearance features fapp. Next, we
pass fapp into the encoder, and the output of the encoder will serve as conditional information to aid the reverse process in the decoder.
We sample M sets of 2D keypoints coordinates from DK , and feed these M sets of coordinates into the decoder to perform the reverse
process iteratively together with the step embedding fk

D . At the final reverse step (K-th step), we average {di0}Mi=1 as the final keypoints
coordinates prediction d0, and use d0 to compute the 6D pose with the pre-selected 3D keypoints via a PnP solver.

in the MoC distribution as U , and use the Expectation-
Maximum-type (EM) algorithm [26, 55] to optimize the
MoC parameters ηMoC to characterize the distribution DK

as:

ηMoC
∗ = EM

( V∏
v=1

U∑
u=1

πuCauchy(dvK |µu, γu)
)

(4)

where {dvK}Vv=1 denotes V sets of keypoints coordinates
sampled from the distribution DK . Note each set of key-
points coordinates dvK contains all the N keypoints co-
ordinates (i.e., dvK ∈ RN×2). πu denotes the weight
of the u-th Cauchy kernel (

∑U
u=1 πu = 1), and ηMoC =

{µ1, γ1, ..., µU , γU} denotes the MoC parameters in which
µu and γu are the location and scale of the u-th Cauchy ker-
nel. Via the above optimization, we can use the optimized
parameters ηMoC

∗ to model DK as the characterized distri-
bution (D̂K). Given D̂K , we aim to conduct the forward
process from the ground-truth keypoints coordinates distri-
bution D0, so that after K steps of forward diffusion, the
generated distribution reaches D̂K . To this end, we modify
Eq. (3) as follows:

d̂k =
√
αkd0 + (1−

√
αk)µ

MoC +
√
1− αkϵ

MoC (5)

where d̂k ∈ RN×2 represents a sample (i.e., a set
of N keypoints coordinates) from the generated dis-
tribution D̂k, µMoC =

∑U
u=1 1uµu, and ϵMoC ∼

Cauchy(0,
∑U

u=1(1uγu)). Note that 1u is a zero-one in-
dicator and

∑U
u=1 1u = 1 and Prob(1u = 1) = πu.

From Eq. (5), we can observe that when K is sufficiently
large and αK correspondingly decreases to nearly zero, the
distribution of d̂K reaches the MoC distribution, i.e., d̂K =
µMoC+ϵMoC ∼ Cauchy(

∑U
u=1(1uµu),

∑U
u=1(1uγu)). Af-

ter the above MoC-based forward process, we can use the
generated {D̂k}K−1

k=1 as supervision signals to train the dif-
fusion model Mdiff to learn the reverse process. More details
about Eq. (5) can be found in Supplementary material. Such
a forward process is only conducted to generate supervision
signals for training the diffusion model, while we only need
to conduct the reverse process during testing.
Reverse Process. In the reverse process, we aim to recover
a desired determinate keypoints distribution D0 from the
initial distribution DK . As discussed above, we character-
ize DK via a MoC model and then generate {D̂k}K−1

k=1 as
supervision signals to optimize the diffusion model to learn
to perform the reverse process (D̂K → D̂K−1 → ... →
D0), in which the model iteratively reduces the noise and
indeterminacy in D̂K to generate D0.

However, it can still be difficult to generate D0 by di-
rectly performing the reverse process from D̂K , because the
object appearance features are lacking in D̂K . Such features
can help constrain the model reverse process based on the
input image to get accurate predictions. Thus we further
leverage the appearance features from the image as context
to guide Mdiff in the reverse process. Specifically, we reuse
the features extracted from the keypoints distribution ini-
tializer as the appearance features fapp and feed fapp into
the diffusion model, as shown in Fig. 3.

