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Figure 1. Our method can recover the hidden pixels of objects in diverse images. Occluders may be co-occurring (a person on a surfboard),

accidental (a cat in front of a microwave), the image boundary (giraffe), or a combination of these scenarios.

Abstract
Our brain can effortlessly recognize objects even when

partially hidden from view. Seeing the visible of the hidden is

called amodal completion; however, this task remains a chal-

lenge for generative AI despite rapid progress. We propose

to sidestep many of the difficulties of existing approaches,

which typically involve a two-step process of predicting

amodal masks and then generating pixels. Our method in-

volves thinking outside the box, literally! We go outside the

object bounding box to use its context to guide a pre-trained

diffusion inpainting model, and then progressively grow the

occluded object and trim the extra background. We overcome

two technical challenges: 1) how to be free of unwanted co-

occurrence bias, which tends to regenerate similar occluders,

and 2) how to judge if an amodal completion has succeeded.

Our amodal completion method exhibits improved photoreal-

istic completion results compared to existing approaches in

numerous successful completion cases. And the best part? It

doesn’t require any special training or fine-tuning of models.

1. Introduction
Have you ever wondered how objects regularly occlude one

another, yet we can effortlessly recognize and imagine their

unoccluded appearance? Our visual system performs this

Project page and code: https://k8xu.github.io/amodal/

task of amodal completion using the continuity and sym-

metry of an object’s shape [49] and everyday familiarity of

the world [57]. Amodal completion, filling in hidden object

parts, is a challenging AI task despite rapid advances in com-

puter vision. This technology has many applications, such

as in robotics, autonomous vehicles, and augmented reality.

A reasonable amodal completion approach [3, 60] con-

sists of two stages: 1) completing a binary amodal mask; 2)

synthesizing RGB pixel values within the mask. However, di-

rectly regressing the amodal mask is an ill-posed formulation

due to the diversity of possible completions.

Computational issues aside, how can we create a dataset

for amodal completion? Previous research attempts to con-

struct datasets through random mask placement to simulate

occlusion [24], computer graphics rendering techniques [17],

or by asking humans to label amodal segmentation masks

given the modal masks [1, 39, 67]. However, a domain gap

persists between synthetic and natural images, and labeled

natural images are expensive to obtain.

But what if we can sidestep all these difficulties? This

involves thinking outside the box, literally: 1) extend from

the bounding box of an occluded object to include sufficient

image context, 2) remove the occluders, 3) use a pre-trained

diffusion model to grow the object, and 4) trim off the extra

background. Our amodal completion pipeline avoids pre-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9099

https://k8xu.github.io/amodal/


dicting the amodal segmentation mask as an intermediate

step. Furthermore, we can recover occluded pixels within

occluder objects and beyond the image boundary (Figure 1),

generate diverse versions of completed pixels, and require

no training or fine-tuning of the diffusion model.

Straightforward usage of an off-the-shelf diffusion model

for image inpainting succeeds only sometimes. Failure cases

often generate other objects within the occluder masks: orig-

inal occluder look-alikes or unintended things that co-occur

with the object of interest. Imagine removing a hand holding

a cup; diffusion inpainting often adds a different hand simply

because we don’t see a floating cup in real life.

How can we add control to discourage the pre-trained dif-

fusion model from re-generating co-occurrence? Two tasks

exist to solve: momentarily breaking free of context, and

knowing when amodal completion has succeeded.

First, to break free of the contextual bias that causes co-

occurrence, we propose mixed context diffusion sampling to

temporarily replace the image context with a natural clean

background, akin to product photography. We intercept the

diffusion process halfway, extracting a pseudo-complete ob-

ject in a still-noisy image using unsupervised clustering of

decoder features. Then, we use the pseudo-complete object

as a reference target to the reverse diffusion process while

gradually reintroducing the original image background.

Second, to infer whether the amodal completion succeeds,

we introduce counterfactual reasoning: use the generated ob-

ject and outpaint its background. If the object is complete,

then any outpainting should not increase its size. Thus, we

can judge whether amodal completion is successful by com-

paring the object segmentation before and after outpainting.

