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Abstract

Image Quality Assessment (IQA) constitutes a funda-
mental task within the field of computer vision, yet it re-
mains an unresolved challenge, owing to the intricate dis-
tortion conditions, diverse image contents, and limited
availability of data. Recently, the community has wit-
nessed the emergence of numerous large-scale pretrained
foundation models. However, it remains an open problem
whether the scaling law in high-level tasks is also appli-
cable to IQA tasks which are closely related to low-level
clues. In this paper, we demonstrate that with a proper in-
jection of local distortion features, a larger pretrained vi-
sion transformer (ViT) foundation model performs better
in IQA tasks. Specifically, for the lack of local distortion
structure and inductive bias of the large-scale pretrained
ViT, we use another pretrained convolution neural networks
(CNNs), which is well known for capturing the local struc-
ture, to extract multi-scale image features. Further, we pro-
pose a local distortion extractor to obtain local distortion
features from the pretrained CNNs and a local distortion in-
jector to inject the local distortion features into ViT. By only
training the extractor and injector, our method can benefit
from the rich knowledge in the powerful foundation models
and achieve state-of-the-art performance on popular IQA
datasets, indicating that IQA is not only a low-level problem
but also benefits from stronger high-level features drawn
from large-scale pretrained models. Codes are publicly
available at: https://github.com/NeosXu/LoDa.

1. Introduction
As millions of images are shared and distributed across var-
ious platforms daily, the Internet has transformed into an
extensive repository of visual content. Users exchange and
upload images for diverse purposes, spanning from social

*Corresponding Author

Figure 1. Comparison among SOTA IQA methods on KonIQ-
10k [15] dataset, where the size of each spot indicates the total
parameters of the model.

media interactions to professional applications, ensuring the
highest quality and fidelity of these visual content has be-
come highly desirable. Consequently, there has been a sub-
stantial increase in the demand for robust image quality as-
sessment (IQA) [16, 25, 35, 45, 47, 53], which serve the
purpose of automatically evaluating the quality of images
in concordance with human subjective judgment.

Leveraging the extensive volume of data shared on the
internet, numerous pretrained large language models [4, 24,
40], vision models [2, 34, 38], and vision-language mod-
els [9, 33, 46] have recently emerged. However, the process
of annotating IQA datasets necessitates multiple human
annotations for each image, rendering the collection pro-
cess extremely labor-intensive and financially burdensome.
Consequently, the field of IQA suffers from an insufficiency
of labeled data, with existing IQA datasets proving inade-
quate to effectively train large-scale learning models. To
address this challenge, a direct approach involves construct-
ing models founded on pretrained convolutional neural net-
works (CNNs) [5] or vision transformers (ViTs) [23, 32].
Additionally, some studies have proposed the design of
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IQA-specific pretrained approaches [35, 56]. Nevertheless,
pretraining large models on large datasets requires a con-
siderable investment of time and resources, causing these
approaches to often rely on smaller models and datasets,
such as ResNet-50 [13, 56] and ImageNet-1K [32, 56].

Recent advancements in vision models have transi-
tioned from EfficientNet-based architectures [30] (com-
prising 0.48 billion (B) parameters) to Transformer-based
models [49] with up to of 2.1B parameters, and more re-
cently, they have risen to unprecedented scales, encompass-
ing 22B [7] and 562B [9] parameters. Given the mag-
nitude of such large models, traditional pretraining and
full-finetuning approaches present substantial challenges,
as they necessitate a complete adaptation for every specific
task. Consequently, inspired by efficient model adaptation
techniques in natural language processing (NLP) [57], sev-
eral visual tuning methods [21, 55] have been developed
to adapt pretrained vision or visual-language models for
downstream tasks, diverging from traditional transfer learn-
ing approaches that either fully fine-tune the entire model or
solely the task head [59]. As such, whether or not IQA mod-
els can leverage shared parameter weights (typically inter-
preted as the knowledge of pre-trained models) from large-
scale pretrained models to improve performance remains of
the greatest significance and interest.