Our reverse process aims to generate a determinate dis-
tribution D0 from the indeterminate distribution D̂K (dur-
ing training) or DK (during testing). Below we describe the
reverse process during testing. We first obtain fapp from the
input image. Then to help the diffusion model to learn to
perform denoising at each reverse step, following [18, 52],
we generate the unique step embedding fk

D to inject the step
number (k) information into the model. In this way, given a
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set of noisy keypoints coordinates dk ∈ RN×2 drawn from
Dk at the kth step, we use diffusion model Mdiff, condi-
tioned on the step embedding fk

D and the object appearance
features fapp, to recover dk−1 from dk as:

dk−1 = Mdiff(dk, fapp, f
k
D) (6)

3.3. Training and Testing

Training. Following [44], we first select N 3D keypoints
from the surface of the object CAD model using the far-
thest point sampling (FPS) algorithm. Then we conduct the
training process in the following two stages.

In the first stage, to initialize the distribution DK , we
optimize the keypoints distribution initializer. Specifically,
for each training sample, given the pre-selected N 3D key-
points, we can obtain the ground-truth coordinates of the
corresponding N 2D keypoints using the ground-truth 6D
object pose. Then for each keypoint, based on the corre-
sponding ground-truth coordinates, we generate a ground-
truth heatmap following [42] for training the initializer.
Thus for each training sample, we generate N ground-truth
heatmaps. In this way, the loss function Linit for optimizing
the initializer can be formulated as:

Linit =
∥∥∥Hpred − HGT

∥∥∥2
2

(7)

where Hpred and HGT denote the predicted heatmaps and
ground-truth heatmaps, respectively.

In the second stage, we optimize the diffusion model
Mdiff. For each training sample, to optimize Mdiff, we per-
form the following steps. (1) We first send the input im-
age into an off-the-shelf object detector [57] and then feed
the detected ROI into the trained initializer to obtain N
heatmaps. Meanwhile, we can also obtain fapp. (2) We
use the N predicted heatmaps to initialize DK , and lever-
age the EM-type algorithm to characterize DK as a MoC
distribution D̂K . (3) Based on D̂K , we use the ground-
truth keypoints coordinates d0 to directly generate M sets
of (d̂1, ..., d̂K) (i.e., {d̂i1, ..., d̂iK}Mi=1) via the forward pro-
cess (Eq. (5)). (4) Then, we aim to optimize the diffusion
model Mdiff to recover d̂ik−1 from d̂ik iteratively. Follow-
ing previous diffusion works [18, 52], we formulate the loss
Ldiff for optimizing Mdiff as follows (d̂i0 = d0 for all i):

Ldiff =

M∑
i=1

K∑
k=1

∥∥∥Mdiff(d̂
i
k, fapp, f

k
D)− d̂ik−1

∥∥∥2
2

(8)

Testing. During testing, for each testing sample, by feed-
ing the input image to the object detector and the keypoints
distribution initializer consecutively, we can initialize DK

and meanwhile obtain fapp. Then, we perform the reverse
process. During the reverse process, we sample M sets of
noisy keypoints coordinates from DK (i.e., {diK}Mi=1) and
feed them into the trained diffusion model. Here we sample
M sets of keypoints coordinates, because we are converting
from a distribution (DK) towards another distribution (D0).

Then the model iteratively performs the reverse steps. Af-
ter K reverse diffusion steps, we obtain M sets of predicted
keypoints coordinates (i.e., {di0}Mi=1). To obtain the final
keypoints coordinates prediction d0, we compute the mean
of the M predictions. Finally, we can solve for the 6D ob-
ject pose using a PnP solver, like [44, 53].

3.4. Model Architecture

Our framework mainly consists of the diffusion model
(Mdiff) and the keypoints distribution initializer.
Diffusion Model Mdiff. As illustrated in Fig. 3, our pro-
posed diffusion model Mdiff mainly consists of a trans-
former encoder-decoder architecture. The appearance fea-
tures fapp are sent into the encoder for extracting context
information to aid the reverse process in the decoder. fk

D

and {dik}Mi=1 (or {d̂ik}Mi=1 during training) are sent into the
decoder for the reverse process. Both the encoder and the
decoder contain a stack of three transformer layers.

