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Abstract

The pretraining-finetuning paradigm has gained popu-
larity in various computer vision tasks. In this paradigm,
the emergence of active finetuning arises due to the abun-
dance of large-scale data and costly annotation require-
ments. Active finetuning involves selecting a subset of data
from an unlabeled pool for annotation, facilitating subse-
quent finetuning. However, the use of a limited number of
training samples can lead to a biased distribution, poten-
tially resulting in model overfitting. In this paper, we pro-
pose a new method called ActiveDC for the active finetun-
ing tasks. Firstly, we select samples for annotation by op-
timizing the distribution similarity between the subset to be
selected and the entire unlabeled pool in continuous space.
Secondly, we calibrate the distribution of the selected sam-
ples by exploiting implicit category information in the un-
labeled pool. The feature visualization provides an intu-
itive sense of the effectiveness of our method to distribution
calibration. We conducted extensive experiments on three
image classification datasets with different sampling ratios.
The results indicate that ActiveDC consistently outperforms
the baseline performance in all image classification tasks.
The improvement is particularly significant when the sam-
pling ratio is low, with performance gains of up to 10%.
Our code will be publicly available.

1. Introduction
The recent successes in deep learning owe much of their
progress to the availability of extensive training data. How-
ever, it is crucial to recognize that annotating large-scale
datasets demands a significant allocation of human re-
sources. In response to this challenge, a prevalent approach
has emerged, referred to as the pretraining-finetuning
paradigm. This paradigm involves the initial pretraining
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Figure 1. Comparison of the performance for finetuning the CI-
FAR100 dataset at different sampling ratios.

of models on a substantial volume of data in an unsuper-
vised fashion, followed by a subsequent finetuning phase
on a more limited, labeled subset of data.

The existing body of literature extensively delves into
the domains of unsupervised pretraining [9, 17, 46] and su-
pervised finetuning [25, 42], making noteworthy contribu-
tions in these areas. However, when confronted with a vast
repository of unlabeled data, the crucial task at hand is the
judicious selection of the most valuable samples for anno-
tation, a task necessitated by the constraints of limited an-
notation resources. At the same time, the distribution of the
small number of labeled samples tends to significantly de-
viate from the overall distribution, raising the issue of how
to calibrate the distribution of the selected samples [13, 43].

Active learning [2, 5, 22, 26, 28, 31, 37] is a method that
iteratively selects the most informative samples for man-
ual labeling during the training process, aiming to improve
predictive model performance. Although active learning
is considered a promising approach, empirical experiments
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Figure 2. The active finetuning task involves the active selection of training data for finetuning within the pretraining-finetuning paradigm.
We focus on data selection and distribution calibration from a large unlabeled data pool for annotation. The Distributed Calibration Module
comprises four main steps: (1) applying Tukey’s Ladder of Powers Transformation to render the feature distribution more Gaussian-like,
(2) clustering the features and calibrating the statistics for different feature classes, (3) generating pseudo-features using the calibrated
statistics and identifying the most similar real features, and (4) filtering and integrating the features into the extended labeled pool.

have uncovered its limitations [4, 16, 41] when employed
within the context of the pretraining-finetuning paradigm.
One plausible explanation for this phenomenon is the pres-
ence of more constrained annotation budgets and batch-
selection strategy of active learning, which introduce biases
into the training process, ultimately impeding its effective-
ness.

In response to the limitations of traditional active learn-
ing within the pretraining-finetuning paradigm, a more effi-
cient active finetuning approach, known as ActiveFT [41],
has been developed to address these challenges. This
method selects sample data by narrowing the distribution
gap between the chosen subset and the entire unlabeled
pool. Although the method exhibits promising results, its
primary focus is distributional information. Unfortunately,
it does not sufficiently harness information related to the
number of known classification categories, and the implicit
category-related data within a substantial volume of un-
labeled pretrained features remains underutilized. Impor-
tantly, when working with a limited number of selected
samples, there is a heightened risk of bias in how the chosen
subset aligns with the overall distribution [13, 43]. Which,
in turn, necessitates a larger sample size to rectify the dis-
tributional alignment.

