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Abstract

Human-centric Point Cloud Video Understanding (PVU)
is an emerging field focused on extracting and interpret-
ing human-related features from sequences of human point
clouds, further advancing downstream human-centric tasks
and applications. Previous works usually focus on tack-
ling one specific task and rely on huge labeled data, which
has poor generalization capability. Considering that hu-
man has specific characteristics, including the structural
semantics of human body and the dynamics of human mo-
tions, we propose a unified framework to make full use of
the prior knowledge and explore the inherent features in
the data itself for generalized human-centric point cloud
video understanding. Extensive experiments demonstrate
that our method achieves state-of-the-art performance on
various human-related tasks, including action recognition
and 3D pose estimation. All datasets and code will be re-
leased soon.

1. Introduction
Human-centric point cloud video understanding (PVU) is
a burgeoning field focused on discerning, interpreting, and
quantifying human-related information within sequences of
human point clouds. This area has witnessed a surge in at-
tention in recent years, particularly applied in LiDAR cap-
tured large-scale unconstrained scenarios [5, 11, 33, 34].
Its significance lies in its critical role in facilitating various
downstream tasks, including human action recognition [33],
3D pose estimation [4], motion capture [13, 24], etc. These
advancements hold the potential to further drive progress
in real-world applications, such as intelligent surveillance,
assistive robots, human-robot collaboration, etc.

Current methods [13, 24, 33] usually rely on exten-
sive labeled data for supervision and employ generic point
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Figure 1. UniPVU-Human extracts human-related prior knowl-
edge at global level, part level, and point level to facilitate sub-
sequent geometric and dynamic representation learning, finally
cater to a range of downstream human-centric tasks, such as ac-
tion recognition, 3D pose estimation, etc.

cloud-based feature extraction backbones [10, 17, 21, 22].
Nevertheless, obtaining the necessary data and annotations
for 4D human-centric point cloud videos proves to be a
challenging and expensive endeavor. Furthermore, fully su-
pervised techniques tend to exhibit overfitting issues when
applied to specific datasets or tasks, resulting in limited gen-
eralization capabilities. Additionally, the existing feature
extraction networks are ill-suited for human-centric data,
as they fail to account for human-specific characteristics.
Hence, within the domain of human-centric PVU, the sig-
nificance of self-supervised learning becomes evident in en-
hancing algorithmic generalization. Simultaneously, the de-
velopment of a human-specific feature extractor that uses
prior human-related knowledge holds great promise in bol-
stering the effectiveness of methods for downstream tasks.

Actually, self-supervised learning [31, 39] for PVU has
made great progress. Some approaches [26–28] leverage
contrastive learning techniques to capture essential spatio-
temporal features within dynamic point clouds. Never-
theless, due to the inherent challenges posed by irregu-
lar point distributions stemming from varying capture dis-
tances, occlusions, and noise, the construction of high-
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quality positive and negative samples remains a nontrivial
task, thereby making the optimization process difficult. The
latest work [25] exploits mask prediction for point cloud
video self-learning by dividing sequential point clouds into
tubes for masking and recovering. However, this method
flattens all tubes for feature learning, inadvertently compro-
mising the semantic and dynamic consistency in 4D videos.
Moreover, all these methods are not tailored specifically to
address human-centric PVU.

Given the importance of human-centric tasks, the imper-
ative need arises to establish a unified framework for the
understanding of human point cloud videos. Notably, no
specific solutions to this challenge have been identified to
date. In this paper, we approach the problem by address-
ing two fundamental questions: first, what human-related
prior knowledge can be extracted, and second, how can the
knowledge be harnessed to enhance human-centric repre-
sentation learning?

Considering the inherent structure of the human body,
characterized by fixed components such as torso, head,
arms, and legs, as well as the distinctive dynamic traits ex-
hibited during human motion, we exploit both the struc-
tural semantics of human body and human motion dy-
namics to facilitate the acquisition of human-specific fea-
tures from sequences of point clouds. In particular, we cre-
ate two large-scale point-cloud-based datasets and corre-
sponding pre-trained networks for body segmentation and
motion flow estimation, respectively, so that human prior
knowledge can be learned in advance and assist subsequent
representation learning. Furthermore, within our frame-
work, we introduce two innovative stages tailored to max-
imize the utility of this prior knowledge. The first one,
termed semantic-guided spatio-temporal representation
self-learning, incorporates a body-part-based mask predic-
tion mechanism designed to facilitate the acquisition of
geometric and dynamic representations of humans in the
absence of annotations. Building upon this foundation,
the following stage, hierarchical feature enhanced fine-
tuning, integrates and adapts global-level, part-level, and
point-level point cloud features to cater to a range of down-
stream tasks. In this way, our approach, named UniPVU-
Human, serves as a comprehensive exploration of human
prior knowledge, furnishing a unified framework for the ef-
fective learning of human-centric representations.