More specifically, as for the encoder part, we first map
fapp ∈ R16×16×512 through a 1 × 1 convolution layer to a
latent embedding eapp ∈ R16×16×128. To retain the spa-
tial information, following [59], we further incorporate po-
sitional encodings into eapp. Afterwards, we flatten eapp into
a feature sequence (R256×128), and send it into the encoder.
The encoder output fenc containing the extracted object in-
formation will be sent into the decoder to aid the reverse
process. Note that during testing, for each sample, we only
need to conduct the above computation process once to ob-
tain the corresponding fenc.

The decoder part iteratively performs the reverse pro-
cess. For notation simplicity, below we describe the reverse
process for a single sample dk instead of the M samples
({di1, ..., diK}Mi=1). Specifically, at the k-th reverse step, to
inject the current step number (k) information into the de-
coder, we first generate the step embedding fk

D ∈ R1×128

using the sinusoidal function following [18, 52]. Mean-
while, we use an FC layer to map the input dk ∈ RN×2

to a latent embedding ek ∈ RN×128. Then we concatenate
fk
D and ek along the first dimension, and send it into the

decoder. By interacting with the encoder output fenc (ex-
tracted object information) via cross-attention at each layer,
the decoder produces fdec, which is further mapped into the
keypoints coordinates prediction dk−1 ∈ RN×2 via an FC
layer. Then we send dk−1 back to the decoder as the input
to perform the next reverse step.
Keypoints Distribution Initializer. The initializer adopts
a ResNet-34 backbone, which is commonly used in 6D
pose estimation methods [4, 53, 61]. To generate heatmaps
to initialize the distribution DK , we add two deconvo-
lution layers followed by a 1 × 1 convolution layer af-
ter the ResNet-34 backbone, and then we obtain pre-
dicted heatmaps Hpred ∈ RN×H

4 ×W
4 where H and W de-

note the height and width of the input ROI image respec-
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Figure 4. Visualization of the denoising process of a sample with our framework. In this example, the target object is the yellow duck
and for clarity, we here show three keypoints only. The red dots indicate the ground-truth locations of these three keypoints. The noisy
heatmap before denoising reflects that factors like occlusions and clutter in the scene can introduce noise and indeterminacy when detecting
keypoints. As shown, our diffusion model can effectively and smoothly reduce the noise and indeterminacy in the initial distribution step
by step, finally recovering a high-quality and determinate distribution of keypoints coordinates. (Better viewed in color)

Table 1. Comparisons with RGB-based 6D object pose estimation methods on the LM-O dataset. (*) denotes symmetric objects.
Method PVNet [44] HybridPose [51] RePose [24] DeepIM [33] GDR-Net [61] SO-Pose [8] CRT-6D [4] ZebraPose [53] CheckerPose [35] Ours

ape 15.8 20.9 31.1 59.2 46.8 48.4 53.4 57.9 58.3 60.6
can 63.3 75.3 80.0 63.5 90.8 85.8 92.0 95.0 95.7 97.9
cat 16.7 24.9 25.6 26.2 40.5 32.7 42.0 60.6 62.3 63.2

driller 65.7 70.2 73.1 55.6 82.6 77.4 81.4 94.8 93.7 96.6
duck 25.2 27.9 43.0 52.4 46.9 48.9 44.9 64.5 69.9 67.2

eggbox* 50.2 52.4 51.7 63.0 54.2 52.4 62.7 70.9 70.0 73.5
glue* 49.6 53.8 54.3 71.7 75.8 78.3 80.2 88.7 86.4 92.0

holepuncher 39.7 54.2 53.6 52.5 60.1 75.3 74.3 83.0 83.8 85.5
Mean 40.8 47.5 51.6 55.5 62.2 62.3 66.3 76.9 77.5 79.6

Table 2. Comparisons with RGB-based 6D object pose estimation
methods on the YCB-V dataset. (-) indicates the corresponding
result is not reported in the original paper.