With these two tools, we progressively run a pre-trained

text-based diffusion inpainting model [42] until the occluded

object is complete. Our method requires no extra datasets, re-

training, or adaptation. It is entirely based on pre-trained dif-

fusion models [42], complemented by off-the-shelf grounded

segmentation [18, 29] and depth models [21] as auxiliary

modules. In summary:

1. We introduce a progressive occlusion-aware amodal com-

pletion pipeline that effectively recovers hidden pixels

within occluder masks and beyond the image boundary.

2. As a pioneering exploration, we identify the challenge

of a diffusion inpainting model generating unwanted co-

occurring objects, instead of completing objects. We pro-

pose mixed context diffusion sampling, which modifies

the image context to overcome difficult co-occurrence.

3. We create a training-free counterfactual completion cura-

tion system to decide if a generated object is complete.

2. Related Work
Amodal completion. Amodal appearance completion aims

to fill in the hidden regions of occluded objects. Current

methods often rely on a two-step approach of first predicting

the amodal mask and then generating the object appearance

given the amodal mask. These approaches have been applied

on toy datasets [4, 10, 13] and specific object categories

such as vehicles [27, 54, 65], humans [66], and food [37].

Additional methods perform amodal completion for com-

mon object categories, mainly on synthetic indoor scenes

[7, 9, 65]. However, there is a domain gap between synthetic

and natural images, and so we are interested in generating

the amodal completion of common objects in natural scenar-

ios. Zhan et al. [60] and Bowen et al. [3] perform amodal

completion in natural images, but these GAN-based methods

tend to lack high image fidelity. In contrast, our approach

leverages the good image prior of pre-trained diffusion mod-

els to photorealistically complete objects in natural images.

We also note the presence of concurrent works [16, 36, 58].

An alternative means of tackling the amodal completion

task is directly inpainting occluder regions, such as by using

large mask image inpainting [47] or training diffusion in-

painting models to remove objects [56]. There is also a line

of research in image outpainting [6, 23, 25, 51–53]. However,

since these approaches are not meant for amodal completion,

they often produce realistic images but fail to complete the

appearance of desired objects under significant occlusion. In

contrast, our method can realistically generate the amodal

completion of occluded objects by progressively inpainting

occluder regions and disentangling co-occurrence bias.

Diffusion models. Inspired by non-equilibrium thermo-

dynamics [45], diffusion models achieve remarkable results

for text-to-image and image inpainting tasks [34, 41, 42, 44],

often outperforming GANs in generating photorealistic and

diverse images [8, 15, 33]. However, these approaches pro-

vide limited control of image generation outside the text

prompt. Several works provide additional guidance to diffu-

sion models for controllable image generation using CLIP

[34, 41], cross-attention and self-attention [5, 11, 14, 38],

stroke paintings [31], exemplar images [55], and extra condi-

tioning on segmentation maps, edge maps, bounding boxes,

and keypoints in ControlNet [62]. However, employing these

techniques for amodal completion typically needs an amodal

mask or ‘complete’ edge map as guidance, which is not

available. Moreover, they often require resource-intensive re-

training of the diffusion models. In contrast, our method does

not assume any initial guidance and is entirely training-free.

3. Method

3.1. Preliminaries

Diffusion models [15] learn a data distribution p(I) using

a sequence of denoising. In the forward process, the model

adds noise to an image I in N time steps, resulting in the

sample having approximately Gaussian noise. In the reverse

process, the model learns to denoise the sample in N steps.

At each step t = [1, N ], a learned neural network predicts

the noise ϵθ(I
t, t) given the noisy image It.

Unlike diffusion models that use the image pixel space, la-
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Figure 2. Our Progressive Occlusion-aware Completion pipeline. First iteration: We perform instance segmentation [18, 29] and analyze

the object masks to determine occluders [21]. If the query object touches the image boundary, then we pad the image and mask to enable

object completion beyond the boundary in those directions. Using this input bundle, we run our Mixed Context Diffusion Sampling to obtain

a new amodal completion image. The details of Mixed Context Diffusion Sampling are in Figure 4. Next, we check whether the generated

object has a new occluder or touches the image boundary. In this example, the man from the original image appears as a new occluder that

was previously undetected. Additional iterations: If the query object remains occluded, then we run additional iterations of our pipeline.