In this paper, we present a novel method, ActiveDC, de-
signed for enhancing active finetuning tasks. We introduce a
novel distributional calibration technique to the active fine-
tuning task. Our method leverages the comprehensive infor-
mation derived from the entire feature data pool along with
the labeled data, resulting in a significant improvement in
model performance. Importantly, it achieves this enhance-

ment while remaining cost-effective, eliminating the need
for additional labeling efforts. Moreover, it does not incur
excessive time consumption.

Specifically, our method comprises several key steps, as
shown in Fig. 2. First, we employ a diversity selection strat-
egy, such as ActiveFT, to select data for oracle annotation
within limited budgets. Second, we proceed to normalize
and transform the feature distribution of the entire data pool
extracted by the pretrained model, followed by the applica-
tion of clustering techniques. The resulting clustering cate-
gories are determined in reference to the labeled data, tak-
ing into account a trade-off between the center of clustering
and the center of labeled samples, as dictated by the quan-
tity of labeled samples available. Furthermore, we actively
regulate the covariance of pseudo-categorical features. Sub-
sequently, pseudo-features are generated based on the cal-
ibrated statistics, and real features most similar to these
pseudo-features are identified through a similarity-based
approach. The corresponding real data is then pseudo-
labeled and integrated into the expanded labeled pool for
finetuning. Throughout the iterative process of feature gen-
eration, certain filtering procedures are applied, contingent
on the influence of the generated data on the extended la-
beled pool. Notably, the method excels in calibrating the
distribution of a limited subset of training data selected by
the active finetuning procedure, as depicted in Fig. 1.

Our main contributions are summarized as follows:
• We propose a new method, ActiveDC, aimed at cali-

brating data distributions for samples chosen through ac-
tive finetuning techniques within limited labeling bud-
gets. Our method significantly improves classification ac-
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curacy while maintaining the same budget.
• The Distributed Calibration Module exhibits inherent

flexibility, allowing seamless integration with various ac-
tive finetuning selection strategies.

• In the context of the classification task, our method yields
significant performance improvements, with particular
emphasis on its effectiveness at lower sampling ratios.

2. Related Work
Unsupervised Learning is designed to acquire feature rep-
resentations without the need for labeled data. It plays a
crucial role within the pretraining-finetuning paradigm. Be-
sides, it exhibits notable effectiveness in mitigating the la-
borious task of data labeling [4]. Both contrastive meth-
ods [6, 9, 10, 15, 17] and generative methods [3, 18, 33, 38,
45] have achieved remarkable success in this field. The core
idea behind contrastive learning is to train a model to dis-
tinguish between similar and dissimilar pairs of data sam-
ples. Building on the successes of existing contrastive learn-
ing techniques and the remarkable achievements of vision
transformers in computer vision, innovative approaches like
MoCov3 [11], DINO [7], and iBOT [46] have success-
fully extended the principles of contrastive learning to the
realm of vision transformers [12], further enriching this vi-
brant field of study. Recent research in generative meth-
ods [3, 18] for predicting masked content within input sam-
ples has demonstrated promising performance over vision
transformers. Extensive prior research [4, 16, 38, 41, 45]
has thoroughly examined the advantageous contributions of
both kinds of methods in the context of downstream super-
vised finetuning.

Active Learning aims at selecting the most valuable
samples for labeling to optimize the model performance
with a limited labeling budget. Much of the existing re-
search in this field centers on sample selection strategies
based on uncertainty [20, 21, 27, 34, 44] and diversity [2,
16, 31, 32] in pool-based scenarios. Uncertainty quantifies
the model’s level of perplexity when presented with data
and can be estimated through various heuristics, including
predictive probability, entropy, margin [20] and predictive
loss [44]. Conversely, some algorithms seek to identify a
subset that effectively represents the entire data pool by con-
sidering the diversity and representativeness of the data [8].
Diversity is quantified using measures such as Euclidean
distance between global features [31], KL-divergence [1]
between local representations, gradients spanning diverse
directions [2], or adversarial loss [21, 32, 34], and more.