In this work, we make the first attempt to efficiently
adapt large-scale pretrained models to IQA tasks, namely
LOcal Distortion Aware efficient transformer adaptation
(LoDa). The majority of large-scale pretrained mod-
els [9, 34] are grounded in the Transformer architec-
ture [41], which is powerful for modeling non-local depen-
dencies [12, 32], but it is weak for local structure and induc-
tive bias [50]. However, IQA is highly reliant on both local
and non-local features [12, 32]. In addition, as the human
visual system captures an image in a multi-scale fashion [1],
previous works [12, 23] have also shown the benefit of us-
ing multi-scale features extracted from CNNs feature maps
at different depths for IQA. With the obtained insights, we
propose to inject multi-scale features extracted by CNNs
into ViT, thereby enriching its representation with local dis-
tortion features and inductive bias.

Specifically, we feed input images into both a pretrained
CNN and a large-scale pretrained ViT, yielding a set of
multi-scale features. Then we employ convolution and av-
erage pooling processes to collect distortion information
while discarding redundant data from the multi-scale fea-
tures. However, the process of infusing these multi-scale
features into ViT is not straightforward. Indeed, although
we can manipulate and reshape the multi-scale features to
mirror the shape of ViT tokens and simply merge them, it
is crucial to acknowledge that an image token within ViT
corresponds to a 16 × 16 patch extracted from the original
image, which might not align with the scale of the multi-

scale features. To this end, we introduce the cross-attention
mechanism, allowing us to query features resembling the
image token of ViT from the multi-scale features. These
queried features are subsequently fused with the image to-
kens, ensuring a seamless and meaningful integration of the
distortion-related data.

Furthermore, considering the substantial channel dimen-
sion of the large-scale pretrained vision transformer (768
for ViT-B), it is imperative to address potential issues stem-
ming from employing this dimension directly in the con-
text of cross-attention. It could lead to an overwhelming
number of parameters and computational overhead, which
is inconsistent with the principles of efficient model adapta-
tion. Taking inspiration from the concept of adapters in the
field of NLP [17], we propose to down-project ViT tokens
and multi-scale distortion features to a smaller dimension,
which serves to mitigate parameter increase and computa-
tional demands. In general, the contributions of this paper
can be summarized in three-folds:
• We make the first attempt to introduce large-scale high-

level pretrained models to the low-level IQA task to val-
idate that the rich knowledge can benefit the IQA per-
formance. Specifically, we leverage the knowledge of
large-scale pretrained models to develop an IQA model
that only introduces small trainable parameters to allevi-
ate the scarcity of training data.

• We embed supplementary multi-scale features obtained
from pretrained CNNs into large-scale pretrained ViTs.
The experiment demonstrates that with proper local dis-
tortion injection, a larger pretrained backbone could show
better IQA performance.

• Extensive experiments on seven IQA benchmarks show
that our method significantly outperforms other counter-
parts with much less trainable parameters, indicating the
effectiveness and generalization ability of our methods.

2. Related Work

2.1. Learning based Image Quality Assessment

The increasing achievements of deep learning in various
computer vision tasks have led to its adoption in IQA: early
CNNs-based [10, 22, 27, 39, 53] and recently transformer-
based methods [12, 23, 32, 43, 44]. CNNs-based models
commonly assume that initial stages within the network
encapsulate low-level spatial characteristics, whereas sub-
sequent stages are indicative of higher-level semantic fea-
tures [19, 20]. Based on this, Su et al. [39] put forth
a method wherein multi-scale features and semantic fea-
tures are extracted from images using the ResNet architec-
ture [13]. Then they capture local distortion information
from the multi-scale features and generate weights utilizing
semantic features to serve as a quality prediction target net-
work. Lastly, the target network adopts the aggregated local
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Figure 2. Framework overview of the proposed LoDa. It is composed of two components, with the lower half being a frozen large-scale
pretrained ViT model and the upper half comprising a multi-scale features extraction and injection module.

distortion features as input to predict image quality.
Although CNNs capture the local structure of the im-

age, they are well known for missing to capture non-local
information and having strong locality bias. On the con-
trary, vision transformer (ViT) [8] has strong capability in
modeling the non-local dependencies among features of the
image, thus transformer-based methods demonstrate great
potential in dealing with IQA. Golestaneh et al. [12] pro-
posed a method that utilizes CNNs to extract the perceptual
features as inputs to the Transformer encoder. Ke et al. [23]
and Qin et al. [32] directly send image patches as inputs to
the Transformer encoder.