Output: We return the final amodal completion image and amodal mask, and we can trim extra background to overlay on the original image.

tent diffusion models (LDMs) [42] operate in the latent space

of pre-trained autoencoders. For an image I ∈ R
H×W×3, the

encoder E encodes I into the latent representation z = E(I),
and the decoder D reconstructs I from z using Î = D(z).
In the diffusion process, the autoencoder can be viewed as

a time-conditional UNet [43], ϵθ(zt, t), for a given time t

and latent zt. To incorporate any input condition y such as

an inpainting mask, LDMs add cross-attention layers [50] to

the denoising UNet so that y maps to the intermediate layers

of the UNet [42]. In this work, we use the publicly released

Stable Diffusion v2 inpainting model checkpoint [42]. For

simplicity, our notation uses the image pixel space hereafter.

3.2. Problem Setup

The task of amodal completion entails identifying both vis-

ible and hidden aspects of objects, inside and outside an

image’s boundary. Given an arbitrary image Iin in R
H×W×3

and an object of interest (‘query object’) with its modal mask

Mmodal in R
H×W , our objective is to predict the amodal

completion image Iamodal in RH′
×W ′

×3 and the correspond-

ing amodal mask Mamodal in R
H′

×W ′

. We use H ′ and W ′

to indicate that the final amodal completion image may differ

in size from the original image due to potential extensions

beyond the image boundary. Furthermore, we denote the

diffusion inpainting/outpainting process as Fs→e, where s is

the starting timestep and e is the ending timestep. The text

prompt is represented as P , which is the semantic category

of the query object for our proposed solutions. Min and

Iout signify the generic input mask and the generated output,

respectively. This diffusion process can be expressed as:

Iout = Fs→e(Iin,Min, P ) (1)

For amodal completion to be successful, it must fulfill

three criteria. 1) The process should exclusively remove

occluders without altering the image background, thereby

avoiding overextension of the object. 2) It must ensure a

complete representation of all object parts to avoid incom-

pletion. 3) The completion must be contextually consistent,

avoiding any physically implausible object configurations.

We evaluate the first two criteria by developing a dataset

of unoccluded objects from natural images, and then artifi-

cially generating the pseudo-occluded versions. Contextual

consistency is harder to quantify, so we perform a user study.

3.3. Naive Outpainting Approach

A simple approach to amodal completion may assume that

all pixels outside the query object’s modal mask are occlu-

sions, which are then subject to outpainting. This ‘Naive

Outpainting’ approach can be mathematically expressed as:

Iamodal = F0→N (Iin, 1−Mmodal, P ) (2)

where N is the total number of timesteps for the diffusion

process, which is set to 50 in the DDIM scheduler [46]. We

treat all masks as binary, so 1−Mmodal signifies everything

exterior to the query object.

Naive Outpainting often overextends the query object due

to the lack of contextual constraints, compromising the in-

tegrity of its identity and violating the objective of amodal

completion. For example, this approach produces an un-

wanted change to the motorcycle’s orientation in Figure 3.

Ours
Naive Outpainting

Output

Naive Outpainting

MaskOriginal

Figure 3. Naively using a diffusion model to outpaint the query

object may overextend the object and change its identity, such as the

motorcycle changing orientation (indicated by arrow). In contrast,

our method preserves the object’s identity.

3.4. Progressive Occlusionaware Completion

Our method is based on two key insights: 1) inpainting only

where necessary by identifying occluders prevents overexten-

sion, and 2) iteratively performing this inpainting step avoids

incompletion. Thus, we propose a ‘Progressive Occlusion-

aware Completion’ pipeline, as shown in Figure 2. Each
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Figure 4. Our Mixed Context (MC) Diffusion Sampling. 1) Swap background (red): We replace the background of Iin using Mocc to

create Isyn, followed by diffusion inpainting to the kth timestep, resulting in Iksyn amodal. 2) Create object-removed background image

(blue): We remove query objects and occluders from Iin using a removal inpainter [47], and then add noise up to the kth timestep, producing

Ikbg . 3) Segment object in noisy image (green): We extract diffusion features from Iksyn amodal, cluster them, and select the query object’s

amodal mask Mk
amodal at the kth timestep by aligning with Mmodal. 4) Composite (purple): We use Mk

amodal to place the query object

from Iksyn amodal onto the object-removed background image Ikbg . The final image, Iamodal, is obtained by completing the remaining N − k

diffusion steps, where N is the total number of steps. Top right: We show various failure cases if we remove parts of this MC method.

iteration of our pipeline has several steps that are described

below, and we perform more iterations if occluders remain.