Active Finetuning is a task that actively selects train-
ing data for finetuning within the pretraining-finetuning
paradigm. The majority of active learning algorithms men-
tioned above are primarily tailored for training models from
scratch. However, prior research [4, 16, 41], has eluci-
dated their adverse effects when applied to the finetun-

ing process following unsupervised pretraining. Therefore,
the introduction of the active finetuning task presents a
novel approach to sample selection for labeling in a sin-
gle pass [40, 41], especially in preparation for subsequent
finetuning processes. An effective strategy, named Ac-
tiveFT [41], involves selecting data for labeling by converg-
ing the distribution of the chosen subset with that of the
complete unlabeled pool within a continuous space. Never-
theless, unsupervised models, derived from extensive pre-
training on large-scale datasets, exhibit robust feature ex-
traction capabilities. As a result, within the pretraining-
finetuning paradigm, the selection of samples often involves
a limited quantity. In such cases, the inherent bias in the
subset chosen by ActiveFT to align with the overall dis-
tribution tends to be relatively pronounced, necessitating a
greater volume of samples to rectify the distribution effec-
tively.

3. Methodology
This section delineates our novel active finetuning method-
ology. Section 3.1 initiates by furnishing a comprehensive
overview of the pretraining-finetuning paradigm, followed
by Sec. 3.2, which introduces the data selection module.
Subsequently, Sec. 3.3 furnishes an exhaustive exposition
of the distribution calibration module.

3.1. Overview

The complete pipeline for conducting the active finetuning
task within the pretraining-finetuning paradigm is visually
represented in Fig. 2. This paradigm consists of two dis-
tinct stages. In the initial stage, the model undergoes unsu-
pervised pretraining on an extensive dataset, enabling it to
traverse various classes of data features within the feature
space. This stage establishes the foundation for subsequent
feature extraction. In the next stage, the pretrained model is
coupled with a task-specific module to facilitate supervised
finetuning on a smaller, labeled subset tailored to specific
tasks. The pivotal juncture between these two stages cen-
ters on the meticulous construction of the labeled subset.
We select data for labeling based on fitting the distribution
of the entire feature pool, and select appropriate data for
pseudo-labeling by calibrating the category distributions to
construct well-distributed training data for subsequent fine-
tuning.

We formally define a deep neural network model
M(·;ω0) : X −→ Fu with pretrained weight ω0, where
X is the data space and Fu is the normalized high dimen-
sional feature space. We also have access to a large unla-
beled data pool Pu = {xi}i∈[N ] ∼ pu inside data space
X with distribution pu, where [N ] = {1, 2, · · · , N}. We
design a sampling strategy S = {sj ∈ [N ]}j∈[B] to select a
subsetPu

S = {xsj}j∈[B] ⊂ Pu fromPu, where B is the an-
notation budget size for supervised finetuning. The model
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would have access to the labels {ysj}j∈[B] ⊂ Y of this sub-
set through the oracle, obtaining a labeled data pool P l

S =
{xsj , ysj}j∈[B], where Y is the label space. The normalized
high dimensional feature pool Fu = {fi}i∈[N ] ∼ pfu has
a distribution pfu . The feature pool Fu

S is also associated
with the selected data subset Pu

S , with the corresponding
distribution over Fu

S in the feature space denoted as pfS .

3.2. Data Selection

The data selection strategy we employed is ActiveFT [41],
guided by two basic intuitions: 1) bringing the distributions
of the selected subset Pu

S and the original pool Pu ∼ pu
closer, and 2) maintaining the diversity of Pu

S . The first en-
sures the model finetuned on the subset performs similarly
to one trained on the full set, while the second allows the
subset to cover corner cases in the full set. The goal of dis-
tribution selection is to find the optimal selection strategy S
as:

Sopt = argmin
S

D(pfu , pfS )− λR(Fu
S ) (1)

where D(·, ·) is a distance metric between distributions,
R(·) is used to assess the diversity of a set, and λ is a scaling
factor to balance these two terms.

Optimizing the discrete selection strategy S directly is
challenging. Therefore, it is better to model pfS with pθS ,
where θS = {θjS}j∈[B] are the continuous parameters and
B is the annotation budget size. Each θjS after optimization
corresponds to the feature of a selected sample fSj

. The
feature fSj closest to each θjS can be found after optimiza-
tion to determine the selection strategy S. Therefore, the
goal in Eq. (1) can be expressed as:

θS,opt = argmin
θS

D(pfu , pθS )− λR(θS) s.t.
∥∥∥θjS∥∥∥

2
=1

(2)
The protocol outlined in [7] is followed, and the cosine sim-
ilarity between normalized features is utilized as the metric,
denoted as cos(f1, f2) = fT

1 f2, ∥f1∥2 = ∥f2∥2 = 1. For
each fi ∈ Fu, there exists a θciS most similar (and closest)
to fi, i.e.

ci = argmax
j∈[B]

cos(fi, θ
j
S) (3)

where ci is continuously updated in the optimization pro-
cess.

