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Abstract

Despite the great success of deep learning in stereo
matching, recovering accurate disparity maps is still chal-
lenging. Currently, L1 and cross-entropy are the two most
widely used losses for stereo network training. Compared
with the former, the latter usually performs better thanks
to its probability modeling and direct supervision to the
cost volume. However, how to accurately model the stereo
ground-truth for cross-entropy loss remains largely under-
explored. Existing works simply assume that the ground-
truth distributions are uni-modal, which ignores the fact
that most of the edge pixels can be multi-modal. In this pa-
per, a novel adaptive multi-modal cross-entropy loss (ADL)
is proposed to guide the networks to learn different distri-
bution patterns for each pixel. Moreover, we optimize the
disparity estimator to further alleviate the bleeding or mis-
alignment artifacts in inference. Extensive experimental re-
sults show that our method is generic and can help clas-
sic stereo networks regain state-of-the-art performance. In
particular, GANet with our method ranks 1st on both the
KITTI 2015 and 2012 benchmarks among the published
methods. Meanwhile, excellent synthetic-to-realistic gen-
eralization performance can be achieved by simply replac-
ing the traditional loss with ours. Code is available at
https://github.com/xxxupeng/ADL.

1. Introduction

As a long-standing and active topic in computer vision,
stereo matching plays an essential role in wide applica-
tions such as autonomous driving and virtual reality. While
conventional methods suffer from poor reliability in tack-
ling illumination change and weak texture, the learning-
based stereo methods show their superiority in these com-
plex scenes.

Stereo matching is usually regarded as a regression task
in deep learning [1, 3, 11, 13, 33]. In these works, L1 loss is
employed for training, followed by the soft-argmax estima-
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(a) Over-smoothing artifacts from PSMNet [1]

(b) Misalignment artifacts from PSMNet + [2]

(c) PSMNet + Ours

Figure 1. Comparison of the reconstructed point clouds. Our
method can alleviate the over-smoothing and misalignment arti-
facts, which is critical to the performance of downstream tasks.

tor [13] to predict sub-pixel disparity. The main problem of
L1 loss is that it lacks direct supervision of the cost volume
and is thereby prone to overfitting [36]. Moreover, soft-
argmax is based on the assumption that the output distribu-
tions are uni-modal and centered on the ground-truth [13],
which is not always true especially for the edge pixels with
ambiguous depths. As shown in Fig. 1a, soft-argmax on
edge pixels suffers from severe over-smoothing problem,
causing bleeding artifacts at the edge.

Another line of research treats stereo matching as a clas-
sification task, where the cross-entropy loss could be used.
To guide the network to output uni-modal distributions,
researchers model the ground-truth disparity with discrete
Laplacian or Gaussian distributions [2, 16, 28, 36]. The
single-modal disparity estimator (SME) [2, 28] is further
employed to extract correct modals from the predicted dis-
tributions. The cross-entropy loss can directly supervise the
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learning of the cost volume, thereby achieving better results
than the L1 loss. However, the enforcement of uni-modal
pattern seems not that effective, as evidenced by the pres-
ence of misalignment artifacts in Fig. 1b.

Our work aims to explore a better modeling for the stereo
ground-truth and improve the disparity estimator. Contrary
to previous works that impose the uni-modal constraints on
the cost volume, we believe that the edge pixels should nat-
urally be modeled as the multi-modal distributions. During
the image capture process, edge pixels collect lights from
multiple objects at different depths, implying that the depth
of edge pixels inherently carries ambiguity. Enforcing the
network to learn the uni-modal pattern at all areas can be
confusing and misleading, causing erroneous estimation on
both edge and non-edge pixels. Therefore, a better probabil-
ity model encoding the true patterns of each pixel is highly
desirable.

In this paper, we propose adaptive multi-modal distribu-
tion model for pixels and integrate it into cross-entropy loss
for network training. We apply disparity clustering within
the local window of each pixel to obtain the desired number
of the modals. Laplacian distribution is then employed for
modeling each cluster. We further rely on the local struc-
tural information within the window to determine the rela-
tive weight of each modal, thereby finalizing the mixture of
Laplacians for the cross-entropy loss. Additionally, we pro-
pose a dominant-modal disparity estimator (DME) to better
tackle the difficulties brought by the multi-modal outputs
from the network. Extensive experimental results on public
datasets show that our method is generic and can help clas-
sic stereo networks regain state-of-the-art performance. The
comparison results in Fig. 1 exemplify the remarkable im-
provements of our method. Moreover, our method achieves
excellent cross-domain generalization performance and ex-
hibits higher robustness to sparser ground-truth.