To evaluate the effectiveness of our method, we conduct
extensive experiments on two popular LiDAR-point-cloud-
based datasets [24, 33], focusing on human action recogni-
tion and human pose estimation, respectively. Our method
achieves state-of-the-art performance on both tasks. De-
tailed ablation studies are also provided to verify each stage
and technical design in our framework.

To summarize, our contributions are as follows:
1. We propose UniPVU-Human, the first unified frame-

work for human-centric point cloud video understand-
ing, which is significant for vast downstream applica-
tions.

2. Containing two novel stages, including semantic-guided
spatio-temporal representation self-learning and hierar-
chical feature enhanced fine-tuning, our method fully
takes advantage of prior knowledge of humans for effec-
tive and robust human-centric representation learning.

3. Our method achieves state-of-the-art performance on
open datasets for various human-centric tasks.

2. Related Work
2.1. Feature Learning for Point Clouds

Point cloud is an important representation for 3D scenes and
objects, and tremendous efforts have been made [17, 23]
for extracting valuable features from point clouds. Point-
Net [21] is to learn a spatial encoding of each point and
then aggregate all individual point features to a global point
cloud signature[22]. PointNet++[22] further introduces a
hierarchical feature learning paradigm to capture the local
geometric structures recursively. PointNeXt [23] revisits
PointNet++[22] with improved training and scaling strate-
gies. PCT [10] and PointTransformer [40] apply attention-
based mechanism [30] to point cloud representations. Sub-
sequently, many methods [2, 2, 9, 15] extend them to pro-
cess dynamic point cloud videos for more extensive ap-
plications. P4Transformer [7] and PST-Transformer [8]
use transformers among all local 4D tubes’ features to
capture long relationships. With the development of au-
tonomous driving, some works [35, 41–43] propose voxel-
based or voxel-point-based feature extractors to process Li-
DAR point clouds for high efficiency. However, all these
methods are not specifically designed for human dynamic
point clouds, lacking the consideration of human-specific
characteristics.

2.2. LiDAR-based Human-centric Understanding

Recently, the understanding of human-centric point cloud
videos, which are captured by LiDARs in large-scale
scenes, has become an emerging field with a lot of new
datasets and benchmarks for various human-centric tasks.
LiDARCap [13] contributes an in-the-wild human motion
dataset and proposes a LiDAR point cloud video-based mo-
tion capture framework. Subsequent works, LIP [24], ex-
plores the feature fusion of different visual sensors to ad-
dress 3D pose estimation task based on point clouds and
images. Recently, HuCenLife [33] proposes a huge human-
centric dataset with diverse daily-life scenarios and rich hu-
man activities, and provides baselines for human percep-
tion, action recognition, motion prediction, etc. However,
all these approaches follow previous generic backbones to
extract features from sequence human point clouds without
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Figure 2. The main pipeline of UniPVU-Human, which can be divided into three stages, including (a) Prior Knowledge Extraction, (b)
Semantic-Guided Spatio-temporal Representation Self-learning, and (c) Hierarchical Feature Enhanced Fine-tuning. First, the pre-trained
HBSeg and HMFlow are used to provide geometric and dynamic information, including body part segmentation results and point-wise
motion flow. Then, our self-learning stage incorporates a body-part-based mask prediction mechanism designed to facilitate the acquisition
of geometric and dynamic representations of humans in the absence of annotations. Finally, we integrate global-level, part-level, and
point-level features to boost the knowledge transfer to downstream tasks in the fine-tuning stage.

making use of human prior knowledge. Moreover, they are
all supervised methods, causing unsatisfactory results when
generalizing to other datasets or tasks.

