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Abstract

An increasingly common approach for creating photo-
realistic digital avatars is through the use of volumetric neu-
ral fields. The original neural radiance field (NeRF) allowed
for impressive novel view synthesis of static heads when
trained on a set of multi-view images, and follow up methods
showed that these neural representations can be extended to
dynamic avatars. Recently, new variants also surpassed the
usual drawback of baked-in illumination in neural represen-
tations, showing that static neural avatars can be relit in any
environment. In this work we simultaneously tackle both the
motion and illumination problem, proposing a new method
for relightable and animatable neural heads. Our method
builds on a proven dynamic avatar approach based on a
mixture of volumetric primitives, combined with a recently-
proposed lightweight hardware setup for relightable neural
fields, and includes a novel architecture that allows relight-
ing dynamic neural avatars performing unseen expressions
in any environment, even with nearfield illumination and
viewpoints.

1. Introduction

Creating realistic digital avatars of real people has many
applications, for example in video games, films, VR experi-
ences and telepresence. Original methods involved scanning
and tracking geometry and appearance properties from one
or more cameras and then applying a traditional graphics
rendering pipeline to generate novel images. The challenge
lies in the fact that avatars consist of several complex com-
ponents like skin, eyes, teeth, and hair, each with complex
material properties that are difficult to acquire and render
realistically. As such, there has been a recent push towards
neural representations of avatars, which forego triangles and
texture maps and bypass traditional ray-tracers in exchange
for neural rendering, where the avatar is represented by a
neural network that can be queried at render-time, with equal
handling of skin, eyes, teeth and hair in a single model.

The original Neural Radiance Field (NeRF) [29] represen-
tation laid the ground work for creating neural avatars that
could be re-rendered photo-realistically from novel view-
points. NeRFs are trained on large collections of images and
represent a static scene as an MLP that is queried multiple
times during volume rendering. Since the advent of NeRFs,
several extended representations have emerged, which aim
to increase the rendering speed [30], create NeRF avatars
from smart phones [31], morph between neural avatars [47],
or create generative neural heads [4].

An important component for the adoption of neural
avatars is the ability to represent motion, which is not pos-
sible with the original neural field approaches. To account
for this, researchers have devised extended neural represen-
tations like Neural Volumes [24], NeRFBlendShapes [9],
NeRSemble [19] and a Mixture of Volumetric Primitives
(MVP) [25], which aim to learn dynamic representations of
human heads from video data.

A second important aspect of digital avatars is the abil-
ity to relight the head in any novel illumination. As with
addressing the motion requirement, dedicated architectures
have been proposed to address the relightability requirement,
such as NeLFs [43], NRTFs [26] and ReNeRF [50], which
can reliably relight neural representations of static scenes.

In order to have the most flexible and artist-friendly neural
head avatars they should be both animatable and relightable.
In this work we propose a new architecture for neural head
avatars that can be relit to match any distant environment
map or nearfield light sources, while at the same time provid-
ing full dynamic control over the facial shape. This allows
both the playback of captured performances as well as the
generation of novel artistically-created performances (e.g.
driven by rig controls, retargeting or input video tracking), all
with full control over the scene illumination and viewpoint.

Our approach is to build on a dynamic avatar representa-
tion that uses a Mixture of Volumetric Primitives (MVP) [25],
which achieves efficient rendering of animatable neural
heads with high visual quality. The idea of MVP is to de-
code the geometry and appearance of a person-specific facial
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expression into a collection of geometric primitives contain-
ing color and opacity information, which can be sampled
during traditional volumetric rendering. In our work, we
propose to condition the appearance branch not just on the
view direction but also on the scene lighting, in order to
achieve controllable appearance changes based on different
lighting conditions at run time. To achieve this we propose
to train the model on captured dynamic performances under
one-light-at-a-time (OLAT) illumination, which simplifies
the lighting representation to a single light direction vector
per frame. Importantly, we propose to compute per-primitive
local light and view directions during the conditioning of
the appearance branch, which allows us to represent both
nearfield lights and distant environment map illumination,
as well as nearfield viewpoints with varying focal length.
We show that our method achieves high quality animatable
and relightable neural avatars without the need for train-
ing data from a dense light stage, but instead using a less
expensive sparse array of LED bars often used in photogram-
metry setups. Once trained, the result is an artist-friendly
neural representation of a complete dynamic head that can
be controlled via traditional mesh deformation and scene
illumination like in the familiar graphics pipeline.