Our contributions can be summarized as follows:
• We propose an adaptive multi-modal cross-entropy loss

for training stereo networks. It can effectively guide the
networks to learn clear distribution patterns and suppress
outliers.

• We propose a dominant-modal disparity estimator that
can obtain accurate results upon the multi-modal outputs.

• Extensive experiments show that our method is general
and can help the classic stereo networks regain highly
competitive performance. GANet [33] with our method
ranks 1st on both the KITTI 2015 [19] and the KITTI
2012 [10] benchmarks among all published methods.

• Networks with our method exhibit excellent generaliza-
tion performance, surpassing existing methods that spe-
cialize in cross-domain generalization.

• Our method is robust to sparser supervision, reveal-
ing great potential to save the cost of producing dense
ground-truth for network training.

2. Related work
Deep stereo matching. DispNet [18], a model that con-

structs a correlation volume and directly regresses the dis-
parity, is the first end-to-end deep stereo network. Later,
GCNet [13] proposes constructing the cost volume with
concatenated features and employing 3D convolutions for
cost aggregation. PSMNet [1], the popular baseline for the
following cost volume-based works [2, 27, 30, 36], adds
the spatial pyramid pooling [12] to the network and stacks
multiple hourglass networks to improve the accuracy. Gwc-
Net [11] further improves the cost volume by the group-
wise correlation that provides more efficient measure of
feature similarity. To reduce the computational complex-
ity, GANet [33] proposes replacing the 3D convolutions
with the aggregation layers guided by semi-global and lo-
cal information. Following RAFT [25], another branch
of work [14, 15, 31, 37, 38] relies on iterative refinement
pipeline with ConvGRU [6] to achieve high disparity pre-
cision. Recently, IGEVStereo [31] proposes combining a
geometry encoding volume with the correlation feature in
the iterative pipeline, achieving the state-of-the-art perfor-
mance on KITTI 2015 benchmark [19].

Loss function and disparity estimator. Loss func-
tion and disparity estimator are crucial for stereo networks.
The former supervises the learning process, and the lat-
ter finalizes the disparity from the distribution volume. In
GCNet [13], regression-based L1 loss is adopted and the
full-band weighted average operation (soft-argmax) is pro-
posed to calculate the final disparity. Later, smooth L1
loss becomes the mainstream [1, 3, 4, 11, 30]. Differ-
ent from the above works, PDSNet [28] and the follow-
ing works [2, 16, 36] uses the uni-modal cross-entropy
loss to impose direct supervision to the distribution vol-
ume. No matter what the loss function is, the multi-modal
outputs caused by the matching ambiguity are unavoid-
able. Soft-argmax on these multi-modal outptus leads to
over-smoothing artifacts on the edge pixels. To solve this
problem, SME [2, 28] selects the modal with the maxi-
mum probability and only estimates the final disparity on it.
CDN [9] determines the integer part of the disparity from
the modal with maximum probability and further estimates
the offsets by a small network. SMDNet [27] feeds the dis-
tribution volume to MLPs [21] to parameterize the network
outputs as the mixture of two Laplacians, and chooses the
modal with higher peak as the final result. Beside these
post-processing methods, [32] notices the multi-modal na-
ture of the ground-truth when supervising the coarse-level
cost volume in their multi-view stereo study. Contrary to the
existing works that impose uni-modal distribution for each
pixel, our method models ground-truth as adaptive multi-
modal distributions and encourages multi-modal outputs on
edge pixels. Different from [32] that introduces multi-hot
cross-entropy loss for coarse-level patch-sized pixels but
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still employs L1 loss for the fine-level outputs, our method
directly sets up adaptive multi-modal loss for the fine-level
pixels, providing more direct and effective supervision to
the network. We also optimize the disparity estimator to
better tackle the multi-modal outputs from the distribution
volume.