2.2. Large-scale Pretrained Models

Recently, the parameter capacities of vision models have
undergone a rapid expansion, scaling from 0.48B pa-
rameters of EfficientNet-based [30] to 22B parameters of
Transformer-based counterparts [7]. Therefore, their de-
mand for training data and training techniques is similarly
increasing. Regarding this matter, these models are com-
monly trained using large-scale labeled datasests [34, 51]
in a supervised or self-supervised manner. Moreover, some
works [9] adopt large-scale multi-modal data (e.g., image-
text pairs) for training, which leads to even more powerful
visual representations. In this work, we could take advan-
tage of these well pretrained image models and adapt them
efficiently to solve IQA tasks.

2.3. Efficient Model Adaptation

In the field of NLP, efficient model adaptation techniques
involve adding or modifying a limited number of model
parameters, as limiting the dimension of the optimization
problem can prevent catastrophic forgetting [28]. Con-

ventional arts [39] typically adopt full-tuning in the down-
stream tasks. Rare attention has been drawn to the field of
efficient adaptation, especially in the field of vision Trans-
formers. With the rise of large-scale pretrained models,
the conventional paradigm is inevitably limited by the huge
computational burden, thus some works [21, 55] migrate the
efficient model adaptation approaches from NLP to CV.

Due to the scarcity of labeled data available for training,
IQA methods are unable to realize their full potential. Previ-
ous works [12, 39] commonly full-finetune the whole net-
work that was originally trained on ImageNet-1K, but the
model and the data used are not adequately large. In this
work, we propose efficient model adaptation techniques to
adapt large-scale pretrained models to IQA tasks.

3. The Proposed Method

3.1. Overall Architecture

To further improve the efficiency of pretrained model
adaptation and customize it for IQA tasks, we devise a
transformer-based adaptation efficient framework, namely
LOcal Distortion Aware efficient transformer adaptation
(LoDa). As depicted in Figure 2, upon receiving an in-
put image, our process initiates by directing it to a pre-
trained CNN to extract multi-scale features. Subsequently,
these mult-scale feature maps are individually routed into
separate local distortion extractors, generating distinct lo-
cal distortion features. These local distortion features are
then reshaped and concatenated to create multi-scale dis-
tortion tokens for later interaction. Simultaneously, the in-
put image is further input into the pretrained ViT. During
this process, the tokens of ViT, acting as queries, are cou-
pled with the multi-scale distortion tokens and are subjected
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(a) Local Distortion Extractor

(b) Local Distortion Injector

Figure 3. The architecture of local distortion extractor and local
distortion injector. The former obtains distortion features from the
multi-scale features, and the latter enables the ViT tokens to query
similar features from distortion tokens to enhance themselves.

to cross-attention. This results in the extraction of simi-
lar local distortion features from the multi-scale distortion
tokens, which are subsequently injected into the tokens of
the ViT, thereby enhancing the distortion-related informa-
tion encompassed by these tokens. Finally, the CLS token
acquired from the ViT serves as the input to the quality re-
gressor, enabling the derivation of the final quality score.

It is noteworthy that during adaptation, only the local dis-
tortion extractor modules, local distortion aware injectors,
and the head are trainable, but the weights of the pretrained
ViT encoder and pretrained CNN are frozen.

3.2. Local Distortion Extractor

The majority of large-scale pretrained models [9, 34, 38,
49] are grounded in the Transformer architecture [41],
renowned for its robust capacity to model non-local depen-
dencies among features. However, these models exhibit a
weak inductive bias. Conversely, CNNs excel at captur-
ing the local structure of an image, exhibiting a strong lo-
cality bias, but they falter in capturing non-local informa-
tion [12, 32]. Considering IQA is highly reliant on both
local and non-local features [12, 32], we propose the ex-
ploitation of the local structure and inductive bias derived
from pretrained CNNs to strengthen the adaptation of large-
scale pretrained ViT models for IQA without altering their
original architecture.