2.3. Self-supervised Learning for Point Clouds

To understand the point cloud representation from data it-
self instead of supervision by manual annotations, some
methods improve the generalization capability via self-
learning in the pre-training stage. There exist many meth-
ods [1, 19, 32, 36, 38] learning the geometric representa-
tion from static point cloud in a self-supervised manner.
Recently, more and more self-learning methods [31, 39]
are proposed to learn the spatio-temporal representations of
point cloud videos. Some approaches [26–28] adopt con-
trastive learning spatially and among frames to learn in-
herent geometric and dynamic features. However, LiDAR
point clouds are sparsity-varying across different capture
distances, are usually incomplete due to occlusions, and
contain undesired noises, making these methods unstable
due to low-quality positive and negative pairs. In the re-
cent study [25], mask prediction [12] is employed for self-
learning in point cloud videos by segmenting sequential
point clouds into tubes. However, it flattens all tubes during
feature learning, inadvertently affecting the semantic and
dynamic consistency in 4D videos. Additionally, all these
methods lack customization for the specific requirements of
human-centric point cloud video understanding.

3. Method
The whole architecture of our method is presented in Fig-
ure. 2. A point cloud video sequence for human instances
is denoted as PC ∈ RL×N×D, where L is the sequence

length, N is number of points in each frame, and D is the
dimension of each point. To exploit both the structural se-
mantics of human body and human motion to facilitate the
acquisition of human-specific features from sequences of
point clouds, we create two large-scale point-cloud-based
datasets and corresponding pre-trained networks for body
segmentation and motion flow estimation in Prior Knowl-
edge Extraction. Besides, to learn the essential geomet-
ric and dynamic representations of humans from data itself,
we explore the spatial and temporal relationships of struc-
tural semantics in human body by applying spatio-temporal
modeling upon the embedding of body parts in the stage of
Semantic-guided Spatio-temporal Representation Self-
learning. Building upon this foundation, we use extracted
multiple levels of human-related prior knowledge to bene-
fit various downstream tasks by Hierarchical Feature En-
hanced Fine-tuning, which integrates global-level, part-
level, and point-level point cloud features.

3.1. Prior Knowledge Extraction

Different from the movements of rigid objects such as vehi-
cles in traffic scenarios, the motion of non-rigid humans is
more complicated, for it contains not only global rotations
and translations but also local rotations and translations,
such as relative motions among joints, making capturing
human motion features more challenging. The key to ad-
dressing this problem is to model the human motion in more
fine-grained levels, including body part level and point-wise
level. Therefore, we build the Human Body Segmentation
(HBSeg) and Human Motion Flow (HMFlow) networks to
provide more fine-grained geometric and motion informa-
tion about human body, which can serve as prior knowledge
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to facilitate following human-centric representation learn-
ing.

3.1.1 Human Body Segmentation (HBSeg)

Figure 3. Visualization results of HBSeg on HuCenLife [33]. We
show cases with different densities of LiDAR point cloud, occlu-
sion (yellow circle), and noise (black circle). HBSeg has robust
performance even merely trained on our synthesized dataset.

To fully utilize the structural semantics of human body,
we deconstruct human into fine-grained body parts by HB-
Seg, pre-trained on our synthetic dataset, which is con-
structed by employing a simulated LiDAR model [24] to
scan the surfaces of 3D human meshes from the AMASS
dataset [18] at various perspectives and distances, mean-
while introducing random occlusions and noise to minimize
the distribution gap between synthetic data and real data.
We define 9 parts of human body and generate annotations
by attaching the body part label of the nearest SMPL [16]
mesh vertex to the synthetic LiDAR Point. More details are
in Section. 4.1 and supplementary material.

We adopt the PointNeXt-L [23] as the main body net-
work of HBSeg. After training on synthetic data, we apply
the pre-trained HBSeg on real data to get the part segmen-
tation labels S ∈ RL×N×1. As Figure. 3 shows, HBSeg
performs stable on real-life data with changing sparsity and
works well even for occlusion and noise cases, mainly due
to our efforts on generating realistic synthetic data.

3.1.2 Human Motion Flow Estimation (HMFlow)

Figure 4. Visualization results of HMFlow on HuCenLife [33].
We present several cases from near to far relative to the LiDAR
sensor. HMFlow has good capability of estimating point flow even
for the parts with significant movements (yellow circle), which can
provide explicit features of human dynamics.

We pre-train the HMFlow on our synthetic dataset to
provide point-wise motion information, which can benefit
the feature enhancement in the fine-tuning stage. Similar to
Section. 3.1.1, we associate each synthetic LiDAR point to
its nearest SMPL vertex. Therefore, we are able to establish
the correspondence between synthetic LiDAR points across
different frames by using SMPL vertices indices, so that we
can obtain motion flow ground truth for training our HM-
Flow. More details are in Section. 4.1 and supplementary
material.