Cross-domain generalization. As another important is-
sue for deep learning-based stereo matching, capability of
cross-domain generalization has been extensively studied.
DSMNet [34] proposes a novel domain normalization layer
combined with a learnable non-local graph-based filtering
layer to reduce the domain shifts. CFNet [24] builds a cas-
cade and fused cost volume representation to learn domain-
invariant geometric scene information. ITSA [7] refers to
the information bottleneck principle [26] to minimize the
sensitivity of the feature representations to the domain vari-
ation. GraftNet [17] embeds a feature extractor pre-trained
on large-scale datasets into the stereo matching network to
extract broad-spectrum features. Without adding any addi-
tional learnable modules, we achieve outstanding general-
ization performance by simply changing the training loss.

3. Method
3.1. Fundamentals and problem statement

Given a calibrated stereo image pair, stereo matching
aims to find the corresponding pixel in the right image for
each pixel in the left image. The cost volume-based stereo
networks follow the common pipeline [13]. First, features
of the left and right images are extracted by a weight-
sharing 2D CNN module respectively. Then a 4D cost vol-
ume is constructed upon the two obtained feature blocks.
The cost aggregation module takes this 4D volume as input
and outputs a distribution volume with size D × H × W ,
where D is the maximum range of disparity search, H and
W are the height and width of the input image, respectively.
Softmax operator is then applied along the disparity dimen-
sion to normalize the probability distribution p(·) for each
pixel. Finally, the resulting disparity d̂ is estimated by the
full-band weighted average operation, which is also called
soft-argmax:

d̂ =

D−1∑
d=0

d · p(d) (1)

To train the stereo network, regression-based smooth L1
loss can be employed with:

Lreg(d̂, dgt) =

{
0.5(d̂− dgt)

2, if |d̂− dgt| < 1,

|d̂− dgt| − 0.5, otherwise.
(2)

where dgt is the ground-truth disparity.

Training Time

L
os

s

Figure 2. Training trends of the uni-modal cross-entropy loss on
SceneFlow dataset.

In this pipeline, the distribution volume is indirectly su-
pervised by the smooth L1 loss, which hinders the final per-
formance [36]. By treating the stereo matching as a classi-
fication task, cross-entropy loss provides direct supervision
on the distribution volume, as:

Lce(p, pgt) = −
D−1∑
d=0

pgt(d) · log p(d) (3)

The new problem is that the ground-truth distribution
pgt(·) in Eq. (3) is unavailable. Existing works [2, 16,
28, 36] simply model pgt(·) as the uni-modal Laplacian
or Gaussian distribution centered on dgt. However, these
simple models seem unable to impose sufficient supervi-
sion for different image regions, especially the edge. As
shown in Fig. 2, the training loss of edge pixels remain
much larger than that of the non-edge pixels, indicating the
difficulty of learning in these areas. Further statistics (de-
tails shown later in Tab. 3) on the resulting output distri-
bution volume shows that over half of the edge and part
of the non-edge pixels are actually assigned more than one
modal, which conflicts with the uni-modal assumption of
the pseudo-groundtruth. These undesired multi-modal out-
puts directly lead to the misalignment artifacts on object
edges and outliers on non-edge areas, as shown in Fig. 1b.
Therefore, we believe the root of the problem lies in the in-
appropriate uni-modal modeling of the ground-truth in all
areas. In fact, edge pixels aggregate photometric informa-
tion from multiple objects at different depths, implying that
the intensities of edge pixels are inherently ambiguous. Im-
posing a uni-modal distribution pattern across the entire im-
age will not only cause learning difficulties for edge pixels,
but also confuse the learning for non-edge pixels.

3.2. Adaptive multi-modal probability modeling

Inspired by the observation in the previous section, we
are dedicated to exploring a better probability modeling of
ground-truth for the cross-entropy loss. We believe that
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Figure 3. Illustration of our adaptive multi-modal modeling for cross-entropy loss. Given the pixel for modeling, the disparities within
a pre-defined window are divided into K clusters {Ω1,Ω2, ...,ΩK}, and the mean µk for each cluster is calculated to form a uni-modal
Laplacian distribution. The final adaptive multi-modal distribution is generated by the weighted summation of the Laplacian distributions,
with the weight wk determined by |Ωk|.

the probability distributions of edge pixels should be com-
posed of multiple modals, with each corresponding to a spe-
cific depth/disparity. To this end, an adaptive multi-modal
ground-truth modeling method is proposed. Our idea is to
generate a separate Laplacian distribution for each poten-
tial depth on the edge pixels and then fuse them together to
construct a mixture of Laplacians. We refer to the neigh-
borhood of each pixel to accomplish the task, as illustrated
in Fig. 3.