As shown in Figure 2, with the given input image I ∈
RH×W×C , the pretrained CNN will output a set of multi-
scale features F j ∈ Rb×cj×mj×nj , where j denotes the j-
th block of CNN, b denotes the batch size and cj , mj and
nj denote the channel size, width, and height of the j-th
features, respectively. The reason why we extract multi-
scale features is that semantic features extracted from the
last layer merely represent holistic image content [39]. In
order to capture local distortions in the real world, we pro-

pose to extract multi-scale features F j through a local dis-
tortion extractor, as illustrated in Figure 3a and Eqn. 1:

F̄ j = AvgPool(ϕj(F
j)) (1)

where F̄ j ∈ Rb,c,m,n denotes the output feature, ϕj denotes
trainable convolutional layers to extract local distortion fea-
tures and inductive bias, and average pooling to pool the ex-
tracted features into a smaller size to keep efficiency. Next,
we flatten and concatenate F̄ j and obtain the multi-scale
distortion tokens Fmsd ∈ Rb,

∑
j(m×n),c, as the input for

the local distortion injector.

3.3. Local Distortion Injector

A direct approach to infusing multi-scale distortion tokens
into tokens of large-scale pretrained ViT models involves
a simple addition of the features with the tokens. Never-
theless, it should be noted that an image token in ViT cor-
responds to a 16 × 16 patch of the original image, which
might not align with the scale of the multi-scale distortion
features. To address this misalignment, we introduce to use
cross-attention mechanism, which enables to query features
akin to the image token of ViT from the multi-scale distor-
tion features. Subsequently, the queried features are adeptly
combined with the image tokens, ensuring a coherent and
effective integration of the distortion information.

As illustrated in Figure 3b, after passing the input image
I to large-scale pretrained ViT, assuming that F i

vit ∈ Rb,l,d

denote the token of ith block of the ViT (including CLS
token and image token). We take F i

vit as query Qi and
multi-scale distortion tokens Fmsd as key Ki and value Vi

of multi-head cross-attention (MHCA) to obtain multi-scale
distortion tokens that are similar to F i

vit from Fmsd:

F̄ i
msd = MHCA(Qi,Ki, Vi) +Qi. (2)

Then, the queried multi-scale distortion tokens are added
with ViT tokens F i

vit, which can be written as Eqn. 3:

F̄ i
vit = F i

vit + si × F̄ i
msd, (3)

where si represents a trainable vector designed to strike a
balance between the output of the attention layer and the in-
put feature F i

vit. To facilitate this balance, si is initialized
to a value close to 0. This specific initialization strategy en-
sures that the feature distribution of F i

vit remains unchanged
despite the injection of queried multi-scale distortion fea-
tures, thereby allowing for more effective utilization of the
pretrained weights of ViT in the adaptation process.

Due to the channel dimension of the large-scale pre-
trained vision transformer being relatively large (768 for
ViT-B), directly using this for extra MHCA will bring a
tremendous amount of parameters and computational over-
head, which is not consistent with efficient model adapta-
tion. Inspired by adapter [17] in NLP, we propose to down
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LIVE TID2013 KADID-10k LIVEC KonIQ-10k SPAQ FLIVE

Method SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

ILNIQE 0.902 0.906 0.521 0.648 0.534 0.558 0.508 0.508 0.523 0.537 0.713 0.712 0.294 0.332
BRISQUE 0.929 0.944 0.626 0.571 0.528 0.567 0.629 0.629 0.681 0.685 0.809 0.817 0.303 0.341
WaDIQaM-NR 0.960 0.955 0.835 0.855 0.739 0.752 0.682 0.671 0.804 0.807 - - 0.455 0.467
DB-CNN 0.968 0.971 0.816 0.865 0.851 0.856 0.851 0.869 0.875 0.884 0.911 0.915 0.545 0.551
TIQA 0.949 0.965 0.846 0.858 0.850 0.855 0.845 0.861 0.892 0.903 - - 0.541 0.581
MetaIQA 0.960 0.959 0.856 0.868 0.762 0.775 0.835 0.802 0.887 0.856 - - 0.540 0.507
P2P-BM 0.959 0.958 0.862 0.856 0.840 0.849 0.844 0.842 0.872 0.885 - - 0.526 0.598
HyperIQA (27M) 0.962 0.966 0.840 0.858 0.852 0.845 0.859 0.882 0.906 0.917 0.911 0.915 0.544 0.602
MUSIQ (27M) 0.940 0.911 0.773 0.815 0.875 0.872 0.702 0.746 0.916 0.928 0.918 0.921 0.566 0.661
TReS (152M) 0.969 0.968 0.863 0.883 0.859 0.858 0.846 0.877 0.915 0.928 - - 0.544 0.625
DEIQT (24M) 0.980 0.982 0.892 0.908 0.889 0.887 0.875 0.894 0.921 0.934 0.919 0.923 0.571 0.663
LIQE (151M) 0.970 0.951 - - 0.930 0.931 0.904 0.910 0.919 0.908 - - - -
Re-IQA (48M) 0.970 0.971 0.804 0.861 0.872 0.885 0.840 0.854 0.914 0.923 0.918 0.925 - -
QPT-ResNet50 (24M) - - - - - - 0.895 0.914 0.927 0.941 0.925 0.928 0.575 0.675