Thus, the following loss function can be continuously
optimized to address Eq. (2):

L = argmin
θS

D(pfu , pθS )− λ ·R(θS)

=− E
fi∈Fu

[cos(fi, θ
ci
S )/τ ]+ E

j∈[B]

log ∑
k ̸=j,k∈[B]

exp(cos(θjS , θ
k
S)/τ)


(4)

Figure 3. The diagram showcases two contrasting scenarios in the
finetuning of a pretrained model. On the left, finetuning with a
limited number of sample features leads to model overfitting. On
the right, employing features sampled from a calibration distribu-
tion for finetuning the pretrained model demonstrates improved
generalization.

where the balance weight λ is empirically set to 1, while the
temperature scale τ is set to 0.07.

Finally, the loss function in Eq. (4) is directly opti-
mized using gradient descent. After completing the opti-
mization, the feature {fsj}j∈[B] with the highest similar-
ity to θjS is identified. The corresponding data samples
{xsj}j∈[B] are selected as the subset Pu

S with selection
strategy S = {sj}j∈[B].

3.3. Distribution Calibration

Due to the typically limited number of labeled samples se-
lected within the pretraining-finetuning paradigm, a sub-
stantial distributional discrepancy arises between the cho-
sen subset and the entire data pool. This scenario, if unad-
dressed, may result in the overfitting of model parameters
during the finetuning process, ultimately diminishing over-
all performance. In this section, we will not only use the
labeled samples from Sec. 3.2 but also leverage informa-
tion about the number of classification categories and other
important information contained in a large number of un-
labeled pretrained features. To mitigate distributional bias,
our method involves the selection of pseudo-labeled data
that exhibit reliability and approximate the overarching dis-
tribution accurately, as shown in Fig. 3.

Tukey’s Ladder of Powers Transformation. To make
the feature distribution more Gaussian-like, we first trans-
form the features in Fu using Tukey’s Ladder of Powers
transformation [14]. Tukey’s Ladder of Powers transforma-
tion belongs to a family of power transformations known
for reducing distribution skewness and making distributions
more Gaussian-like. This step is a prerequisite for the sub-
sequent generation of features aligned with calibrated statis-
tics conforming to a Gaussian distribution. Tukey’s Ladder
of Powers transformation is formulated as:

x̂ =

{
xλ, if λ ̸= 0

log x , if λ = 0
(5)

where λ is a hyper-parameter used to control the distribution
correction. The original feature can be recovered by setting
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λ as 1. Decreasing λ makes the distribution less positively
skewed and vice versa.

Statistics of Pseudo-Category. Our initial procedure
entails clustering the normalized high dimensional features,
referred to as Fu, based on the true number of categories.
Subsequently, pseudo-labels are assigned to each feature,
drawing upon the pool of labeled features F l

S for refer-
ence, where F l

S = {fsj , ysj}j∈[B]. Thus we get the pool
of pseudo-labeled features Fu

C = {fCj
, yCj
}j∈[N ], where

C is the cluster method. Assuming there are a total of K
categories in Fu

C , the feature pool for category yCj is rep-
resented as F i

C = {fCj}yCj
=i,j∈[N ],i∈[K]. Most of the fea-

tures corresponding to the same real label in F l
S reside in

the same pseudo-category, correcting i to the correspond-
ing real label.

Ei =

∑|Fi
C|

k=1 fk∣∣F i
C
∣∣ , s.t. fk ∈ F i

C

S2i =
1∣∣F i

C
∣∣− 1

|Fi
C|∑

k=1

(fk − Ei)(fk − Ei)
T

(6)

According to Eq. (6), we can get the mean and covariance of
each pseudo-category feature pool. A similar process can be
employed to calculate the mean of features corresponding to
category i within F l

S , denoted as µl
i.

Statistics Calibration. To eliminate the effect of out-
liers on the feature mean Ei, we recalculate the mean of the
features by taking 90% of the features that are closest to the
mean, denoted as µ̂i. The calibrated mean and covariance
are denoted as µi and σ2

i , respectively, formulated as:

µi = (1− β)µ̂i + βµl
i , σ2

i = S2i + ξ (7)

where ξ is a hyper-parameter that determines the degree of
dispersion of features sampled from the calibrated distribu-
tion. The term (1 − β) represents the degree to which the
pseudo-category center contributes to the central informa-
tion of the sample.