For each pixel labeled with ground-truth disparity, we
consider a m × n local window centered on it. The en-
tire set of disparity values within the window is then di-
vided into K(K ≥ 1) disjoint subsets {Ω1,Ω2, ...,ΩK} by
the DBScan clustering algorithm [8], with each cluster cor-
responding to a different potential depth. In DBScan, the
distance threshold ϵ and density threshold minPts are set
manually to adjust the resulting number of clusters. This
clustering method offers the following advantages: (1) there
is no need to pre-define the number of clusters; (2) K = 1
can be regarded as an indicator of non-edges; (3) it is robust
for slanted planes with continuous but varying depths.

The ground-truth distribution of each pixel can then be
modeled as the mixture of Laplacians:

pgt(d) =

K∑
k=1

wk · Laplacianµk,bk
(d)

=

K∑
k=1

wk · e
−|d−µk|

bk∑D−1
di=0 e

−|di−µk|
bk

(4)

where the Laplacians are discretized and normalized over
the disparity candidates d ∈ {0, 1, ..., D − 1}, and µk, bk,
and wk are the mean, scale, and weight parameters for the
kth Laplacian distribution, respectively. µk is set to the
mean value of the disparities within the cluster Ωk. Defin-

ing that Ω1 contains the central pixel to be modeled, µ1 is
replaced by the central pixel’s ground-truth to ensure the
accuracy of the supervision. The weight wk is designed
to adjust the relative proportions of the obtained multiple
modals, and can be assigned based on the local structure
within the window. We take the cardinality of Ωk as an indi-
cator of the local structure, e.g., a smaller |Ωk| corresponds
to a thinner structure, which should have smaller weight ac-
cordingly. Finally, wk is defined as:

wk =

{
α+ (|Ωk| − 1) · 1−α

mn−1 , k = 1

|Ωk| · 1−α
mn−1 , k ̸= 1

(5)

where α is a fixed weight for the central pixel. We set
α ≥ 0.5 to ensure the dominance of the ground-truth
modal. The rest (1 − α) weights are equally distributed
to the rest (mn − 1) neighboring pixels. For datasets with
sparse ground-truth like KITTI [10, 19], only valid dispari-
ties within the local window are counted and mn in Eq. (5)
is replaced with

∑K
k=1 |Ωk|. For non-edge pixels which

have only one cluster within the window, w1 is equal to one,
and Eq. (4) degenerates into a uni-modal Laplacian distri-
bution.

3.3. Dominant-modal disparity estimator

Stereo networks trained by cross-entropy loss often yield
more multi-modal outputs than the L1 loss, thereby a bet-
ter disparity estimator is highly desired. SME [2] allevi-
ates the over-smoothing problem by aggregating disparities
only within the “most likely” modal, but still suffers from
the misalignment artifacts caused by the erroneous modal
selection. In contrast to the uni-modal loss, our new loss en-
courages the network to generate more multi-modal patterns
at the edge. Consequently, an enhanced disparity estimator
becomes imperative to address the complexities introduced
by our method.
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the selection of SME

the selection of DME

The output probability distribution

Figure 4. Illustration of modal selection strategy during infer-
ence. SME [2] prefers the modal with maximum probability can-
didate (aimed by the green arrow). Our proposed DME prefers the
one with maximum cumulative probability.

SME first locates the disparity candidate with the max-
imum probability density, and then traverses left and right
respectively until the probability stops decreasing, thereby
determining the range of the dominant modal [dl, dr] for
disparity estimation. However, this pixel-level winner-take-
all strategy is sensitive to noises that can produce sharp and
narrow modals in the output distribution.

We propose our DME to solve this problem, as illustrated
in Fig. 4. Specifically, we split each modal from the multi-
modal output and calculate their cumulative probability sep-
arately. Each modal corresponds to a potential matching
object with a specific depth, and the cumulative probability
of the modal reflects the matching possibility of that object.
Therefore, we adopt an object-level winner-take-all strat-
egy, i.e., selecting the modal with the maximum cumulative
probability as the dominant modal. The selected modal is
then normalized as:

p(d) =


p(d)∑dr

di=dl
p(di)

, if dl ≤ d ≤ dr,

0, otherwise.
(6)

Finally, Eq. (1) is used to estimate the disparity by sub-
stituting p(d) for p(d).