LoDa1 (9M) 0.975 0.979 0.869 0.901 0.931 0.936 0.876 0.899 0.932 0.944 0.925 0.928 0.578 0.679

Table 1. Performance comparison measured by medians of SRCC and PLCC, where the numbers within parentheses indicate the fine-
tuned parameters of the model and bold entries indicate the top two results.

project ViT tokens F i
vit and multi-scale distortion features

Fmsd to a smaller dimension r,

F̃ i
vit = f(F i

vit), F̃msd = f(Fmsd) (4)

where f is a trainable MLP layer, performs the projection
of ViT token F i

vit and multi-scale distortion features Fmsd

into F̃ i
vit ∈ Rb,l,r and F̃msd ∈ Rb,

∑
j(m×n),r, separately.

Notably, it is F̃ i
vit and F̃msd that take on the roles of query

Qi, key Ki and value Vi within MHCA, instead of F i
vit and

Fmsd. Lastly, we up-project the result from cross-attention
by a trainable MLP layer into the dimension of ViT tokens.

3.4. IQA Regression

With the output CLS token of ViT, we feed it into a single-
layer regressor head to obtain the quality score. A PLCC-
induced loss is employed for training. Assuming there are
m images on the training batch and the predicted quality
scores ỹ = {ỹ1, ỹ2, . . . , ỹm} and corresponding label y =
{y1, y2, . . . , ym}, the PLCC-induced loss is defined as:

Lplcc =

1−
∑m

i=1 (ỹi − ã) (yi − a)√∑m
i=1 (ỹi − ã)

2 ∑m
i=1 (yi − a)

2

 /2

(5)
where ã and a are the mean values of ỹ and y, respectively.

4. Experiments
4.1. Experimental Setting

Datasets. Our method is evaluated on seven classical IQA
datasets, including three synthetic datasets of LIVE [36],
TID2013 [31], KADID-10k [26] and four authentic datasets
of LIVEC [11], KonIQ-10k [15], SPAQ [10], FLIVE [47].

For the synthetic datasets, they contain a few pristine im-
ages that are synthetically distorted by various distortion
types. LIVE contains 779 synthetically distorted images
with 5 distortion types. TID2013 and KADID-10k consist
of 3,000 and 10,125 synthetically distorted images involv-
ing 24 and 25 distortion types, respectively. For the authen-
tic datasets, LIVEC consists of 1,162 images with diverse
authentic distortions captured by mobile devices. KonIQ-
10k contains 10,073 images which are selected from YFCC-
100M and the selected images cover a wide and uniform
range of distortions such as brightness colorfulness, con-
trast, noise, sharpness, etc. SPAQ consists of 11,125 images
captured by different mobile devices, covering a large vari-
ety of scene categories. FLIVE is the largest in-the-wild
IQA dataset by far, which contains 39,810 real-world im-
ages with diverse contents, sizes, and aspect ratios.
Evaluation Criteria. Spearman’s rank order correlation
coefficient (SRCC) and Pearson’s linear correlation coeffi-
cient (PLCC) are employed to measure prediction mono-
tonicity and prediction accuracy. The higher value indicates
better performance. For PLCC, a 4-parameter logistic re-
gression correction is also applied according to VQEG [42].