2. Related Work

Realistic digital double creation requires accurate model-
ing of the face geometry, appearance and motion. In this
section, we focus our discussion on image-based relighting,
mesh-based representations and more recent work on neural
volumetric avatars.

Image-based relighting techniques exploit the linearity
of light transport to synthesize the scene under novel illu-
mination conditions as a linear combination of a set of one-
light-at-a-time (OLAT) images. Debevec et al. [6] were the
first to use a light stage to acquire a dense reflectance field
of a human face. Sun et al. [41] proposed a neural network
trained on light stage OLAT data that takes as input a single
portrait image and directly predicts a relit image given an
environment map. Later work [42] has also explored ways to
supersample the fixed basis used during capture to allow con-
tinuous high frequency relighting. These methods can only
be applied to a static expression as the subject has to stay
still during the capturing of OLAT images, and relighting is
limited to the captured view point.

Compared to image-based techniques, mesh-based rep-
resentations can handle novel views by design and offer
explicit control of motion if temporally consistent tracking is
provided [57]. To enable photorealistic rendering of digital
humans, reflectance acquisition is also important in addition
to geometry. Traditional facial appearance capture systems
[11, 12, 27, 36] obtain parameters of predefined BRDFs as
texture maps via inverse rendering, but are often limited to
the skin regions. In recent years, mesh-based [16, 35, 44]

or point-based [1] neural rendering approaches have gained
popularity because they do not assume simplified reflectance
models and can deal with imperfect geometry. Zhang et al.
[53] proposed to model non-diffuse and global illumination
as residuals added to a physically-based diffuse base render-
ing in texture space. But they have shown free viewpoint
relighting of only a static expression. Meka et al. [28] used
spherical gradient illumination to allow dynamic capture.
However, their method can only be applied to performance
playback due to the lack of correspondence between frames.
Bi et al. [2] proposed a deep relightable appearance model
(DRAM) as a VAE that takes as input a track mesh and
an average texture and outputs the mesh vertices and view-
dependent OLAT textures. All of these methods share the
disadvantages of mesh-based representations, such as thin
structures (e.g., hair), semi-transparent shiny materials (e.g.,
eyes), and large occlusions (e.g., teeth and tongues), which
can be difficult to be tracked, reconstructed, or rendered.

More recently, there has been a rise of interest in volumet-
ric representations since Neural Radiance Fields (NeRFs)
[29, 39] were proposed. NeRFs represent the scene using
a coordinate-based network that outputs color and density
for each point observed from any view direction, trained
on multi-view image input along with camera parameters.
However, the original NeRFs are limited to static scenes un-
der a fixed lighting condition. Therefore, motions or scene
lighting cannot be modeled or controlled.

Followup work has enabled NeRFs to perform relighting
[3, 26, 43, 45, 50, 52, 54]. ReNeRFs [50] take the idea of
image-based relighting and extend NeRFs with an OLAT
MLP and a spherical codebook to allow smooth lighting
interpolation without a dense light stage. However, ReNeRFs
can only handle static scenes.

Many methods have extended NeRFs to dynamic scenes.
Some commonly used schemes are: (1) use a deformation
field for motion and model appearance in a canonical space
[22, 31, 33, 40, 46]; (2) learn a time-conditioned radiance
field [21, 32]; (3) learn a radiance field for each time step
often with spatial decomposition [7, 15, 24, 37, 38]. While
being generic to model any dynamic scenes, these methods
are restricted to performance playback, or only with limited
motion manipulation capability without semantic control.
Various methods [8, 10, 56] have also explored combining
3D morphable models, e.g., FLAME [20] with NeRFs, or
include skeletal animations [13, 48]. However, these meth-
ods have only limited fidelity for re-animation and do not
support relighting.