4. Experiments

4.1. Datasets and evaluation metrics

We evaluate our method on five popular stereo datasets.
SceneFlow [18] is a large synthetic dataset containing
35454 image pairs for training and 4370 for testing. KITTI
2012 [10] and KITTI 2015 [19] are the two real outdoor
datasets, each containing hundreds of images collected from
driving scenes. Middlebury [22] and ETH3D [23] are also
real-world datasets, with a few dozen of image pairs ac-
quired in indoor or outdoor scenes. We only use the training
sets of Middlebury and ETH3D to additionally validate the
cross-domain generalization performance of our method.

As usual, EPE (End-Point-Error) and kpx (the percent-
age of outliers with an absolute error greater than k pixels)
are employed to evaluate the networks’ performance. For
KITTI 2015, D1 metric (the percentage of disparity out-
liers) is reported.

4.2. Implementation details

We separately apply our method to three classic cost
volume-based stereo networks, namely, PSMNet [1], Gwc-
Net [11], and GANet [33]. We implement all networks in
PyTorch and use Adam with β1 = 0.9 and β2 = 0.999
as the optimizer. We train the networks from scratch using
two NVIDIA 3090 GPUs. When training on SceneFlow, the
learning rate is set to 1 × 10−3 for the first 30 epochs and
then reduced to 1× 10−4 for the rest 15 epochs. On KITTI
2012 and 2015, we fine-tune the SceneFlow pre-trained net-
works for 600 epochs with the learning rate of 1× 10−3. bk
in Eq. (4) and α in Eq. (5) are both set to 0.8 after parameter
tuning. The distance threshold ϵ and the density threshold
minPts in DBScan [8] are set to 3 and 1, respectively.

4.3. Ablation study

We perform ablations on the SceneFlow dataset. The
original PSMNet [1] trained with smooth L1 loss is taken as
the baseline for comparison. To ensure fairness, all models
are trained from scratch for 15 epochs on the training set
and then validated on the test set.

Loss function. As shown in Tab. 1, compared with the
baseline, PSMNet with our multi-modal cross-entropy loss
boosts performance drastically, with EPE by 19.59%, 1px
error by 40.06%, and 3px error by 32.75%. Our method
also outperforms the uni-modal cross-entropy loss [2] on all
metrics, demonstrating its superiority in effectively guiding
the network to learn the explicit distribution patterns.

Disparity estimator. We validate our disparity estimator
by comparing with SME [2]. As shown in Tab. 1, our DME
consistently outperforms SME for the networks trained with
either uni- or multi-modal losses, which proves its effec-
tiveness in selecting the correct modals from multi-modal
outputs.

Window shape and size. The disparities within the win-
dow are used to construct the ground-truth distributions.
We ablate to determine the optimal window shape and size.
Tab. 2 shows that local windows with horizontal 1D shape
usually perform better than others and the 1 × 9 window
achieves the best. This can be attributed to the nature of
stereo matching, i.e., a 1D matching task along the horizon-
tal direction.

4.4. Analysis of the output distribution patterns

To have a deeper understanding of the change in the
distribution volume brought by our new loss, we count
the proportions of pixels with different number of output
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Method Cross-Entropy Loss Disparity Estimator EPE >1px >3px
Uni-Modal (UM) Multi-Modal (MM) SME DME

PSMNet [1] 0.97 10.51 4.03

PSMNet + UM + SME [2] ✓ ✓ 0.84 6.65 2.85
PSMNet + UM + DME ✓ ✓ 0.82 6.61 2.82
PSMNet + MM + SME ✓ ✓ 0.80 6.31 2.72
PSMNet + MM + DME (Ours) ✓ ✓ 0.78 6.30 2.71

Table 1. Ablation study of the loss function in training and the disparity estimator in inference on SceneFlow.

Local Window EPE >1px >3px

Shape
3× 3 0.83 6.67 2.86
1× 9 0.78 6.30 2.71
9× 1 0.84 6.65 2.87

Size

1× 3 0.82 6.76 2.85
1× 5 0.81 6.58 2.79
1× 7 0.81 6.62 2.83
1× 9 0.78 6.30 2.71
1× 11 0.84 6.72 2.91

Table 2. Ablation study of window shape and size on SceneFlow.