β = 1− e−αr, s.t. r ∈ [0, 100] (8)

In Eq. (8), α is a hyper-parameter whose value determines
the parameter β in Eq. (7). The parameter β represents the
degree to which the true labeled data acquired through data
selection contributes to the central information of the sam-
ple. The sampling ratio is denoted as r%. For instance,
when r equals 1, the sampling ratio is 1%. Based on our un-
derstanding of the data distribution and experimental find-
ings, we set the hyperparameter α to 0.7, 0.07, and 0.14 for
CIFAR10, CIFAR100, and ImageNet, respectively.

Feature Generation and Filtering. With a set of cali-
brated statistics Sy = {µy, σ

2
y} for class y = i in a target

task, we generate a set of feature vectors with label y by

sampling from the calibrated Gaussian distributions defined
as:

Gy = {(fg
y , y) | fg

y ∼ N (µy, σ
2
y),∀(µy, σ

2
y) ∈ Sy} (9)

The process of feature generation relies on creating n-fold
features within the same class, and this is dependent on the
number of features and classes in the labeled feature pool
F l

S . We identify the real features in the unlabeled pool that
have the highest similarity to the generated features, formu-
lated as:

Ry = {(f̂g
y , y) | max cos(fg

y , f̂
g
y ),∀(fg

y , y)∈Gy,∃f̂g
y ∈Fu}

(10)
The data samples R̂y corresponding to Ry , in conjunction
with the pool of labeled data samples P l

S , constitute the ex-
tended labeled pool PEL. This pool is subsequently utilized
as the finetuning dataset for the pretrained model.

Algorithm 1: Pseudo-code for ActiveDC
input : the unlabeled feature pool Fu

output: the extended labeled pool PEL

// Data Selection by optimizing Eq. (4)

1 Fu
S , Pu

S ← ActiveFT(Fu);
// Oracle label data selected

2 F l
S , P l

S ← oracleLabel(Fu
S , Pu

S);
// Powers Transformation As Per Eq. (5)

3 Fu ← Transform(Fu);
// Clustering via K-Means

4 {F i
C}i∈[K]← Cluster(Fu);

// Calibrate Statistics by Eqs. (6) and (7)

5 µi, σ2
i ← Calibrate({F i

C}i∈[K], F l
S);

// Initialize pseudo-label feature pool

6 Ry,∀y∈[K] ← {};
7 for i← 0 to K do

// Feature Generation As Per Eq. (9)

8 {fgene., y = i}×n ∼ N (µi,σ
2
i );

// Real feat. most similar per Eq. (10)

9 {freal, y = i}×n ← Sim({fgene., y = i}×n);
// Filter harmful features

10 Ry ← Ry

⋃
Filter({freal, y = i}×n);

11 end
// Constitute the extended labeled pool

12 PEL←P l
S
⋃
R̂y,∀y∈[K];

Additionally, it is essential to highlight that the gener-
ated features undergo a filtering process. The feature pool
consisting of all the features in Ry is denoted as Fu

G =

{f̂g
y }(f̂g

y ,y)∈Ry
. The extended feature pool Fu

E (Fu
S
⋃
Fu

G )

is also associated with the extended data subset in PEL,
with the corresponding distribution over Fu

E in the feature
space denoted as pfE . The Earth Mover’s Distance (EMD)
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metric [29] is employed as a quantitative measure for as-
sessing the dissimilarity between a subset distribution pfE
and the overall distribution pfu . Its application enables
the identification and elimination of generative features that
pose detriment to the overall distribution. More details
about filtering process are available in the supplementary
materials. Our method is summarised in Algorithm 1.

4. Experiments
Our method is evaluated on three image classification
datasets of different scales with different sampling ratios.
We compare the evaluation results with several baseline al-
gorithms, traditional active learning algorithms, and Ac-
tiveFT, an efficient active finetuning algorithm. These will
be presented in Sec. 4.1 and Sec. 4.2. We provide both qual-
itative and quantitative analysis of our method in Sec. 4.3.
Finally, we investigate the role of different modules and dif-
ferent values of hyperparameters in our method in Sec. 4.4.
The experiments were conducted using two GeForce RTX
3090 (24GB) GPUs, employing the DistributedDataParallel
technique to accelerate the finetuning process.