This approach significantly reduces object overextension, as

evidenced by the results on the right side of Figure 6.

Mask analysis. Given the input image Iin, the first step

in each iteration is to identify all object masks by applying

a grounded segmentation model [18, 29]. This set of masks

is denoted as Mobj = {M1,M2, . . . ,Mn}, with each Mi

representing a distinct object mask. To focus on the objects

neighboring the query object mask Mmodal, we filter Mobj

to yield Mneighbor = {M1,M2, . . . ,Mj}.

We also perform a depth ordering analysis [21] between

Mmodal and the masks in Mneighbor, and we consider any

mask in Mneighbor that is closer to the camera than Mmodal

as an occluder. Next, this set of occluder masks Moccluder is

aggregated into a single binary occlusion mask, mathemati-

cally expressed as Mocc =
∑

Mi∈Moccluder
Mi. This unified

mask Mocc captures occluders within the image boundary

and serves as the input mask for the diffusion process.

Conditional padding. Our approach completes objects

that may extend beyond the image boundary by including the

boundary as an occluder. If the query object mask Mmodal

touches the boundary, then we apply padding to the image

Iin and the input mask Mocc in the corresponding directions.

Diffusion process and occlusion check. After mask anal-

ysis and conditional padding, we zoom into the query object

by cropping Iin, Mocc, and Mmodal around its bounding

box. This can improve the image generation quality by the

diffusion inpainting process, as described in [63].

The input bundle to the diffusion process contains the new

image Iin, occluder mask Mocc, query object’s modal mask

Mmodal, and semantic category for P . We run our Mixed

Context Diffusion method (Section 3.5) and generate a new

amodal completion image Iamodal using the equation:

Iamodal = F0→N (Iin,Mocc, P ) (3)

At the end of each pipeline iteration, we check if the ob-

ject is still occluded by other objects or the image boundary.

Additional iterations. If occlusions remain, then we run

another iteration of our pipeline using the previous iteration’s

amodal completion image Iamodal as the new input Iin, and

the previous iteration’s amodal mask Mamodal as the new

modal mask Mmodal. Our pipeline continues until the query

object is no longer occluded. Lastly, we return an output

bundle with the final amodal completion image and amodal

mask. To visualize the completed object in the original con-

text, we can trim the extra background from Iamodal and

overlay the object on the original image.

3.5. Mixed Context Diffusion Sampling

Our Progressive Occlusion-aware Completion pipeline in-

volves inpainting occluder regions, but directly using a

pre-trained diffusion inpainting model may generate co-

occurring objects as new occluders due to contextual bias.

This bias extends to subtle details like shadows, which can

prompt the model to produce contextually compatible oc-

cluders in the edited region, as discussed in [59].

To address this, we temporarily break the co-occurrence

link between the query object and original image context
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during the diffusion process. We achieve this through our

‘Mixed Context Diffusion Sampling’ (MC), presented in

Figure 4. This approach is versatile and can be adapted to

any text-to-image diffusion model in pixel or latent space.

After receiving the input bundle described in Section

3.4, our approach bifurcates into two parallel paths. The

first path aims to complete the query object by reducing

contextual bias, while the second path frees the original

image of occluders. Then, we composite the noisy images

from both paths into a single noisy image by creating an

intermediate query object mask. We explain each step below.