Different from explicit mesh representations or fully vol-
umetric representations like NeRFs, the Mixture of Volumet-
ric Primitives (MVP) representation [25] is a hybrid repre-
sentation that inherits the strengths of both. MVP models
the scene as a collection of geometric primitives with spa-
tially varying color and opacity driven by a coarse guide
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Figure 1. Overview of our pipeline, based on the Mixture of Volumetric Primitives (MVP) architecture [25]. A global expression code z
obtained from a mesh encoder is fed into appearance and geometry decoder branches. The convolutional appearance branch predicts color
and opacity of N2 primitives with a grid resolution of M3 each, which are placed in the scene as 3D primitives using the geometry branch
(unchanged from Lombardi et al. [25]). To support relighting and especially near-field lighting, we augment the appearance branch and
introduce per-primitive local view and light directions vk, lk that are concatenated at every layer of the appearance branch network.

mesh. Follow-up work has extended MVP to articulated
human bodies [34]. Iwase et al. [14] combined MVP and
the student-teacher relighting framework in DRAM [2] and
demonstrated the result on articulated hand models. Con-
current with our work, TRAvatar [51] extends MVP with a
linear lighting branch designed to explicitly follow the linear
nature of lighting. However, this method assumes a fixed
basis, which often needs to be very dense for high fidelity
relighting, and cannot interpolate/extrapolate novel lighting
directions or model nearfield effects. Our work addresses
all of these shortcomings and does not require an expensive
light stage.

3. Relightable and Animatable Neural Heads

We now describe our method to create relightable and animat-
able neural heads. Our approach is to start with the baseline
animatable head model of Lombardi et al. [25], which uses
a Mixture of Volumetric Primitives (MVP) to describe a
person-specific deformable neural head model, and extend
the architecture and training data to allow for relighting. An
overview of our method is given in Fig. 1, and the details
are described in the following sub-sections. We first pro-
vide a brief overview of MVP for background information
(Section 3.1), and then describe our extensions starting with
the data requirements (Section 3.2), the main architecture
(Section 3.3), and implementation details (Section 3.4).

3.1. Mixture of Volumetric Primitives

MVP is a state-of-the-art neural representation for human
heads [25]. The key idea is that a collection of simple ge-
ometric primitives can be used collectively to render the
complex geometry of a human face with high fidelity. The
inputs to MVP include a person-specific latent expression

vector z, combined with the desired view vector v for ren-
dering. The output is a collection of 3D primitives {Vk},
which cover the occupied regions of the scene; each prim-
itive containing volumetric RGB↵ information that can be
used in traditional volumetric rendering. Formally,

{Vk} = MVP(z,v), (1)

where each of the N
2 primitives is defined by

Vk = (tk,Rk, sk,Ck). (2)

Here, the primitive geometry is defined by a translation
tk 2 R3, a rotation Rk 2 SO(3), and a non-uniform scale
sk 2 R3. The appearance is defined by a dense voxel grid of
color information Ck 2 R4⇥Mx⇥My⇥Mz , which stores the
RGB↵ value per voxel (in our implementation, N2 = 16384
and Mx = My = Mz = M = 8).

The MVP decoder consists of a geometry branch that
depends only on z and an appearance branch that depends
on both z and v. The primitives are organized in a 2D grid
of size N ⇥ N and are associated to positions on a guide
mesh through a UV parametrization. The guide mesh is
predicted by the geometry branch as a means to initialize the
per-primitive transformations, which are further refined in
the geometry branch. The convolutional appearance branch
predicts Ck directly in the UV-space of the mesh. We refer
to the original formulation [25] for more details. In our work,
we use the MVP geometry branch directly, but we extend
the appearance branch to provide the ability to relight the
dynamic neural head, as described in Section 3.3.

3.2. Data Acquisition and Preprocessing

Before describing our architecture, we first describe im-
portant differences in the training data as compared to the
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original MVP formulation, which was trained on multi-view
video sequences of a performing actor, observed by ⇡100
different cameras under constant full-on illumination.