4.2. Comparisons with the State-of-the-art Methods

The performance comparison over the State-of-the-art
(SOTA) methods is shown in Table 1. Our model outper-
forms the existing methods [3, 12, 23, 29, 32, 35, 39, 47, 48,
52–54, 56, 58] by a significant margin on these datasets of
both synthetically and authentically distorted images. Since
images on various datasets span a wide variety of image
contents and distortion types, it is still challenging to con-

1ViT-B pretrained on ImageNet-21k and ResNet50 pretrained on
ImageNet-1k as the backbone
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Training FLIVE LIVEC KonIQ

Testing KonIQ LIVEC KonIQ LIVEC

DBCNN 0.716 0.724 0.754 0.755
P2P-BM 0.755 0.738 0.740 0.770
HyperIQA 0.758 0.735 0.772 0.785
TReS 0.713 0.740 0.733 0.786
DEIQT 0.733 0.781 0.744 0.794

LoDa 0.763 0.805 0.745 0.811

Table 2. SRCC on the cross datasets validation. The best per-
formances are highlighted with boldface, and subsequent tables
maintain the same.

KADID-10k KonIQ-10k

Pre-train SRCC PLCC SRCC PLCC

MAE 0.917 0.924 0.927 0.938
Multi-Modal 0.897 0.902 0.909 0.923
ImageNet-1K 0.912 0.920 0.920 0.933
ImageNet-21K 0.931 0.936 0.932 0.944

Table 3. Impact of large-scale pretrained models, using different
methods and datasets pretrained models.

sistently achieve the leading performance on all of them.
Specifically, ours surpass traditional methods (e.g., IL-

NIQE [52] and BRISQUE [29]) and earlier learning-based
methods (e.g., TIQA [48] and HyperIQA [39] by a large
margin. For LIQE [54] that utilized a large-scale pretrained
vision-language model, multi-task labels, and full fine-
tuning on multiple datasets simultaneously, LoDa still out-
performs on both synthetical and authentical datasets, i.e.,
KADID10k and KonIQ10k. Compared with current meth-
ods that required extra pertaining (e.g., DEIQT [32], Re-
IQA [35] and QPT-ResNet50 [56]), LoDa obtains compet-
itive or higher results, showing the effectiveness of adapta-
tion of large-scale pretrained models. Correspondingly, the
top performance on the largest synthetical datasets KADID-
10k confirms the superiority of fusing the multi-scale distor-
tion features from CNN into the ViT model.

4.3. Cross-Dataset Evaluation

We further compare the generalizability of LoDa against
competitive BIQA models in a cross-dataset setting follow-
ing [32]. Training is performed on one specific dataset, and
testing is performed on a different dataset without any fine-
tuning or parameter adaptation. The experimental results in
terms of the medians of SRCC on four datasets are reported
in Table 2. As observed, LoDa achieves the best perfor-
mance on all datasets. These results manifest the strong
generalization capability of LoDa.

4.4. Effectiveness of Large-scale Pretrained Models

To demonstrate the effectiveness of using large-scale pre-
trained models in our proposed models, we employ differ-

KADID-10k KonIQ-10k SPAQ

Backbone SRCC PLCC SRCC PLCC SRCC PLCC

ViT-T 0.892 0.900 0.914 0.926 0.922 0.927
ViT-S 0.915 0.922 0.928 0.939 0.924 0.928
ViT-B 0.931 0.936 0.932 0.944 0.925 0.928

Table 4. Impact of large-scale pretrained model sizes.

KonIQ-10k LIVEC

Mode Methods SRCC PLCC SRCC PLCC

HyperNet 0.869 0.873 0.776 0.809
20% DEIQT 0.888 0.908 0.792 0.822

LoDa 0.907 0.923 0.815 0.854

HyperNet 0.892 0.908 0.832 0.849
40% DEIQT 0.903 0.922 0.838 0.855

LoDa 0.922 0.935 0.849 0.879

HyperNet 0.901 0.914 0.843 0.862
60% DEIQT 0.914 0.931 0.848 0.877

LoDa 0.928 0.940 0.869 0.891

Table 5. Data-efficient learning validation with the training set
containing 20%, 40% and 60% images.