Swap background. We replace the area of Iin outside the

query object’s modal mask Mmodal with a clean background,

reminiscent of the gray backdrops typically used in product

photography. This creates a synthetically composited image,

denoted as Isyn. Next, in the Denoise step, we apply diffu-

sion inpainting using Isyn and Mocc up to the kth diffusion

timestep. This can be mathematically expressed as:

Iksyn amodal = F0→k(Isyn,Mocc, P ) (4)

Create object-removed background image. We produce

a clean background image of the original context, devoid of

both query and occluder objects. To achieve this, we first

remove them from Iin using the combined area of Mmodal+
Mocc via a removal inpainter R, as described in [47]. The

output from R is then subjected to noise addition using

AddNoise(·, k) up to the kth timestep. This results in Ikbg,

which is the noise-infused clean background image after kth

timesteps. This can be mathematically expressed as:

Ikbg = AddNoise(R(Iin,Mmodal +Mocc), k) (5)

Segment query object in noisy image. After deriving

Iksyn amodal and Ikbg, each characterized by the kth noise

level, we aim to insert the query object from Iksyn amodal

into the object-removed background image. Central to this

step is the determination of an appropriate intermediate query

object mask from the noisy image Iksyn amodal.

Our insight is that segmenting the query object from the

noisy image Iksyn amodal is difficult, but we can use the latent

information from the UNet decoder to find clusters [30] for

query object mask proposals. Our clustering approach is

similar to [2, 22]. We experimentally determined the best

lth decoder layer and kth timestep to extract features. Each

cluster is associated with different segments of the image.

We compute pixel overlap of each cluster with the modal

mask Mmodal to select the segment that best aligns with the

query object in the noisy image Iksyn amodal. This segment

is the amodal object mask Mk
amodal at the kth timestep.

Composite. We use Mk
amodal to composite the query ob-

ject back onto the object-removed background image Ikbg,

instead of the original image, to ensure that the completed

query object is contextually consistent. We create this com-

posited image Ikamodal as follows:

Ikamodal = Iksyn amodal »Mk
amodal

+ Ikbg » (1−Mk
amodal)

Finally, we continue the diffusion process for N −k steps

using the composited image Ikamodal and the occluder mask

Mocc. We denote this remaining diffusion process as Fk→N

and obtain the final image Iamodal. This is expressed as:

Iamodal = Fk→N (Ikamodal,Mocc, P ) (6)

3.6. Counterfactual Completion Curation System

After generating a set of amodal completion images, how

can we decide if the objects are successfully completed?

Inspired by [35], we propose a ‘Counterfactual Completion

Curation System’ that can reduce the burden of human la-

beling by filtering unsuccessful completions without model

training. The intuition behind our system is that outpainting

incomplete objects is more likely to generate more pixels

belonging to missing object parts than outpainting complete

objects. Our initial curation system relies on a training-free

rule to classify generated objects as complete or incomplete.

Mask extends 10.8% ³ complete Mask extends 36.6% ³ incomplete

�!"#$!% �!"#$!%
&

�!"#$!% �!"#$!%
&

Figure 5. Our counterfactual completion curation system uses a

training-free rule to determine complete and incomplete objects.

We outpaint the object everywhere except the image corners, and

then compare amodal masks from Iamodal and I ′amodal. We exper-

imentally determined a mask extension threshold of 20%.

Figure 5 shows complete and incomplete objects deter-

mined by our rule, which has a generation step and a decision

step. In the generation step, we outpaint the object in Iamodal

using an input mask Min consisting of everywhere except the

amodal mask Mamodal and the image corners, which guides

the diffusion process towards a reasonable background. Then,

we trim the background in the new amodal completion im-

age I ′amodal to extract the query object and obtain a new

amodal mask M ′
amodal. In the decision step, we classify

objects using thresholds on two parameters: 1) the object’s

proximity to the image boundary, and 2) the extension of the

amodal mask area. To set the two thresholds, we use a small

validation set of 100 images.

4. Experiments

Our Progressive Occlusion-aware Completion pipeline and

Mixed Context Diffusion Sampling can successfully fill in

hidden object pixels in a variety of object categories and
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Original SSSD LaMa Inst-Inpaint Ours Original Naive Outpainting Ours w/o MC Ours

Figure 6. Left: Comparison of our method with prior works on natural images. Right: Comparison of our method, our method without Mixed

Context Diffusion Sampling (MC), and Naive Outpainting. Our method extends objects only where necessary unlike Naive Outpainting.

Additionally, our approach avoids generating co-occurring objects, unlike ours without MC and Naive Outpainting.

occlusion cases in natural images. Notably, it can complete

objects inside and outside the image boundary, overcome

difficult co-occurrence bias, and handle high occlusion rates

using the pre-trained diffusion model’s good image prior.