Method Region The number of modals Outliers
1 2 ≥3

PSMNet
[1]

All 98.50 1.00 0.50 4.03
Edge 87.79 10.30 1.91 25.59
Non-Edge 98.92 0.64 0.44 3.17

+UM
+SME
[2]

All 94.67 4.60 0.73 2.85
Edge 40.16 52.70 7.14 19.39
Non-Edge 96.78 2.77 0.45 2.20

+MM
+DME
(Ours)

All 94.92 4.35 0.73 2.71
Edge 35.35 57.28 7.37 18.97
Non-Edge 97.23 2.33 0.44 2.07

Table 3. Statistics of pixels w.r.t. the number of modals and
their corresponding outliers (>3px) for PSMNet variants on
SceneFlow. Modals with the peak density lower than 1% are not
included in the statistics.

(a) Left Image                   (b) PSMNet (c) PSMNet+UM+SME (d) PSMNet+Ours(a) Left Image (b) Smooth L1 (c) Uni-modal CE (d) Ours(a) Left Image (b) Smooth L1 (c) Uni-modal CE (d) Ours(a) Left Image (b) Smooth L1 (c) Uni-modal CE (d) Ours(a) Left Image (b) Smooth L1 (c) Uni-modal CE (d) Ours

Probability
Ground-Truth
Estimation

Figure 5. Visualization of output distributions at the edge. Top
row: background pixel, bottom row: foreground pixel.

patterns and list them in Tab. 3. PSMNet [1] yields the
most uni-modal distributions for all of the pixels, namely,
98.5%. However, a part of these uni-modal distributions
are not correct, as they may be centered on the wrong
disparities which lead to large outliers. When uni-modal
cross-entropy loss [2] is employed, the proportion of multi-

Method EPE >1px >3px

PSMNet [1] 1.09 12.1 4.56
AcfNet [36] 0.87 – 4.31
GANet [33] 0.78 8.70 –
GwcNet [11] 0.77 8.00 3.30
PSMNet + [2] 0.77 – 2.21
IGEVStereo [31] 0.47 – 2.47
ACVNet [30] 0.46 4.89 1.98

PSMNet + Ours 0.64 5.14 2.19
GwcNet + Ours 0.62 5.07 2.16
GANet + Ours 0.50 4.25 1.81

Table 4. Quantitative results on SceneFlow test set.

Figure 6. Qualitative comparison on SceneFlow. From left to
right: input images, disparity results from PSMNet, PSMNet+[2],
and PSMNet+Ours. Our method can recover more accurate object
structure and reduce undesired defects at the edge.

modal distributions in the edge regions rises from 12.21%
(10.30%+1.91%) to 59.84% (52.70%+7.14%), indicating
the failure of the uni-modal constraints on the distribution
volume. Compared with the uni-modal loss, our adaptive
multi-modal loss yields about 5% more multi-modals at the
edge while resulting in lower outliers. This demonstrates
the superiority of our loss in supervising the network to pro-
duce easily distinguishable modals for disparity estimation.
Interestingly, our method achieves better non-edge perfor-
mance than [2], reducing outliers from 2.20% to 2.07%.
It can also be observed that more uni-modal distributions
than [2] are produced for the non-edge areas, which means
that the supervision of clear patterns is beneficial for learn-
ing on not only edge but also non-edge pixels.

Fig. 5 shows the output distributions of the two exam-
pling pixels. We can observe that: 1) PSMNet outputs little
multi-modal distributions but large disparity error; 2) SME
incurs misalignment artifacts from ambiguous distribution;
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Method
KITTI 2015 KITTI 2012