Image Data. Our model is also actor-specific, requiring
multi-view video data of a performing subject. However, as
we aim to relight the performances, we require a diverse set
of lighting conditions in the dataset. So instead of constant il-
lumination we capture our subject under a time-varying light
pattern consisting of both one-light-at-a-time (OLAT) frames
and full-on illumination frames. In contrast to OLAT acqui-
sition methods that require a dense light stage [6, 41, 42, 55],
we use the camera and light setup of ReNeRF [50], which
showed impressive relighting of static neural heads with far
less expensive hardware. The setup consists of only 10 cam-
eras and 32 individually-controllable LED light bars placed
in the frontal hemisphere of the capture volume with cali-
brated 3D positions relative to the cameras [49]. We propose
to capture dynamic performances while flashing a dedicated
lighting sequence consisting of one illuminated light bar per
frame (OLAT frames). We also intermix a full-on shot with
all light bars illuminated once every 3 frames to help with
mesh tracking (as described below). So the lighting sequence
over time is F,O1, O2, F,O3, O4, F, ..., F,O31, O32, where
F corresponds to a full-on frame and Oi corresponds to the
i-th OLAT bar. The pattern is repeated indefinitely at 24
frames per second. Importantly, we choose an OLAT order-
ing such that neighboring OLAT frames are as dissimilar as
possible (e.g. an OLAT from the left or top followed by an
OLAT from the right or bottom, respectively). The motiva-
tion is that neighboring frames contain very similar facial
expressions and so we maximize data efficiency if lighting
conditions are as different as possible from one frame to
the next. We do not impose any particular facial expression
sequence, but in practice we obtained good results by captur-
ing two different facial muscle workouts followed by three
scripted lines of dialog and one free dialog performance. In
total, we capture on average about 2700 images per camera
for a single subject. A short clip from one subject is illus-
trated in Fig. 2, which shows a partial sequence of OLAT
and full-on images from one frontal camera.

Mesh Tracking. In addition to the image data, we require
a representation of the per-frame facial expressions for train-
ing. To this end, we apply the common practice of pre-
computing a tracked 3D mesh sequence corresponding to
our input imagery. We employ a recent landmark-based 3D
face tracking method [5], which optimizes for the parame-
ters of an actor-specific local blendshape model to match
detected 2D landmarks in all camera views. We build the
local blendshape model from a small set of 3D face scans
in a pre-process. Tracking is performed only on the full-on
illumination frames, and then the model parameters are in-

Figure 2. An overview of our training data, which includes dynamic
performances illuminated by interleaved OLAT and full-on lighting
conditions. We also obtain per-frame 3D geometry for the face as a
representation of the expression.

terpolated linearly across the OLAT frames. The parameters
include both the expression blendweights and the head pose.
As we wish to train our network in a stabilized space with
respect to the skull position, we use only the expression pa-
rameters to construct the face meshes and we use the small
per-frame head pose transformations to inversely offset the
per-frame camera positions. The tracked mesh geometry
corresponding to a small input sequence is shown alongside
the input images in Fig. 2.

To summarize the dataset, the ultimate training data is
approximately 1800 frames per capture subject on average
(after removing the full-on frames), each frame containing:
• 10 multi-view images from calibrated camera positions,
• one 3D light position corresponding to the center of the

OLAT bar illuminating that frame,
• and a tracked 3D face mesh.

3.3. Relightable MVP

Our new architecture for creating animatable and relightable
neural heads can be considered as a relightable version of
MVP [25]. As shown in Fig. 1, there are three main trainable
components (shown in gray): a mesh encoder network to
project the input facial expression mesh to a latent global ex-
pression parameter z, and parallel geometry and appearance
branches similar to MVP as described above. A small 1-layer
MLP designed to prepare z for the downstream branches is
also learned. It maps the 256-dimensional vector z to a
16384-dimensional vector that is then reshaped to an 8⇥ 8
feature map with 256 channels and sent to the convolutional
geometry and appearance branches. For the geometry branch
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we use exactly the MVP architecture, but we make important
changes to the appearance branch to support relighting. The
mesh encoder and the illumination-modulated appearance
branches are described in the following.

Mesh Encoder. Similar to MVP, we require a latent ex-
pression vector z to drive our neural head decoder. When
tracked geometry is available, the original MVP formula-
tion used the encoder architecture of a Deep Appearance
Model [23], which takes the tracked geometry and a color
texture as input. In contrast to MVP, however, we do not
bake appearance information into z and instead drive our
model purely from expressions, in the form of tracked ge-
ometry alone. This will allow us to artistically control the
neural head at inference time with novel unseen expressions.
We therefore construct our mesh encoder from a modified
Deep Appearance Model encoder, specifically omitting the
texture branch. Our encoder is trained end-to-end along with
the geometry and appearance decoders.