4.1. Comparisons with Previous Methods

Prior Works. We compare with three prior works: a GAN-

based amodal completion method Self-Supervised Scene De-

occlusion (SSSD) [60], a GAN-based inpainting method

Large Mask Inpainting (LaMa) [47], and a diffusion-based

object removal method Inst-Inpaint [56]. For fair compari-

son, we focus on completing objects within the image bound-

ary because they do not extend the boundary. We use LaMa

to fill in occluders and Inst-Inpaint to remove occluders.

Datasets. One main challenge of evaluating our amodal

completion task is that there are no natural image datasets

with ground truth amodal appearance completions for com-

mon object categories. In addition, existing amodal datasets

with ground truth amodal masks do not consider the diversity

of possible object completions. To bypass these limitations,

we create a dataset of 3,000 pseudo-occluded common ob-

jects and their completed counterparts using natural images

from COCO [26] and Open Images [19, 20]. As shown in

Figure 7, we simulate occlusion by overlaying a complete

object on the image of another complete object. Our dataset

contains diverse, challenging scenarios for amodal comple-

tion, covering at least 55 object categories with significant

occlusion rates: 1,500 easy cases with 20-50% occlusion and

1,500 hard cases with 50-80% occlusion. In Figure 6, we

present qualitative results on natural images.

Metrics. We assess the quality of the generated amodal

completion images with the ground truth complete object

images at three image similarity levels. We use CLIP [40]

for high-level, DreamSim [12] for mid-level, and LPIPS [64]

for low-level. For CLIP, we compute the cosine similarity

between image embeddings of the generated amodal com-

Pseudo-

occlusion

Complete 

Object Occluder

Figure 7. Left: We place complete objects on each other to create

pseudo-occluded objects. Here, the bus is 66.2% occluded by the

donut. Right: We can evaluate whether A′ (formerly occluded) suc-

cessfully completes the query object A by using pseudo-occluded

objects and off-the-shelf metrics. But, these metrics do not assess

whether A′
∪A fits into the background B. To this end, we conduct

a user preference study to evaluate the generated objects in context.

pletion and text embeddings of the query object category.

For DreamSim and LPIPS, we calculate the perceptual dis-

tance between generated and ground truth complete object

image. We segment and place the completed objects on a

black background to focus on the query object appearance.

Furthermore, we conduct a user preference study to evaluate

how well the generated object fits into its original context.

The right side of Figure 7 provides an example of the various

aspects of the amodal completion image to evaluate.

Quantitative Results. In Table 1, we report the mean im-

age similarity scores across all pseudo-occluded object im-

ages. Our method generally performs better than prior works

for both easy cases and hard cases. Interestingly, LaMa [47]

obtains similar scores to our method even though it is not in-

tended for amodal completion. We suspect that LaMa seems

to perform well because it often generates similarly colored

pixels as the query object within the inpainted region, and

a visual assessment of LaMa’s output verifies that it creates

blurry object appearances and boundaries. For this reason,

we conduct a user preference study and present qualitative

results to further measure the amodal completion quality

between our method and prior works.

User Preference Study. We conduct a user preference
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Method
Easy Cases Hard Cases

User Preference
CLIP ↑ DreamSim ³ LPIPS ³ CLIP ↑ DreamSim ³ LPIPS ³

SSSD [60] 0.280 / 0.263 0.186 / 0.216 0.096 / 0.142 0.267 / 0.263 0.315 / 0.334 0.166 / 0.225 1.8%

LaMa [47] 0.288 / 0.265 0.098 / 0.124 0.054 / 0.091 0.279 / 0.268 0.236 / 0.292 0.130 / 0.205 7.3%

Inst-Inpaint [56] 0.264 / 0.257 0.325 / 0.304 0.185 / 0.195 0.252 / 0.254 0.451 / 0.446 0.263 / 0.283 0.0%

Ours 0.290 / 0.266 0.096 / 0.106 0.054 / 0.078 0.290 / 0.267 0.184 / 0.185 0.110 / 0.141 90.9%

Table 1. Our method overall performs better than prior works in terms of CLIP (high-level), DreamSim (mid-level), and LPIPS (low-level)

image similarity. We use 2,500 objects from COCO and 500 objects from Open Images, and scores are formatted as COCO / Open Images.