All Noc >2px >3px

D1-bg D1-fg D1-all D1-bg D1-fg D1-all Out-Noc Out-All Out-Noc Out-All

PDSNet [28] 2.29 4.05 2.58 2.09 3.68 2.36 3.82 4.65 1.92 2.53
PSMNet [1] 1.86 4.62 2.32 1.71 4.31 2.14 2.44 3.01 1.49 1.89
PSMNet + [2] 1.54 4.33 2.14 1.70 3.90 1.93 2.17 2.81 1.35 1.81
GwcNet [11] 1.74 3.93 2.11 1.61 3.49 1.92 2.16 2.71 1.32 1.70
PSMNet + SMDNet [27] 1.69 4.01 2.08 1.54 3.70 1.89 – – – –
CDN [9] 1.66 3.20 1.92 1.50 2.79 1.72 – – – –
AcfNet [36] 1.51 3.80 1.89 1.43 3.25 1.73 1.83 2.35 1.17 1.54
PSMNet + [32] * 1.56 3.49 1.88 1.42 3.29 1.73 – – – –
GANet [33] 1.48 3.46 1.81 1.34 3.11 1.63 1.89 2.50 1.19 1.60
GANet + LaC [16] 1.44 2.83 1.67 1.26 2.64 1.49 1.72 2.26 1.05 1.42
ACVNet [30] 1.37 3.07 1.65 1.26 2.84 1.52 1.83 2.34 1.13 1.47
LEAStereo [5] 1.40 2.91 1.65 1.29 2.65 1.51 1.90 2.39 1.13 1.45
IGEVStereo [31] 1.38 2.67 1.59 1.27 2.62 1.49 1.71 2.17 1.12 1.44
CroCoStereo [29] 1.38 2.65 1.59 1.30 2.56 1.51 – – – –

PSMNet + Ours 1.44 3.25 1.74 1.30 3.04 1.59 1.80 2.32 1.14 1.50
GwcNet + Ours 1.42 3.01 1.68 1.30 2.76 1.54 1.65 2.17 1.05 1.42
GANet + Ours 1.38 2.38 1.55 1.24 2.18 1.40 1.52 2.01 0.98 1.29

Table 5. Quantitative results on KITTI 2015 and 2012 Benchmarks. * retrained network.

PSMNet PSMNet+UM+SME PSMNet+Ours PSMNet PSMNet+UM+SME PSMNet+Ours

D1=2.51% D1=2.41% D1=1.92% D1=1.51% D1=1.15% D1=1.02%

Figure 7. Qualitative comparison on KITTI 2015. From top to bottom: left images, disparity maps, error maps, and reconstructed point
clouds. The elliptical and rectangular boxes show partial over-smoothing and misalignment artifacts, respectively.

3) Our loss outputs more easily distinguishable multi-modal
distributions than the uni-modal one.

4.5. Performance evaluation

We integrate our method into several baseline networks
and compare them with other methods.

SceneFlow. As shown in Tab. 4, our method signifi-
cantly improves the performance of all of the baselines by
simply changing the loss function and disparity estimator.
In particular, the EPE metrics are improved by 41.28%,
19.48%, and 35.90% for the baselines PSMNet, GwcNet,
and GANet, respectively. GANet with our method achieves
the state-of-the-art results on 1px and 3px metrics. Ad-
ditionally, our multi-modal trained PSMNet also performs
much better than the uni-modal trained one [2]. Qualitative
results shown in Fig. 6 also validate the improvements.

KITTI 2015 & KITTI 2012 benchmarks. As the
ground-truth of KITTI is sparse [10, 19], leveraging the
adjacent rows for ground-truth modeling would be benefi-
cial. Therefore, the size of the local window for generat-

ing the ground-truth distributions is enlarged to 3× 9 when
fine-tuning the SceneFlow pre-trained network on KITTI
datasets. As the results shown in Tab. 5, all of the three
baselines are lifted to a highly competitive level by our
method. In particular, GANet with our method achieves
new state-of-the-art results on both KITTI 2015 and KITTI
2012 benchmarks. Furthermore, we outperform those meth-
ods [2, 16, 28, 36], whose loss function contains a uni-
modal cross-entropy term, by a large margin.

Since [32] doesn’t have results on KITTI, we retrain the
PSMNet with this method for the purpose of comparison.
As shown in Tab. 5, our method also preforms better than
those involving multi-modal modeling [27, 32].