Illumination-Modulated Appearance. The most signifi-
cant contribution of our work is the proposed illumination-
modulated appearance branch. Rather than conditioning
the appearance only on the view vector as in MVP, we ad-
ditionally consider the per-frame OLAT lighting condition
during training. Notably, we compute per-primitive local
light directions by first evaluating the geometry branch to
get the world-space transformations for each primitive, and
then computing the grid of local light directions lk as the
difference between the 3D OLAT light position polat and
the center of each transformed primitive. Specifically,

lk = polat �Rk · tk. (3)

Conditioning the appearance branch on per-primitive light
directions rather than a single global distant light allows our
model to support relighting with nearfield illumination, as
we demonstrate in Section 4. Analogously, the camera view
for rendering is also at a discrete 3D location in the scene,
which we denote as pcam, and so we can similarly compute
per-primitive local view directions vk rather than a single
global view vector v for conditioning the appearance branch.
Specifically,

vk = pcam �Rk · tk. (4)

Just as local light directions enable rendering with
nearfield illumination, local view directions enable render-
ing with nearfield camera views, which we demonstrate by
synthesizing a dolly-zoom effect in Section 4. Both nearfield
illumination and nearfield viewpoints are not possible with
the original MVP architecture.

Our proposed appearance branch generates the voxel
color grids as

{Ck} = RelMVP(z, {vk}, {lk}), (5)

where we denote RelMVP() as our relightable version of the
MVP appearance branch.

The relightable appearance branch is implemented as a
convolutional architecture, which takes the reshaped expres-
sion vector as input and gradually produces the primitives’
RGB↵ tiles in UV space, modulated by the local view and
light directions. The local view and light directions per prim-
itive are combined and stored as a single 6-channel image
in UV space at the full network output resolution (view and
light vectors are copied for every voxel within a primitive).
We denote I 2 R6⇥(N ·M)⇥(N ·M) as the concatenated set of
{vk} and {lk}. At each convolutional level, I is bilinearly
downsampled and concatenated to the intermediate feature
layers before proceeding to the next layer. This downsam-
pling operation has the effect of averaging local view and
light directions across neighboring primitives, which is ac-
ceptable since neighboring primitives are located close to
each other in 3D space. At early layers, the averaged view
and light directions resemble global view and light vectors,
but then at deeper layers the per-primitive view and light
directions can specialize the appearance of each primitive
individually, allowing us to achieve nearfield lighting and
viewpoints. Note that the local view and light conditioning is
only applied to the RGB component of the output, as opacity
↵ is independent of illumination and view direction.

The result is a set of primitive volumes {Ck} that are
transformed by the output of the geometry branch and ren-
dered with a differentiable raytracer [25].

3.4. Implementation Details

We employ a fully-convolutional network for the appearance
branch RelMVP(). The input is the local light and view
vectors, reshaped to a feature map I 2 R6⇥(N ·M)⇥(N ·M), as
well as the expression code z transformed and reshaped to
a feature map z0 2 R256⇥8⇥8 (channels ⇥ height ⇥ width).
The appearance branch then consists of seven transpose-
convolution layers with a kernel size of 4, stride 2 and
padding 1, which increase the feature map resolution from
8⇥ 8 by a factor of two at every step until the final resolu-
tion of 1024 ⇥ 1024 (i.e. N ·M = 1024) is reached. The
inputs to the convolutional layers are the previous feature
maps, starting with z0 and the six channels from I bilinearly
downsampled to match the current spatial resolution. The
output features have channels 256, 128, 128, 64, 64, 32, 48
where the final 48 channels are interpreted as rgb⇥Mz .