We consider easy cases where the object has 20-50% occlusion and hard cases with 50-80% occlusion. Additionally, we observe that users

highly prefer the generated amodal completions using our method across 55 easy cases and 55 hard cases from COCO. The user preference

percentages are coincidentally the same for easy and hard cases.

study to more accurately assess the perceptual image quality

of the generated amodal completions. We randomly select

55 easy cases and 55 hard cases of pseudo-occlusion images

and solicit feedback from at least three Amazon Mechanical

Turk (MTurk) workers. We show the pseudo-occluded object

image and the generated object images from each method

side by side, and we ask each worker to vote on the generated

object that looks most complete and realistic. As shown in

Table 1, the user preferences demonstrate that our method

significantly outperforms prior works in the visual quality of

amodal completion images.

Qualitative Results. Figure 6 visually compares our

method and prior works on occluded objects in natural

images. We notice that SSSD [60] often generates visual

artifacts and incomplete objects, LaMa [47] produces ill-

defined object boundaries and unrealistic appearances, and

Inst-Inpaint [56] can remove objects but struggles to com-

plete them. Our method can complete highly occluded ob-

jects with realistic and contextually consistent appearances.

Implementation. We demonstrate our method using the

publicly available Stable Diffusion v2 inpainting model [42].

All experiments use a 24GB Nvidia Titan RTX GPU, and

our method does not involve any training or fine-tuning.

4.2. Ablation Studies

We ablate our amodal completion method to demonstrate the

effectiveness of our Progressive Occlusion-aware Comple-

tion pipeline and Mixed Context Diffusion Sampling. We

randomly select 100 occluded objects from natural images

and generate their completed versions using our method and

Naive Outpainting. We consider 50 hard cases where the

occluder is the top co-occurring semantic category for the

query object, and 50 easy cases where the occluder is not.

We conduct a user study to find the number of successful

amodal completions for each method by soliciting feedback

from at least three MTurk workers. In addition, we perform

a user preference study and ask at least six MTurk workers

to vote on the method that generates the most complete and

realistic objects. In Table 2, our method outperforms Naive

Outpainting in successful completions and user preference,

even without Mixed Context Diffusion Sampling. On hard

cases, we observe that using Mixed Context Diffusion Sam-

pling significantly aids successful completions by +18%.

Method
Easy Cases Hard Cases

Successes User Preference Successes User Preference

Naive Outpainting 66% 18% 40% 18%

Ours w/o MC 90% 36% 72% 28%

Ours 88% 48% 90% 54%

Table 2. Ablation study of amodal completion successes and user

preference. We use 50 easy cases and 50 hard cases, where the

occluder is the top co-occurring object category.

Figure 6 visually compares each method on natural im-

ages with challenging co-occurrence or highly occluded ob-

jects. Our method prevents co-occurring objects and inpaints

only where necessary, compared to ours without Mixed Con-

text Diffusion Sampling and Naive Outpainting.

4.2.1 Mixed Context Diffusion Sampling

We experiment with the clean image to swap background,

the UNet layer to cluster features and segment the query

object in the noisy image, and the timestep to composite the

query object on the object-removed background image.

Clean image to swap background. We test the effect of

five clean backgrounds to swap with the original image back-

ground on a small set of 55 images. On the left of Figure 8,

using a gray background led to a +20% increase in successful

amodal completions, while using a forest or sky background

led to a noticeable drop in completion performance (-16%

and -9%) compared to using the original context.
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Figure 8. Left: Using a gray background improves completion

by +20% compared to the original background. Right: Swapping

contexts at DDIM timestep 20 out of 50 leads to more successful

completions on difficult co-occurrence cases.