Method ADD(-S) AUC of ADD-S AUC of ADD(-S)
SegDriven[21] 39.0 - -
SingleStage[22] 53.9 - -
CosyPose [29] - 89.8 84.5
RePose [24] 62.1 88.5 82.0
GDR-Net [61] 60.1 91.6 84.4
SO-Pose [8] 56.8 90.9 83.9
ZebraPose [53] 80.5 90.1 85.3
CheckerPose [35] 81.4 91.3 86.4
Ours 83.8 91.5 87.0

tively. Moreover, the features outputted by the ResNet-34
backbone, combined with features obtained from methods
[35, 53], are used as the object features fapp.

4. Experiments

4.1. Datasets & Evaluation Metrics

Given that previous works [8, 24, 67] have reported the eval-
uation accuracy over 95% on the Linemod (LM) dataset
[17], the performance on this dataset has become saturated.
Thus recent works [4, 53] mainly focus on using the LM-O
dataset [2] and the YCB-V dataset [63] that are more chal-
lenging, which we follow.
LM-O Dataset. The Linemod Occlusion (LM-O) dataset
contains 1214 images and is a challenging subset of the LM
dataset. In this dataset, around 8 objects are annotated on
each image and the objects are often heavily occluded. Fol-
lowing [4, 53], we use both the real images from the LM
dataset and the publicly available physically-based render-
ing (pbr) images [6] as the training images for LM-O. Fol-
lowing [53, 61], on LM-O dataset, we evaluate the model
performance using the commonly-used ADD(-S) metric.

For this metric, we compute the mean distance between the
model points transformed using the predicted pose and the
same model points transformed using the ground-truth pose.
For symmetric objects, following [63], the mean distance is
computed based on the closest point distance. If the mean
distance is less than 10% of the model diameter, the pre-
dicted pose is regarded as correct.
YCB-V Dataset. The YCB-V dataset is a large-scale
dataset containing 21 objects and over 100k real images.
The samples in this dataset often exhibit occlusions and
cluttered backgrounds. Following [4, 53], we use both the
real images from the training set of the YCB-V dataset and
the publicly available pbr images as the training images for
YCB-V. Following [53, 61], we evaluate the model perfor-
mance using the following metrics: ADD(-S), AUC (Area
Under the Curve) of ADD-S, and AUC of ADD(-S). For
calculating AUC, we set the maximum distance threshold
to 10 cm following [63].

4.2. Implementation Details

We conduct our experiments on an Nvidia V100 GPU. We
set the number of pre-selected 3D keypoints N to 128. Dur-
ing training, following [34, 53], we utilize the dynamic
zoom-in strategy to produce augmented ROI images. Dur-
ing testing, we use the detected bounding box with Faster
RCNN [49] and FCOS [57] provided by CDPNv2 [34]. The
cropped ROI image is resized to the shape of 3× 256× 256
(H = W = 256). We characterize DK via a MoC model
with 9 Cauchy kernels (U = 9) for the forward diffusion
process. We optimize the diffusion model Mdiff for 1500
epochs using the Adam optimizer [28] with an initial learn-
ing rate of 4e-5. Moreover, we set the number of sam-
pled sets M to 5, and the number of diffusion steps K to
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Figure 5. Qualitative results. Green bounding boxes represent
the ground-truth poses and blue bounding boxes represent the pre-
dicted poses of our method. As shown, even facing severe occlu-
sions, clutter in the scene or varying environment, our framework
can still accurately recover the object poses, showing the effec-
tiveness of our method for handling the noise and indeterminacy
caused by various factors in object pose estimation.