Since opacity ↵ does not depend on the local view or light
direction, we follow the pracitce of the original MVP archi-
tecture [25] and estimate opacity in a separate branch. This
branch is identical to the above architecture, with the differ-
ence of predicting Mz output channels and not depending
on I. We apply ReLU activation on the RGB output and all
intermediate layers are followed by LeakyReLU activations.
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Our neural rendering pipeline is trained end-to-end on
multi-view OLAT sequences, see Section 3.2. We drop
the background model that estimates foreground and back-
ground objects in the original MVP architecture since our
data is recorded in front of a pure black backdrop. Instead we
add a matting loss to the MVP loss functions that compares
a target matting mask M to the accumulated density per ray
↵̃(⇥), which avoids floating primitives at the background,

Lmat := MAE(M, ↵̃(⇥)). (6)

We extract the matting masks M from the input images
using MODNet [17]. The final loss function is then

L :=�phoLpho + �geoLgeo + �volLvol

+�kldLkld + �matLmat
(7)

where all loss terms other than Lmat are the same as in the
MVP implementation, and the weights are defined as

�pho = 1.0, �geo = 10.0, �vol = 0.01,

�kld = 0.001, �mat = 0.1.
(8)

We employ ADAM [18] as the optimizer with a learning rate
of lr = 0.0001. For training and evaluation, we downsample
the input images to a resolution of 1024⇥ 768 to reduce the
training time. Each subject is trained for 200,000 iterations
with a batch size of 12, taking around two days to train on
an A6000 GPU.

4. Experiments

In this section we perform several experiments to validate
our method. We start with a number of qualitative results,
including relighting our dynamic neural heads with novel
viewpoints, expressions and illumination conditions (Sec-
tion 4.1). We then perform a quantitative evaluation to show
the performance of our model on held-out validation data,
including a comparison to related work (Section 4.2). For
all results, we recommend to also view the accompanying
supplemental video, in order to see the animations in motion.

4.1. Qualitative Results

We begin by showing the ability of our model to re-render
our captured neural heads from novel viewpoints with artist-
controllable lighting and expressions. Fig. 3 depicts one of
our subjects in the studio capture environment, but relit with
novel point lights (top row) and novel interpolated expres-
sions (bottom row). All renders are generated from unseen
viewpoints outside of the training views.

In Fig. 4 we highlight the application of re-rendering
dynamic performances under arbitrary environment map
illumination. Here we also show the performances under
a turntable of novel viewpoints. Even though our training
data consisted only of OLAT lighting frames, we can sample

Figure 3. Novel view, light, and expressions: Our method allows
for artistically-generated renders under novel point lights (top) and
novel expressions (bottom), all rendered from novel viewpoints.

Figure 4. Novel environment maps: Since our method generalizes
to novel light directions, we can densely sample light directions
over the hemisphere to render performances under any environment
map. Three examples are shown, rendered from novel viewpoints.

multiple individual light directions from environment maps
and combine the rendered results into final high quality and
consistent renders.

We further push the capabilities of our model by rendering
several performances under a number of challenging light
conditions in Fig. 5. Here we use six different environment
maps from both indoor and outdoor scenes, during daytime
and night, and we render the dynamic neural heads of 3
subjects from a fixed camera view while rotating the envi-
ronment maps around the subjects. The two rows belonging
to the same subject show the same expression but rendered
with different lighting conditions, highlighting the versatility
of our method for relighting animated performances.

An important aspect of our architecture is that the light
and view directions are computed locally per primitive, al-
lowing nearfield lighting and viewpoint effects. We demon-
strate nearfield lighting in Fig. 6, which shows a static ex-
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Figure 5. Here we demonstrate the quality our method achieves on
further subjects: we can visualize performances under novel views
and arbitrary, temporally rotated environment maps that produce
complex lighting conditions.

pression of 2 captured subjects relit by a moving point light
source (and varying unseen viewpoints). In the top row of
each subject the point light is farther away from the subject
than the corresponding frame in the bottom row, where the
light is near to the face. Our method supports natural re-
lighting under these conditions. In a similar spirit, having
per-primitive local view directions allows us to synthesize
complex camera motions like a dolly-zoom effect, where the
camera pushes in close on a subject’s face while decreasing
the focal length of the lens (i.e. increasing the FOV). We
demonstrate this effect in Fig. 7, which shows a realistic
simulation of this commonly-used practical camera move.

The presented results show a non-exhaustive sample set
of applications that are enabled by our artist-friendly method
for relightable and animatable neural heads.

Figure 6. Near-field lighting: By specifying a per-primitive light
direction in the appearance branch, we can render both far-field
lights, as well as near-field lights.

Figure 7. Near-field view: By conditioning the appearance branch
also on per-primitive view directions, we can change the focal
length of the camera and realize effects like a dolly zoom.