UNet layer to segment object in noisy image. To cluster

features and create the intermediate amodal mask Mk
amodal,

we examine the effect of using different UNet layers in Fig-

ure 9. We observe that features from the third UNet decoder

layer best capture object geometry and low-level visual fea-

tures for Mixed Context Diffusion Sampling, as described in

[32, 48]. Early encoder layers sometimes cluster the inpaint-
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Figure 9. We analyze how features from different UNet encoder

and decoder layers affect the clusters, intermediate amodal mask

Mk
amodal, and final amodal completion image Iamodal. Here, we

show a subset of the UNet layers, and El and Dl refer to the l-

th layer of the encoder and decoder, where l ∈ [1, 2, 3, 4]. The

leftmost column shows the input image Iin for the current iteration

of our pipeline, the synthetically overlaid input image Isyn, and

the intermediate inpainted object Iksyn amodal. We discover that

features from D3 generally produce good clusters to create a well-

defined Mk
amodal. Features from other layers often cannot fully

capture thin structures, such as the zebra’s legs in this example.

ing mask region, and the last decoder layer is often noisy.

The second decoder layer sometimes captures the general

object shape but is less fine-grained. Despite poor clusters

and intermediate amodal mask, the final amodal completion

of the query object is not always negatively impacted.

Timestep to composite. On the right of Figure 8, we an-

alyze the timestep to swap image backgrounds on 45 images

where our method without Mixed Context Diffusion Sam-

pling generates a co-occurring occluder or unwanted visual

artifacts. We record the earliest timestep that returns a good

intermediate amodal mask Mk
amodal and final amodal com-

pletion image Iamodal. We observe the peak at timestep 20,

indicating that object shape may appear relatively early on

during the denoising process. Nonetheless, the ideal timestep

for compositing the query object onto the object-removed

background image often depends on the occlusion level.

4.3. Counterfactual Completion Curation System

Our curation system involves a training-free rule that clas-

sifies generated objects as complete or incomplete. On the

validation set of 100 images, our rule reaches a mean accu-

racy of 0.73, precision of 0.73, and recall of 0.71 from 3

different trials. We evaluate our rule by measuring accuracy,

precision, and recall on a test set of 50 complete objects

and 50 incomplete objects. As shown in Table 3, our rule

can achieve an accuracy of 0.70, despite not being specially

trained on any datasets. There is room for improvement,

which can be mitigated by training models on a curated

dataset of complete and incomplete objects.

Furthermore, we compare the performance of our rule

with that of humans. We ask three humans to independently

classify the 100 test images, and we compute the human con-

sensus using a simple majority vote for each object. Human

consensus results in an accuracy of 83%. This indicates the

subjective nature of this binary classification task and further

shows the need for an accurate and reliable curation system.

Accuracy Precision Recall

Human Consensus 0.83 0.75 0.99

Our Rule 0.70 0.68 0.68

Random Chance 0.50 0.50 0.50

Table 3. Comparison of our counterfactual rule with humans on

classifying 100 test images as complete or incomplete. We compare

the mean scores of our rule from three different trials with the

human consensus as a simple majority vote from three humans.

5. Discussion

We introduced a new approach for amodal completion us-

ing diffusion inpainting. Our method progressively inpaints

obscured regions by analyzing occlusion for a query object.

Unlike conventional two-step approaches that predict the

amodal mask and then complete the amodal appearance,

ours is the first to predict the appearance directly. We de-

ploy mixed context diffusion sampling to reduce the inpaint-

ing of unintended co-occurring objects. We also establish a

counterfactual-based curation system for measuring object

completeness. With our method, we can build dense corre-

spondence [61] and 3D novel view synthesis [28] on highly

occluded visual objects, as illustrated in Figure 10.

Enclosed by Occluder

Ours Zero-1-to-3Source Target

Shadows Hard Co-occurrence

Figure 10. Top: Two applications of our amodal completion method

are dense correspondence [61] and novel view synthesis [28]. Bot-

tom: One failure case occurs when the object is enclosed by the

occluder, leading to overextension. Additionally, our method some-

times struggles to complete objects due to shadows or the object’s

pose, such as the person riding a horse.

Limitations. Our method, while effective, encounters

limitations with everyday occlusions, as shown in Figure 10.

Challenges arise when a small query object is obscured by

a larger occluder, potentially leading to its overextension.

Additionally, subtle shadows on the query object can inad-

vertently introduce compatible occluders. Moreover, certain

human poses strongly suggest interaction with other objects,

occasionally resulting in the generation of unintended oc-

cluders. Despite these challenges, we believe our method

establishes a solid new benchmark in amodal completion.

Addressing these complex scenarios remains an exciting

avenue for future work.
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