We employ FLOT [20] as the human motion flow es-
timator, which casts the task of scene flow estimation as
finding soft correspondences on a pair of point clouds via
solving an optimal transport problem [14]. When testing on
the real data, we input adjacent LiDAR point clouds PCt

and PCt+1 ∈ RL×N×D into the pre-trained HMFlow to
obtain human motion flow vectors F ∈ RL×N×D′

for each
LiDAR point in the t-th frame. As Figure. 4 demonstrates,
HMFlow can generate reasonable prediction for point-wise
motion flow on real data even without annotations, which is
valuable to provide explicit priors for human dynamics.

3.2. Semantic-guided Spatio-temporal Representa-
tion Self-learning

Due to spatial irregularities and temporal redundancies, an-
notating dynamic point cloud videos is labor-intensive and
error-prone. Moreover, fully-supervised methods usually
overfit to manual annotations in specific domains, strug-
gling to capture the underlying patterns of new data [37].
This limitation leads to a restricted ability to generalize to
other tasks or datasets. Additionally, existing feature extrac-
tion networks employ generic point-cloud-based backbones
that are ill-suited for human-centric data, as they do not ac-
count for human-specific characteristics. Based on structure
semantics of human bodies obtained in previous stage, we
propose a module, named Semantic-guided Spatio-temporal
Representation Self-learning, which mines essential geo-
metric and motion features from human point cloud video
data itself by masking and predicting body part patches to
enhance the generalization ability of the model to benefit a
variety of downstream tasks.

As Figure. 2 shows, We first mask some of the body-part
tokens in temporal and spatial dimensions. After extracting
the token embedding of part patches, only visible tokens
will be input to the STEncoder to extract latent represen-
tation, which will be decoded with masked tokens together
to reconstruct the 3D Cartesian coordinates of masked part
patches. Details are as follows.

3.2.1 Spatio-temporal Masking Strategy

In temporal dimension, we mask all part patches in some
random frames and reconstruct the masked tokens, encour-
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aging STEncoder networks to estimate the part motion over
a long period. In spatial dimension, we randomly mask
some part patches in the remaining frames after temporal
masking, making the STEncoder network estimate the spa-
tial geometric features of the entire human based on the vis-
ible tokens.

We apply temporal masking first, and then spatial
masking. Given part patches P ∈ RL×M×N ′×D, we
adopt a temporal mask ratio rt and spatial mask ratio
rs, respectively. Firstly, all part patches in rtL frames
are masked, named as temporal masked patches P t

M ∈
RrtL×M×N ′×D, which will be used as the reconstruction
ground truth of temporal masking. For every frame of the
remaining (1 − rt)L visible frames, rsM part patches are
masked randomly, hence spatial masked patches P s

M ∈
R(1−rt)L×rsM×N ′×D will be used as the reconstruction
ground truth of the spatial masking.

3.2.2 Embedding Layer

For visible part patches, we use Mini-PointNet [21] as a
tokenizer to obtain visible part tokens embedding TV from
visible part patches PV .

TV = Tokenizer(PV ), (1)

where TV ∈ R(1−rt)L×(1−rs)M×C , PV ∈
R(1−rt)L×(1−rs)M×N ′×D. C is the channel dimen-
sion of part tokens. For every masked part patch, we
replace it with a share-weighted learnable masked part
token TM , which will be concatenated with the output of
STEncoder and processed by the decoder together.

Learnable spatial positional encoding and temporal po-
sitional encoding will also be added to the input of every
transformer layer in the STEncoder and decoder.

3.2.3 Spatio-temporal Encoder (STEncoder)

To fully utilize the inherent structure of the human body,
characterized by fixed components such as torso, head,
arms, and legs, as well as the distinctive dynamic traits ex-
hibited during human motion, our STEncoder applies spa-
tial modeling and temporal modeling on body part tokens,
respectively. The STEncoder learns to extract the high-level
latent geometric and motion features of humans from only
TV , which are input to STEncoder to get enhanced visible
part tokens TE

V .
For the network design of STEncoder, we interlace mul-

tiple spatial transformer [30] layers and temporal trans-
former layers to extract the spatial geometry feature and
temporal motion feature, respectively. For each spatial
transformer layer, we apply self-attention [30] among all
visible parts tokens in every frame:

V s′

T = SpatialTransformer(V s
T ), (2)

where V s
T , V

s′

T ∈ R(1−rs)M×C are the visible part tokens in
a frame. For each temporal transformer layer, we apply self-
attention for every visible part token among all L frames:

V t′

T = TemporalTransformer(V t
T ), (3)

where V t
T , V

t′

T ∈ R(1−rt)L×C are the visible part tokens of
a body part in L frames.