4.1. Experiment Settings

Dataset and Metric. Our method, ActiveDC, is applied
and evaluated on three well-established image classifica-
tion datasets of varying classification scales. These datasets,
namely CIFAR10, CIFAR100 [24], and ImageNet-1k [30],
each present distinct characteristics. CIFAR10 and CI-
FAR100 consist of 60,000 images, with 10 and 100 cate-
gories, respectively. Both datasets use 50,000 images for
training and 10,000 for testing. In contrast, ImageNet-1k
has 1,000 categories with 1,281,167 training images and
50,000 validation images. The performance evaluation of
our method is conducted using the Top-1 Accuracy metric.

Baselines. We compare our method to five traditional
active learning methods and four baseline methods, includ-
ing the strong baseline ActiveFT, the first efficient method
applied to active finetuning tasks. The five active learn-
ing algorithms, namely CoreSet [31], VAAL [34], Learn-
Loss [44], TA-VAAL [21], and ALFA-Mix [27], have been
extended and adapted to the active finetuning task. These
selected active learning methods cover both diversity-based
and uncertainty-based strategies within the active learning
domain. The set of baseline methods comprises four distinct
techniques, including random selection, K-Center-Greedy,
K-Means, and ActiveFT algorithm [41]. These baseline
methods serve as crucial reference points for the compre-
hensive evaluation of active finetuning approaches.
- Random: A straightforward baseline method involves the
random selection of B samples from the unlabeled pool,
where B is denoted as the annotation budget.
- FDS: a.k.a K-Center-Greedy algorithm. This method en-
tails the selection of the next sample feature that is the far-

thest from the current selections. It is designed to minimize
the disparity between the expected loss of the entire pool
and that of the selected subset.
- K-Means: In this context, the value of K is set to the
budget size, denoted as B. Overclustering is a strategy in
which more clusters or subgroups are intentionally created
than the expected number of distinct classes or groups in the
data. Many studies in the unsupervised domain [6, 19, 35]
have shown that overclustering leads to better performance.
- ActiveFT: A method that constructs a representative sub-
set from an unlabeled pool, aligning its distribution with the
overall dataset while optimizing diversity through paramet-
ric model optimization in a continuous space.

Implementation details. In unsupervised pretraining
phase, we adopt DeiT-Small architecture [36] pretrained
within the DINO framework [7], a well-established and
effective choice on the ImageNet-1k dataset [30]. For
consistency throughout the process, all images are resized
to 224×224. In the data selection phase, the parame-
ters denoted as θS are optimized employing the Adam op-
timizer [23] with a learning rate of 1e−3 until conver-
gence. In the distribution calibration phase, the unsuper-
vised clustering method and similarity retrieval mechanisms
employed primarily rely on the FAISS (Facebook AI Sim-
ilarity Search) library. Specifically, we employ the GPU-
accelerated variant of K-Means for clustering and cosine
similarity as the similarity metric. We use a full traversal
search approach in FAISS for efficient retrieval. In the su-
pervised finetuning phase, the DeiT-Small model follows
the established protocol outlined in reference [7]. The im-
plementation of supervised finetuning is based on the of-
ficial codebase of DeiT. Further elaboration on the experi-
ments is provided in the supplementary materials.

4.2. Overall Results

Our reported results are derived from meticulous averag-
ing across three independent experimental runs, presented
in Tab. 1. The traditional active learning methods tend to
falter within the pretraining-finetuning paradigm, as docu-
mented in prior works [4, 16, 41]. In stark contrast, our
method, ActiveDC, exhibits superior performance across
all three datasets, even at varying sampling ratios. Partic-
ularly noteworthy is the substantial performance improve-
ment observed with a lower sampling ratio. This improve-
ment can be attributed to our method’s capability to not
only select the most representative samples but also effec-
tively calibrate the distribution of the sampled data. This
observed phenomenon carries practical significance, espe-
cially in scenarios where the number of samples utilized in
the pretraining-finetuning paradigm is considerably smaller
than the size of the available pool. Such efficiency gains
contribute to substantial cost savings in terms of annotation
expenditures. For instance, our method demonstrates a sig-
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Table 1. The experiments were conducted on different scale datasets with different sampling ratios. We report the average of multiple
trials. The symbol “-” is used to indicate not applicable (N/A). Specifically, this symbol indicates cases where active learning cannot be
applied because the sample size is too small.