100. Following [53], we use Progressive-X [1] as the PnP
solver. Note that during testing, instead of performing the
reverse process with all the K steps, we accelerate the pro-
cess with DDIM [52], a recently proposed diffusion accel-
eration method. With DDIM acceleration, we only need to
perform 10 steps to finish the reverse process during testing.

4.3. Comparison with State-of-the-art Methods

Results on LM-O Dataset. As shown in Tab. 1, compared
to existing methods, our method achieves the best mean per-
formance, showing the superiority of our method. We also
show qualitative results on the LM-O dataset in Fig. 5. As
shown, even in the presence of large occlusions (including
self-occlusions) and cluttered backgrounds, our method still
produces accurate predictions.
Results on YCB-V Dataset. As shown in Tab. 2, our
framework achieves the best performance on both the
ADD(-S) and the AUC of ADD(-S) metrics, and is compa-
rable to the state-of-the-art method on the AUC of ADD-S
metric, showing the effectiveness of our method.

4.4. Ablation Studies

We conduct extensive ablation experiments on the LM-O
dataset, and we report the model performance on ADD(-S)
metric averaged over all the objects.

Table 3. Evaluation on
the effectiveness of the de-
noising process.

Method ADD(-S)
Variant A 49.2
Variant B 57.3
Variant C 61.1
6D-Diff 79.6

Impact of denoising process.
In our framework, we predict
keypoints coordinates via per-
forming the denoising process.
To evaluate the efficacy of this
process, we test three variants.
In the first variant (Variant A),
we remove the diffusion model
Mdiff and predict keypoints coordinates directly from the
heatmaps produced by the keypoints distribution initializer.
The second variant (Variant B) has the same model architec-

ture as our framework, but the diffusion model is optimized
to directly predict the coordinates instead of learning the re-
verse process. Same as Variant B, the third variant (Variant
C) is also optimized to directly predict coordinates without
denoising process. For Variant C, we stack our diffusion
model structure multiple times to produce a deep network,
which has similar computation complexity with our frame-
work. As shown in Tab. 3, compared to our framework, the
performance of these variants significantly drops, showing
that the effectiveness of our framework mainly lies in the
designed denoising process.

Table 4. Evaluation on the
effectiveness of the object
appearance features fapp.

Method ADD(-S)
w/o fapp 74.4
6D-Diff 79.6

Impact of object appearance
features fapp. In our frame-
work, we send the appearance
features fapp into the diffusion
model Mdiff to aid the reverse
process. To evaluate its effect,
we test a variant in which we do not send fapp into Mdiff
(w/o fapp). As shown in Tab. 4, our framework performs
better than this variant, showing that fapp can aid Mdiff to
get more accurate predictions.

Table 5. Evaluation on the effectiveness
of the MoC design.

Method ADD(-S)
Standard diffusion w/o MoC 73.1
Heatmaps as condition 76.2
6D-Diff 79.6

Impact of MoC
design. During
training, we model
the distribution DK

from the interme-
diate representation
(heatmaps) as a MoC distribution D̂K , and train the
diffusion model Mdiff to perform the reverse process from
D̂K . To investigate the impact of this design, we evaluate
two variants that train Mdiff in different ways. In the first
variant (Standard diffusion w/o MoC), we train the model
to start the reverse process from the standard Gaussian
noise, i.e., following the basic forward process in Eq. (3)
for model training. In the second variant (Heatmaps as
condition), we still train the model to start denoising from
the random Gaussian noise but we use the heatmaps as the
condition for the reverse process. As shown in Tab. 5, our
framework consistently outperforms both variants, showing
effectiveness of the designed MoC-based forward process.

5. Conclusion
In this paper, we proposed a novel diffusion-based 6D ob-
ject pose estimation framework, which effectively handles
noise and indeterminacy in object pose estimation. In our
framework, we formulate object keypoints detection as a
carefully-designed reverse diffusion process. We design
a novel MoC-based forward process to effectively utilize
the distribution priors in intermediate representations. Our
framework achieves superior performance.
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