3.2.4 Mask Reconstruction

Our decoder is similar to the STEncoder with fewer lay-
ers. We take the enhanced visible part tokens TE

V as well as
masked part token TM as the input of the decoder.

TR = Decoder(Concate(TE
V , TM )), (4)

where TR ∈ RL×M×C is reconstructed part tokens.
Among the TR, only the tokens masked before will be

fed to the reconstruction head to predict the original masked
part patches. The structure of the reconstruction head is
similar to that in Point-MAE [19], which is a fully con-
nected (FC) layer with a reshape operation.

P s
R = Reshape(FC(T s

R)),

P t
R = Reshape(FC(T t

R)),
(5)

where P s
R ∈ R(1−rt)L×rsM×N ′×D, T s

R ∈
R(1−rt)L×rsM×C , P t

R ∈ RrtL×M×N ′×D, T t
R ∈

RrtL×M×C are spatial reconstructed part patches, spatial
reconstructed part tokens, temporal reconstructed part
patches, temporal reconstructed part tokens, respectively.
We first reconstruct the spatial masked tokens, and then the
temporal masked tokens. We adopt Chamfer Distance [6]
Loss LCD as the reconstruction loss function:

LCD(PM , PR) =
1

∥PM∥
∑

x∈PM

min
y∈PR

∥x− y∥22

+
1

∥PR∥
∑
y∈PR

min
x∈PM

∥y − x∥22.
(6)

3.3. Hierarchical Feature Enhanced Fine-tuning

After the above self-learning process, STEncoder is en-
dowed with the ability to extract the representations of hu-
mans in part-level structural semantics. When fine-tuning
on multiple downstream tasks, hierarchical features can en-
hance the STEncoder to capture more complicated and chal-
lenging fine-grained geometric and dynamic representa-
tions. Specifically, we integrate global-level, part-level, and
point-level point cloud features to pre-trained STEncoder
(See Figure. 2), therefore fully leveraging prior knowledge
for effective and robust human-centric representation learn-
ing.
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During this stage, all part patches are visible to the
STEncoder, and information of point-wise motion flow vec-
tor will be fused to that of body parts in Tokenizer. (See
details in supplementary materials)

T = Tokenizer(P, F ), (7)

where T ∈ RL×M×C , P ∈ RL×M×N ′×D, F ∈
RL×M×N ′×D′

are part tokens, part patches, and motion
flow vectors, respectively. We will also append a global to-
ken extracted from the entire human instance to enable the
interaction of features between global and part. For classi-
fication tasks like action recognition, a class token will be
appended as well. we discard the decoder and add corre-
sponding task heads after the pre-trained tokenizer, learn-
able position encoding, and STEncoder for different tasks.

4. Experiments
To evaluate the effectiveness of our method, we conduct ex-
periments on open datasets on tasks of human action recog-
nition and human pose estimation. Extensive ablation stud-
ies are also conducted for the comprehensive evaluation of
modules and technical designs of our method.

4.1. Datasets

In this section, we first introduce our two synthetic datasets
for body segmentation and motion flow estimation. Then
we give details for two open datasets, which are used for
evaluating our unified framework on downstream real-life
human-centric tasks.

Human Body Segmentation Synthetic Dataset. To
address the absence of 3D human body part segmentation
datasets based on LiDAR point clouds, we leverage SMPL
mesh from AMASS [18] to simulate 1 million LiDAR hu-
man point cloud instances following LIP [24]. We automat-
ically label the data by utilizing the SMPL mesh properties.
Specifically, since ordered and regular SMPL mesh vertices
provide 24 human body part labels, we can automatically
assign each simulated LiDAR point the label of its nearest
vertex. Due to the sparsity of point clouds, there tend to be
fewer points for some body parts such as hands or feet, so
we simplify the original 24 body part labels in the mesh ver-
tices to 9, including head, left arm, right arm, upper body,
lower body, left upper leg, left lower leg, right upper leg,
and right lower leg. In practical applications, occlusions
and noise are inevitable. To address these challenges, we
synthesize point clouds in various shapes and attach them
to the appropriate positions of human point clouds to simu-
late common noises, such as carrying objects or using um-
brellas. Subsequently, these points are labeled as “noise”.
Additionally, we randomly crop the human point clouds to
mimic occlusions. These operations enable our human body
segmentation network to distinguish noise and adapt to oc-
clusions, thus improving its robustness and performance.