Methods CIFAR10 CIFAR100 ImageNet
0.1% 0.2% 0.5% 1% 2% 1% 2% 5% 10% 0.5% 1% 2% 5%

Random 36.7 49.3 77.3 82.2 88.9 14.9 24.3 50.8 69.3 29.9 45.1 53.0 64.3
FDS 27.6 31.2 64.5 73.2 81.4 8.1 12.8 16.9 52.3 19.9 26.7 42.3 55.5
K-Means 40.3 58.8 83.0 85.9 89.6 17.6 31.9 42.4 70.7 37.1 50.7 55.7 62.2
CoreSet [31] - - - 81.6 88.4 - 30.6 48.3 62.9 - - - 61.7
VAAL [34] - - - 80.9 88.8 - 24.6 46.4 70.1 - - - 64.0
LearnLoss [44] - - - 81.6 86.7 - 19.2 38.2 65.7 - - - 63.2
TA-VAAL [21] - - - 82.6 88.7 - 34.7 46.4 66.8 - - - 64.3
ALFA-Mix [27] - - - 83.4 89.6 - 35.3 50.4 69.9 - - - 64.5
ActiveFT [41] 47.1 64.5 85.0 88.2 90.1 26.1 40.7 54.6 71.0 36.8 50.1 54.2 65.3
ActiveDC (ours) 61.3 73.1 87.3 88.9 90.3 34.5 54.6 71.9 74.3 50.9 56.3 60.1 68.2

Table 2. Generality of Distributed Calibration Module.

Methods CIFAR10 (0.5%) CIFAR100 (5%) ImageNet (1%)
w.o.DC w.DC w.o.DC w.DC w.o.DC w.DC

Random 77.3 86.2 50.8 70.1 45.1 54.6
FDS 64.5 78.3 16.9 33.4 26.7 40.2
K-Means 83.0 86.8 42.4 66.8 50.7 56.8
ActiveFT 85.0 87.3 54.6 71.9 50.1 56.3

nificant accuracy increase of more than 10% when applied
to the CIFAR10 dataset with a sampling rate of less than
0.2%. Similarly, when applied to the CIFAR100 dataset
with a sampling rate of less than 5%, our method exhibits a
similar improvement. This performance is in comparison to
the strong benchmark ActiveFT [41].

4.3. Analysis

Generality of our Method. Our Distributed Calibration
Module has the inherent flexibility to seamlessly integrate
with a variety of active finetuning selection strategies. As
indicated in Tab. 2, we have conducted experiments on
datasets of varying scales. The findings demonstrate the
efficacy of our method across diverse diversity-based selec-
tion strategies.

Data Selection Efficiency. Efficient data selection is
crucial, requiring both time-efficient and effective methods.
In Tab. 3, we compare the time needed to select different
ratios of training samples from CIFAR100. Traditional ac-
tive learning involves repeated model training and data sam-
pling, with training being the major time-consuming factor.
In contrast, active finetuning methods select all samples in a
single pass, eliminating the need for iterative model retrain-
ing in the selection process. Our method, ActiveDC, in-
creases processing time slightly compared to ActiveFT due
to clustering and subsequent similarity retrieval after feature
generation. However, the additional time, measured in min-

Table 3. Data selection efficiency of different methods.

Methods 2% 5% 10%
CoreSet 1h57m 7h44m 20h38m
VAAL 7h52m 12h13m 36h24m
LearLoss 20m 1h37m 9h09m
K-Means 16.6s 37.0s 70.2s
ActiveFT 12.6s 21.9s 37.3s
ActiveDC (ours) 2m40s 4m30s 7m20s

utes, is negligible compared to the significant performance
improvements.

Visualization of Selected Samples. Figure 4 depicts
the visualization of features extracted from the CIFAR10
training dataset. We utilize t-distributed Stochastic Neigh-
bor Embedding (t-SNE) [39] for dimensionality reduction,
employing distinct colors to differentiate feature categories.
The pentagram symbolizes a 0.1% sample selected based on
its distributional similarity to the overall sample, while the
triangle represents a pseudo-labeled sample chosen after the
distribution calibration. This visualization offers an effec-
tive way to intuitively understand the impact of our method
on sample selection in terms of distribution calibration. For
a comprehensive understanding, we recommend consulting
Fig. 3 in conjunction with this visualization.