4.2. Quantitative Evaluation

To evaluate our method quantitatively we trained a version
with some held-out data for validation. Specifically, we
constructed three validation sets: one with held-out OLAT
directions, one with held-out performances, and one com-
bined one that contains both held-out light directions and
performances. Our validation data consists of a variety of
frames from three different captured subjects.

As we evaluate our model’s performance, we simultane-
ously perform a comparison to related work. Unfortunately
there are very few existing methods for both relightable and
animatable neural avatars, in particular with code available
for testing. To conduct a comparison with a baseline method,
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Figure 8. Example frames of the quantitative comparison against
TRAvatar* on held-out data, see Section 4.2. The comparisons were
conducted on three subjects, called S1 to S3 from top to bottom.
The heatmaps to the right depict the per-pixel errors of our method
and TRAvatar* against the ground truth images.

we re-implemented the lighting branch of TRAvatar [51],
denoted by TRAvatar* below.

Table 1 shows the comparisons between our method and
TRAvatar* on the held-out data. Example frames from the
comparison with a heatmap visualizing the per-pixel errors
are shown in Fig. 8. Note that given a novel directional light,
TRAvatar can only evaluate it using barycentric coordinates
within their fixed basis used in training. Our method clearly
outperforms TRAvatar* in terms of both qualitative render
quality and quantitative analysis in all cases. Furthermore,
as mentioned earlier, TRAvatar* is unable to interpolate
novel lighting directions or model nearfield effects, which
our method can easily achieve.

Table 1. Quantitative evaluation of our method against TRAvatar*.
Results are shown for 3 subjects (see Fig. 8), evaluated for novel
light directions, novel performances, and both novel light directions
and performances. Our method consistently outperforms TRAvatar.

PSNR " MAE # SSIM # LPIPS #

no
ve

ll
ig

ht S
1 ours 32.19 2.88 0.899 0.278

TRAvatar* 29.68 4.03 0.870 0.326

S
2 ours 32.20 3.11 0.864 0.296

TRAvatar* 30.13 4.06 0.832 0.355

S
3 ours 33.73 2.65 0.873 0.343

TRAvatar* 32.37 3.24 0.854 0.390

no
ve

lp
er

f. S
1 ours 39.75 3.70 0.881 0.282

TRAvatar* 28.86 4.12 0.869 0.323

S
2 ours 29.52 4.09 0.835 0.300

TRAvatar* 28.88 4.46 0.829 0.350

S
3 ours 31.28 3.27 0.863 0.338

TRAvatar* 31.21 3.36 0.861 0.373

lig
ht

&
pe

rf
. S
1 ours 28.68 4.30 0.865 0.300

TRAvatar* 27.30 5.27 0.844 0.342

S
2 ours 29.11 4.34 0.826 0.316

TRAvatar* 28.13 4.94 0.812 0.366
S

3 ours 30.76 3.55 0.855 0.354

TRAvatar* 30.65 3.80 0.848 0.392

5. Conclusion

We present a novel architecture for relightable, animatable
neural avatars, building on top of the Mixture of Volumetric
Primitives architecture. Our architecture extends the ap-
pearance branch with per-primitive light and view directions,
allowing for nearfield lighting and viewpoint effects. The net-
works are trained end-to-end on OLAT sequences obtained
by flashing 32 LED bars during a dynamic performance of
a subject, captured with inexpensive hardware. Our model
is capable of novel-view and novel-light estimation and also
generalizes well to novel expressions and performances.

We note a few practical limitations of our method. So
far, we have focused primarily on the frontal part of the
head and do not recover a complete 360-degree neural
avatar. This can result in artifacts at the boundary (e.g.,
the hair and neck regions). That said, we do not believe
that our model is fundamentally restricted here, and our
results are only limited by the physical capture setup we
used. Further, during very fast motions, if motion-blur
were to occur in the training data then this will lead to
blurry reconstructions. We also found that extrapolation to
extreme facial expressions outside our training data was not
possible, but we note that our results were generated from an
order of magnitude fewer training frames than the original
MVP algorithm, and therefore simply adding additional
expression variation during training would help alleviate
this problem. Finally, as our input to the network is a mesh,
gaze changes and hair motions are currently not controllable.
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