Human Motion Flow Synthetic Dataset. Based on
the LiDAR point cloud generation model [3, 24], we cre-
ate a motion flow estimation synthetic dataset. We derive
human motion flow by matching irregular and unordered
LiDAR point clouds with regular and ordered mesh ver-
tices, thereby establishing a correspondence between syn-
thetic points in consecutive frames. We follow LIP [24]
to create 2,378,871 frames of synthetic point clouds from
SMPL mesh in AMASS [18] and SURREAL [29], which
provide diverse human motions. We match each point to
the nearest mesh vertex by utilizing the k-Nearest Neigh-
borhood (kNN) algorithm. Since the vertices of each frame
have one-to-one correspondences, we can find the corre-
sponding points in each frame based on the matched ver-
tices. Moreover, we also use bidirectional filtering and set
distance thresholds to improve the accuracy of finding cor-
responding points.

Action Recognition Dataset. HuCenLife [33] is
a human-centric action recognition dataset. It comprises
65,265 human instances and 12 kinds of human actions.
We divide the dataset into 27142 partially overlapping clips
containing 30 consecutive frames. 19594 clips are used as
the train set while 7548 clips are used as the test set. It
adopts the class mean accuracy (mAcc) as the evaluation
metric.

3D Pose Estimation Dataset. LIPD [24] is a long-
range LiDAR-IMU hybrid human mocap dataset with di-
verse challenge motions. It comprises 15 performers with
30 types of motions, totaling 62,341 LiDAR point cloud
frames, each paired with corresponding IMU measure-
ments. Following the LIP [24] protocol, we divide the
dataset into 39,593 frames for training and 22,748 frames
for testing. We use mean per root-relative joint position er-
ror (MPJPE) in millimeters as the evaluation metric.

4.2. Implementation Details

For HuCenLife, we use point clouds with consecutive
frames of L = 30 frames as the input (L = 32 when dealing
with LIP). The dimension D of each point is 3. After nor-
malizing and sampling to N = 384 points by Farthest Point
Sampling (FPS), we apply pre-trained HBSeg and HMFlow
on real data to obtain the point-wise segmentation labels S
and motion flow vectors F with dimension D′ set to 3.

For each instance, we group points with the same part
segmentation labels into 9 point patches, denoted as P , with
M representing the total number of patches. Subsequently,
N ′ = 48 points are sampled using FPS in each point patch
P . After being masked with temporal mask ratio rt = 0.8
and spatial mask ratio rs = 0.6, each visible point patch has
its part token embedding derived using Mini-PointNet [21],
with a channel dimension C = 384. In the self-learning
stage, the features of F are not used, to prevent the prema-
ture leakage of location information of masked tokens to the
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Table 1. Action Recognition in HuCenLife [33]. † means adding global token and motion flow to these methods fair comparisons.

lift carry move pull push sco-bal hum-inter fitness entertain sports bend-over sit walk-stand mAcc
PointNet [21] 45.5 48.8 33.3 84 59.4 2.6 65.3 49.3 34.8 29.2 54.3 61 47.3
PointNet++ [22] 49.5 45.7 35.6 52.7 59 6 28.6 43.8 41.2 31.9 38.8 55 40.7
PointMLP [17] 48.5 47.7 57.7 80.1 80.3 36.1 75.7 60.8 39.5 54.9 55.8 59.7 58.1
PointNeXt [23] 48.1 56.6 34.1 80 85.6 22.6 50 38 25.7 25.5 63.1 70.9 50
PCT [10] 39.7 54.9 52.3 80.2 89.8 9.8 63.3 73.6 37.7 62.5 51 75.8 57.6
HuCenLife [33] 45 44.4 52.7 81.2 86.7 23.1 81.2 54.8 41.7 54.8 53.2 70 57.4
PointMAE† [19] 53.4 53.1 47.2 84.9 88.8 7.8 71.4 76.8 39.2 57.9 41.8 74.2 58.0
MaST-Pre† [25] 32.8 39.9 48.4 84.5 87.4 31.4 70.7 59.1 43.3 51.7 66.9 32.5 54.1
UniPVU-Human 27.1 37.3 57.1 82.6 84 24.7 85.4 52.1 53.9 93.8 67.3 76.1 61.8

Table 2. 3D Pose Estimation in LIP [24].