ent pretrained weights, including ImageNet-1K pretrained
weights [38], ImageNet-21K pretrained weights [38],
MAE pretrained weights [14], and Multi-Modal pretrained
weights [6], and evaluate them on relatively large syn-
thetical and authentical datasets, KADID-10k and KonIQ-
10k. The experimental results are detailed in Table 3.
The transition from weights pretrained on ImageNet-1K
to those pretrained on ImageNet-21K yields more bene-
fits for our model, as the scale of pretraining data ex-
pansively increases. Besides, while MAE also employs
ImageNet-1K pretraining, it distinguishes itself from super-
vised ImageNet-1K pretraining by embracing a more po-
tent self-supervised pretraining approach, which also con-
fers substantial advantages upon our model. However,
our model faces challenges in effectively leveraging multi-
modal pretrained weights. One plausible explanation is that
multi-modal pretrained models may prioritize the abstract
concepts inherent within images, a focus that diverges from
the demands of IQA tasks. Since multi-modal pretrained
weights contain more information than single-modal pre-
trained ones, how to apply these models to the IQA tasks
will also be an important topic and we will commit to con-
ducting further research on this.

Moreover, the parameter capacities of large-scale pre-
trained models are another essential component of our
method. To verify the effectiveness of large-scale pretrained
model size, we evaluate LoDa with ViT-Tiny/Small/Base,
and all ViTs are pretrained with ImageNet-21k. Quantita-
tive results are shown in Table 4. From this, we can ob-
serve that with the growth of pretrained backbone sizes, our
model can benefit from it and thus achieve better perfor-
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KADID-10k KonIQ-10k SPAQ

Fine-tuning Methods SRCC PLCC SRCC PLCC SRCC PLCC

ViT (Linear Probe) 0.676 0.701 0.796 0.833 0.861 0.867
ViT (Full fine-tune) 0.889 0.899 0.874 0.891 0.918 0.922

Adapter-ViT 0.914 0.920 0.926 0.939 0.925 0.928
LoRA-ViT 0.913 0.921 0.921 0.934 0.924 0.928
VPT-ViT 0.889 0.900 0.919 0.932 0.923 0.926

LoDa 0.931 0.936 0.932 0.944 0.925 0.928

Table 6. Comparisons with different fine-tuning methods.

KADID-10k KonIQ-10k

Module SRCC PLCC SRCC PLCC

ViT 0.889 0.899 0.874 0.891
ViT + Extractor 0.915 0.921 0.925 0.936

LoDa 0.931 0.936 0.932 0.944

Table 7. Ablation experiments on KADID-10k and KonIQ-10k.

mance. In particular, solely employing ViT-S as the back-
bone, our method can achieve performance on par with
SOTA shown in Table 1, which further shows the effective-
ness of our method.

Subsequently, with the effectiveness of large-scale pre-
trained models, our model can leverage the extensive
knowledge pre-trained within it. With only a small amount
of data, it becomes feasible to effectively apply the model
to downstream tasks, addressing the challenge of insuffi-
cient data that IQA encounters and allowing ours to achieve
a competing performance to state-of-the-art BIQA meth-
ods while requiring substantially less training data. Fol-
lowing [32], we conduct controlled experiments to train our
model with limited data. The experimental results are de-
tailed in Table 5. We can observe that even in scenarios with
limited data, LoDa can outperform previous models and is
capable of achieving the competing performance with only
60% images in the KonIQ-10k dataset as shown in Table 1.

4.5. Study on Different Fine-tuning Methods

At present, numerous efficient model adaptation meth-
ods for large-scale pretrained vision models have emerged,
Adapter [17], LoRA [18] and visual prompt tuning
(VPT) [21] stands as the exemplars. To demonstrate the ef-
fectiveness of our proposed method, we employ linear prob-
ing ViT that only fine-tunes the head of ViT, full fine-tuning
ViT, Adapter-ViT, LoRA-ViT, and VPT-ViT for IQA task,
and compare it with our method on KADID-10k, KonIQ-
10k and SPAQ datasets. The experimental results are de-
tailed in Table 6. From this table, it can be noticed that our
model outperforms almost all of these fine-tuning methods
on these datasets, especially KADID-10k and KonIQ-10k.