To show our improvements more clearly, we convert the
resulting disparity maps to point clouds. As shown in Fig. 7,
our method dramatically improves the over-smoothing ar-
tifacts, and can obtain the point clouds with precise edge
structures. More accurate point clouds can be very bene-
ficial for downstream tasks, such as pseudo-LiDAR-based
3D object detection [20].
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Method KT 15 KT 12 MB ETH3D
>3px >3px >2px >1px

PSMNet [1] 16.3 15.1 25.1 23.8
GwcNet [11] 12.8 11.7 18.1 9.0
GANet [33] 11.7 10.1 20.3 14.1
DSMNet [34] 6.5 6.2 13.8 6.2
CFNet [24] 5.8 4.7 13.5 5.8
FC-GANet [35] 5.3 4.6 10.2 5.8
Graft-GANet [17] 4.9 4.2 9.8 6.2
ITSA-CFNet [7] 4.7 4.2 10.4 5.1
IGEVStereo [31] – – 7.1 3.6

PSMNet + Ours 4.78 4.23 8.85 3.44
GwcNet + Ours 4.52 4.19 9.11 3.79
GANet + Ours 4.84 3.93 8.72 2.31

Table 6. Cross-domain generalization evaluation.

(a) Left Images (c) PSMNet (d) PSMNet+Ours(b) Ground-Truth

Figure 8. Qualitative comparison of cross-domain generaliza-
tion. From top to bottom: KITTI 2015 [19], KITTI 2012 [10],
Middlebury [22], and ETH3D [23].

4.6. Cross-domain generalization performance

Besides the fine-tuning performance, generalization is
also crucial for deploying networks in the real world. In this
section, we compare our generalization performance with
baselines, as well as other methods that are specially de-
signed for cross-domain generalization. All methods are
only trained on SceneFlow and then tested on four real-
world datasets [10, 19, 22, 23].

As shown in Tab. 6, the generalization performance of
the baselines are greatly enhanced by our method. Mean-
while, by guiding the networks to learn explicit multi-modal
patterns, our method shows superior performance than ex-
isting generalization-focused works on all four datasets.
This proves that multi-modal distribution is more in line
with the nature of stereo matching. Fig. 8 shows the qualita-
tive comparison between the original PSMNet [1] and ours.

4.7. Influence of sparser ground-truth

Acquiring dense and accurate disparity ground-truth
are difficult and expensive, especially for outdoor scenes.
KITTI 2012 registers consecutive LiDAR point clouds with

Density PSMNet [1] PSMNet+Ours

100% 1.90 1.58
80% 2.15 (-13.16%) 1.61 (-1.90%)
60% 2.24 (-17.89%) 1.68 (-6.33%)
40% 2.30 (-21.05%) 1.71 (-8.23%)
20% 2.35 (-23.68%) 1.74 (-10.13%)

Table 7. Influence of the ground-truth density. D1 metric is
reported on KITTI 2015 validation set.

ICP to increase the ground-truth density [10], and KITTI
2015 further leverages detailed 3D CAD models to recover
points on dynamic objects [19]. Despite these efforts, the
valid ground-truth density on KITTI 2015 is only about
30%. In addition, the error of point cloud registration also
needs to be considered, which affects the ground-truth qual-
ity. Therefore, a network that can be trained with sparser
LiDAR ground-truth will be applauded.

In this experiment, we simulate different densities
by randomly down-sampling the original ground-truth on
KITTI 2015. Tab. 7 lists the influence of the ground-truth
density to the final performance. The performance of both
the original PSMNet [1] and ours degrades with less super-
vision signal. However, our method is much less affected
than its counterpart, with just 10.13% degradation when
trained with only 20% of the original ground-truth density.
Even with this worst result, it is still much better than the
best result of PSMNet trained with 100% original density.
This clearly indicates the large potential of our method in
saving the cost of collecting dense ground-truth for real ap-
plications.

5. Conclusion

In this work, we propose an adaptive multi-modal cross-
entropy loss for stereo matching networks. Contrary to the
previous works that impose uni-modal constraints on the
distribution volume, our method encourages multi-modal
outputs for edge pixels to avoid confusion in network learn-
ing. The number of modals and their corresponding weights
in the distribution are determined by clustering and statis-
tics within a local window. We also optimize the disparity
estimator to robustly locate the dominant modal from the
multi-modal outputs. Our method is general and can be eas-
ily implemented to enhance the performance of most of the
existing stereo networks. GANet with our method achieves
the new state-of-the-art on the KITTI 2012 and 2015 bench-
marks. Our method is also robust to sparser ground-truth
and exhibits excellent cross-domain generalization perfor-
mance.
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