MPJPE(mm)↓
LiDARCap(PC) [13] 69.4

LIP(PC) [24] 60.1
UniPVU-Human(PC) 58.8
LIP(PC+IMU) [24] 48.9
UniPVU-Human(PC+IMU) 47.2

STEncoder. The spatial and temporal positional encoding
are obtained by applying MLP to the average coordinate of
P and to the time index ranging from 0 to L-1, respectively.
For STEncoder, we set the number of heads to 6. It con-
tains 4 spatial, 4 temporal, and 4 spatial transformer layers
sequentially. The decoder consists of 4 spatial transformer
layers, and ChamferDistanceL2 is used as the loss function
for mask reconstruction. AdamW optimizer is used with an
initial learning rate of 0.001 and a weight decay of 0.05.
The model is trained for 300 epochs with a batch size of
512.

During fine-tuning, P and corresponding motion flow
vector F are extracted by two tokenizers respectively and
element-wise added in latent space (See details in supple-
mentary materials), with a global token extracted from the
entire human and a class token appended. Totally 11 to-
kens are sent to the pre-trained STEncoder. The pre-trained
model is fine-tuned for 100 epochs using a batch size of 256
on 4 GPUs. We use the AdamW optimizer, and the initial
learning rate is set to 0.0005 with a cosine decay strategy.

4.3. Results

4.3.1 Action Recognition in HuCenLife

The results of all methods on HuCenLife are shown in
Table.1, and the evaluation metric is class mean accuracy
(mAcc). For the first seven methods in the table, which are
designed for processing static point clouds, we apply them
on each frame of the point cloud sequence and then fuse
these frame features after the encoder network by element-
wise adding. For methods that also use self-learning like
PointMAE [19] and MaST-Pre [25], we add a global to-
ken and motion flow for fair comparisons. The experi-
mental results demonstrate that our method significantly
outperforms the methods that do not utilize self-learning.

Even against general static point cloud methods with self-
learning, like PointMAE, our approach shows a marked
improvement due to our comprehensive temporal dynamic
modeling. Compared to methods like MaST-Pre, which
also models both temporal and spatial dimensions of point
cloud videos along with mask prediction, our method still
maintains a substantial advantage. This advantage is par-
ticularly evident in some action categories where accurate
recognition hinges on extracting not just geometric features
but also motion characteristics, including Fitness, Sports
(encompassing activities like basketball and badminton),
Bend-Over, and Walk-Stand. Experimental data shows that
UniPVU-Human demonstrates superior recognition perfor-
mance in these action categories. This highlights the ef-
fectiveness of utilizing human body prior knowledge and
underscores the powerful capability of our model to fully
leverage this prior knowledge for enhanced performance.

4.3.2 3D Pose Estimation in LIP

The Mean Per Root-Relative Joint Position Error (MPJPE)
in millimeters is used as the evaluation metric, where a
smaller value indicates better performance. Unlike action
recognition, pose estimation in long point cloud videos
focuses on long-term joint movement consistency. Our
UniPVU-Human leverages a self-learning module for cru-
cial human motion representation and enhances motion de-
tail with motion flow during fine-tuning. To ensure a fair
comparison, we establish two settings as shown in Table. 2.
1) Pure PC: involves only pure point clouds as input,
where our method’s MPJPE (58.8) is 1.3 lower than that of
LIP (60.1). 2) PC+IMU: involves using both point cloud
and IMU data as inputs. For UniPVU-Human, we replace
the PointNet used for point cloud feature extraction in LIP
with our model. The experimental results indicate that our
method’s MPJPE (47.2) is 1.7 lower than that of LIP (48.9)
of full configuration. Our method achieves SOTA perfor-
mance under both settings, proving its superiority.

4.4. Ablation Studies

All ablation studies are conducted on HuCenLife [33], for it
is collected in real-life scenarios, making it more relevant to
real-world applications. The results are shown in Table. 3.
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Our UniPVU-human exploits both the structural seman-
tics of human body and human motion to facilitate the
acquisition of human-specific features by adopting human
body parts as local patches for following spatio-temporal
modeling with Transformers, unlike other methods which
cluster the neighbor point clouds around the kernels sam-
pled by FPS algorithm. As shown in the first and sec-
ond lines of 3, our setting is identical to PointMAE [19]
both with and without self-learning. The mean accuracies
(mAcc) in these settings are 53.4% and 56.1%, respectively.
By enhancing PointMAE with hierarchical features in the
fine-tuning stage, as shown in the third line of the table, the
mAcc reaches 58%, yielding a performance gain of 1.9%.
This indicates that hierarchical human-related features can
also enhance performance in other models. However, this
setting still trails our best model by 3.8%, underscoring the
effectiveness of our model’s approach of using body parts
as semantic tokens.