In addition, for a more detailed examination of the in-
fluence of CNN features, we categorize the 25 distortion
types in the KADID-10k dataset into nine typical types, as

Figure 4. Comparative analysis of the PLCC across various fine-
tuning models on the distortion types within KADID-10k.

(a) Images (b) Noise (c) Quantization

Figure 5. Images from KADID-10k with noise and quantization
distortion. Best viewed zoomed.

outlined in [54]. Subsequently, we evaluate four distinct
fine-tuning methods including our LoDa among these dis-
tortion types. As illustrated in Figure 4, our LoDa surpasses
other methods across all distortion types, consistent with
the results presented in Table 6. Especially, in comparison
to Adapter-ViT, the best among the remaining three fine-
tuning methods, LoDa demonstrates more enhanced perfor-
mance in the domains of noise and quantization distortions.
From Figure 5, we can observe that these local distortions
have a substantial impact on the local edge and texture of
the images. The performance improvement in these dis-
tortions suggests that the multi-scale distortion features ex-
tracted by CNN enhance LoDa’s capability to address local
distortions, and thus show the effectiveness and superiority
of fusing CNN high-frequency features into ViT.
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(a) (b)

Figure 6. Fourier analysis of features of ViT and LoDa. (a) Fourier
spectrum of ViT and LoDa. (b) Relative log amplitudes of Fourier
Transformed feature maps. (a) and (b) show that LoDa captures
more high-frequency signals.

4.6. Ablation Study

Effect of CNN Features. Recent research [37] high-
lights the distinct characteristics exhibited by ViT and CNN.
Specifically, it demonstrates that ViT is adept at learn-
ing low-frequency global signals, whereas CNN exhibits a
propensity for extracting high-frequency information. Fol-
lowing previous work [37], we visualize the Fourier anal-
ysis of features of ViT and our models (average over 128
images) in Figure 6. From the Fourier spectrum and rela-
tive log amplitudes of Fourier transformed feature maps, we
can deduce that our model captures more high-frequency
signals than the full-finetuned ViT baseline.

Moreover, in pursuit of a more intuitive understanding,
we further visualize the attention maps of ViT and our
LoDa in Figure 7. Compared with the attention maps of
fine-tuning ViT, our model’s attention maps are more fine-
grained and have more local edges and textures. This en-
hanced capability can be attributed to the incorporation of
fused multi-scale distortion features extracted by CNN.
Ablation for Components. Our model is composed of
three essential components, including the pretrained ViT,
local distortion extractor, and local distortion injector. To
examine the individual contribution of each component, we
report the ablation experiments in Table 7. It can be ob-
served that both the local distortion extractor and local dis-
tortion injector are highly effective in characterizing the im-
age quality, and thus contributing to the overall performance
of LoDa. In particular, even without local distortion injec-
tor, we simply add the multi-scale distortion tokens with
ViT tokens, it can still outperform the full-finetuned ViT,
showing the effectiveness of adaptation of large-scale pre-
trained models and extracted multi-scale distortion features.

(a) images (b) ViT (c) LoDa

Figure 7. Visualization of attention maps of features of ViT and
LoDa. Compared with fine-tuned ViT, our model produces more
fine-grained features with rich edges and textures.

5. Conclusion

In this paper, we present a LOcal Distortion Aware effi-
cient transformer adaptation (LoDa) for image quality as-
sessment (IQA), which utilizes large-scale pretrained mod-
els. Given that IQA is highly reliant on both local and
non-local dependencies, while ViT primarily captures the
non-local aspects of images, overlooking the local details,
henceforth, we propose the integration of CNN for extract-
ing multi-scale distortion features and injecting them into
ViT. Since ViT extracts 16× 16 patches of images, directly
adding these multi-scale distortion features to ViT tokens
may encounter a challenge of misaligned scale, we propose
to utilize the cross-attention mechanism to let ViT tokens
query related features from multi-scale distortion features
and then combine them. Experiments on seven standard
datasets demonstrate the superiority of LoDa in terms of
prediction accuracy, training efficiency, and generalization
capability. We hope that our work could motivate future
research into further utilizing large-scale vision models to
boost IQA techniques.
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