4.4. Ablation Study

Choices of Power for Tukey’s Transformation. In our
analysis, we systematically investigate the impact of vary-
ing the hyperparameter λ in Eq. (5) on classification accu-
racy during Tukey’s Ladder of Powers transformation pro-
cess. Notably, the most favorable accuracy results were
consistently achieved when setting λ to 0.5 across all three
datasets. Figure 5 illustrates the accuracy outcomes when
finetuning the model with a 1% data sample extracted from
the CIFAR100 dataset.
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Figure 4. t-SNE Embeddings of CIFAR10: We visualize the em-
bedding of selected samples labeled by the oracle (represented by
a pentagram) and distribution calibration samples via ActiveDC
(represented by a triangular shape) at a sampling ratio of 0.1%.
Best viewed in color.

Figure 5. The effect of λ: The top fold (in red) represents finetun-
ing accuracy with statistical calibration, while the lower fold (in
blue) represents finetuning accuracy without statistical calibration.
These results are obtained using different values of hyperparame-
ter λ in Eq. (5).

Table 4. The effect of different values of ξ.

hyperparameter ξ -0.1 0 0.1 0.2 0.3
CIFAR10 (0.5%) 85.5 86.4 86.9 87.3 70.2
CIFAR100 (5%) 65.3 68.6 71.5 71.9 61.8
ImageNet (1%) 48.7 50.6 56.0 56.3 50.2

Hyperparameter Tuning for Statistics Calibration.
Based on our understanding of the data distribution and ex-
perimental findings, we set the hyperparameter α in Eq. (8)
to 0.7, 0.07, and 0.14 for CIFAR10, CIFAR100, and Ima-
geNet, respectively. For details regarding the selection of
α values in our experiments, please refer to the supplemen-
tary material. We analyze the effect of different values of
the hyperparameter ξ on the classification accuracy during
the statistical calibration process, as shown in Tab. 4. The
hyperparameter ξ in Eq. (7) determines the degree of disper-
sion of features sampled from the calibrated distribution.

Number of Generated Features. The number of gener-

Table 5. The effect of the number of generated features.

number of gene. 1× 2× 3× 4×
CIFAR10 (0.5%) 85.9 87.3 85.1 81.0
CIFAR100 (5%) 64.5 71.9 65.3 57.1
ImageNet (1%) 54.7 56.3 56.1 55.0

Table 6. The effect of different modules in Distributed Calibration.

Distribution Calibration CIFAR10
Powers

Transformation
Statistics

Calibration
Feature
Filtering 0.1% 0.2%

# # # 47.1 64.5
! # # 50.3 66.8
! ! # 59.5 70.6
! ! ! 61.3 73.1

ated features is twice the count of labeled features, as shown
in Tab. 5. For each labeled feature, we generate two corre-
sponding features, each adhering to the same calibrated dis-
tribution as the original feature. It is important to note that
an excessive proliferation of pseudo-labeled data can lead to
a decrease in accuracy. This phenomenon can be attributed
to the presence of mislabeled data that is inadequately fil-
tered out during the process described in Sec. 3.3.

The effect of different module in DC. To investigate the
influence of various sub-modules in distribution calibration
on performance, we systematically conducted incremental
experiments with these sub-modules, as detailed in Tab. 6.
The rationale behind adopting an incremental manner lies
in the interdependence of subsequent modules on their an-
tecedent counterparts for functionality. The experimental
findings indicate that each submodule contributes positively
to a certain extent.

5. Conclusion
This work proposes a novel method named ActiveDC, de-
signed for data selection and distribution calibration of ac-
tive finetuning tasks. The method consists of two crucial
steps: Data Selection and Distribution Calibration. In the
Distribution Calibration step, we leverage a substantial vol-
ume of unlabeled pretrained features to extract insights into
class distribution and robustly calibrate the statistical in-
formation by ingeniously combining it with information
from the labeled samples. Subsequently, we select pseudo-
labeled data points that demonstrate reliability and provide
an accurate approximation of the overall data distribution.
Extensive experiments have demonstrated its effectiveness
and significance. For future work, we will concentrate on
optimizing efficiency, making it applicable to a broader
range of application scenarios.
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