Lines 5 to 7 of the table demonstrate that our model ben-
efits from predicting masked tokens in both spatial and tem-
poral dimensions within the self-learning module. Adding
our self-learning module resulted in a substantial 6.2% im-
provement in total.

During the aforementioned self-learning module, our
model has already achieved the capability to model the se-
mantic structure of the human body at the part level. In the
Hierarchical Feature Enhanced Fine-tuning module, we in-
corporate a global token and point-wise motion flow. As
indicated in lines 8 to 10, the inclusion of these two designs
leads to a notable performance improvement, highlighting
the critical role of hierarchical human-related prior knowl-
edge in enhancing the extraction of human geometric and
motion representations. In conclusion, by seamlessly in-
tegrating various elements of our design, UniPVU-Human
achieves exceptional performance with a final accuracy of
61.8%. This demonstrates the effectiveness of our harmo-
nious incorporation of components in facilitating human-
centric representation learning.

4.5. Effectiveness of Our Self-learning Mechanism
in Semi-supervised Settings

For supervised learning methods, the optimization targets of
neural networks mainly come from human annotations. To
endow models with strong robustness and generalizability
for diverse applications, extensive data annotation is usu-
ally required. Therefore, our method introduces a self-
learning mechanism, which diminishes the dependency on
manual annotations, allowing our model to undergo self-
learning on a vast quantity of unannotated data. Addi-
tionally, our method learns intrinsic representations directly
from the data, uninhibited by the constraints and biases of
task-specific, scenario-specific, or dataset-specific manual
annotations. As a result, the representations acquired are

Table 3. Ablation Studies of Network Design. To assess the ef-
fectiveness of designs in our UniPVU-Human, we perform abla-
tion experiments by adding (✓) or removing (%) them, and then
present the corresponding resulting changes in performance on
HuCenLife [33].

part division Self-learning Mask Hierarchical Feature mAccspatial temporal global token motion flow
% % % % % 53.4
% ✓ % % % 56.1
% ✓ % ✓ ✓ 58
✓ % % % % 54.1
✓ % % ✓ ✓ 55.6
✓ ✓ % ✓ ✓ 59.9
✓ % ✓ ✓ ✓ 59.2
✓ ✓ ✓ % % 58.9
✓ ✓ ✓ % ✓ 59.3
✓ ✓ ✓ ✓ % 61.3
✓ ✓ ✓ ✓ ✓ 61.8

Table 4. Effectiveness of Our Self-learning Mechanism in Semi-
supervised Settings on HuCenLife. * means training on HuCen-
Life directly without the self-learning stage. The experimental re-
sults indicate that our method demonstrates the smallest decline in
performance.

proportion of fine-tuning dataset
20% 30% 50% 100%

MaST-Pre [25] 39.8(-14.3) 42(-12.1) 48.8(-5.3) 54.1
UniPVU-Human* 44.9(-10.9) 46.4(-9.4) 49.5(-6.3) 55.8
UniPVU-Human 51(-10.8) 53.8(-8) 57.3(-4.5) 61.8

not task-specific and exhibit strong generalization capabili-
ties, which improves performance on downstream tasks.

To validate this, we randomly sample the training set
of HuCenLife by categories and assess our model’s perfor-
mance in fine-tuning with reduced data volumes, thereby
verifying the effectiveness of self-learning. The experi-
mental results in Table. 4 illustrate that when downsam-
pling the downstream task dataset HuCenLife to 20%, 30%,
and 50%, our method shows the least decline in perfor-
mance compared to UniPVU-Human without self-learning
and MaST-Pre.

5. Conclusion

Given the distinctive characteristics inherent to humans, in-
cluding the structural semantics of the human body and the
dynamics of human motions, we introduce a novel method
in this paper to delve into the intrinsic features present
within the data itself to facilitate a more comprehensive
understanding of human-centric point cloud videos. To our
knowledge, our method is the first work to provide a unified
framework designed specifically for tackling human-centric
tasks. Extensive experiments on various tasks have demon-
strated the state-of-the-art performance of our method.
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