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Abstract

In this work, we propose a novel discriminative frame-
work for dexterous grasp generation, named Dexterous
Grasp TRansformer (DGTR), capable of predicting a di-
verse set of feasible grasp poses by processing the object
point cloud with only one forward pass. We formulate dex-
terous grasp generation as a set prediction task and design
a transformer-based grasping model for it. However, we
identify that this set prediction paradigm encounters sev-
eral optimization challenges in the field of dexterous grasp-
ing and results in restricted performance. To address these
issues, we propose progressive strategies for both the train-
ing and testing phases. First, the dynamic-static matching
training (DSMT) strategy is presented to enhance the opti-
mization stability during the training phase. Second, we in-
troduce the adversarial-balanced test-time adaptation (AB-
TTA) with a pair of adversarial losses to improve grasp-
ing quality during the testing phase. Experimental results
on the DexGraspNet dataset demonstrate the capability of
DGTR to predict dexterous grasp poses with both high
quality and diversity. Notably, while keeping high qual-
ity, the diversity of grasp poses predicted by DGTR sig-
nificantly outperforms previous works in multiple metrics
without any data pre-processing. Codes are available at
https://github.com/iSEE-Laboratory/DGTR.

1. Introduction

Robotic dexterous grasping stands as a fundamental and
critical task in the field of robotics and computer vision, of-
fering a versatile and fine-grained approach with extensive
applications in industrial production and daily scenarios.

With the development of deep learning and large-scale
datasets for dexterous grasp generation, learning-based
methods achieve considerable performance in grasping
quality and generalizability [3, 11, 12]. Concurrently, ac-
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Figure 1. Comparison of DGTR and other dexterous grasping
frameworks. The generative models (a) usually learn the distri-
bution of the grasp poses conditioned on the object point cloud.
At test time, they mainly infer multiple times to generate several
grasps but produce nearly identical grasp poses with the same con-
dition. The vanilla discriminative models (b) mainly learn to pre-
dict one grasp pose for the input point cloud. Our DGTR model (c)
adopts a transformer decoder and learnable queries, and learns to
predict a set of diverse grasps poses with one forward pass.

quiring grasping diversity (especially grasping from various
directions) is also a crucial task [18, 41] as it provides the
robot with robustness and task flexibility during the manipu-
lation task. Previous learning-based approaches mostly uti-
lize generative models to model the grasp distribution con-
ditioned on the object point cloud as shown in Figure 1 (a).
However, conditional generative models may consistently
generate nearly identical outputs (given the same input) at
inference time due to the powerful condition [31, 42], ex-
cept for a diffusion-based model [11], which can generate
diverse grasps but with low quality. Alternatively, vanilla
discriminative models shown in Figure 1 (b) can only pre-
dict a single grasp pose for one input object [19]. There-
fore, to obtain diversity, both of them have to rotate the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17933



input point cloud and infer multiple times, which is time-
consuming and quality-limiting.

In this work, we propose Dexterous Grasp Transformer
(DGTR), a novel discriminative framework to tackle the
task of predicting diverse and high-quality dexterous grasp
poses given the complete object point cloud. We formu-
late dexterous grasp generation as a set prediction task and
design a transformer-based grasping model inspired by the
impressive success of Detection Transformers [1, 24]. As
illustrated by Figure 1 (c), DGTR adopts a transformer de-
coder and utilizes learnable grasp queries representing dif-
ferent grasping patterns to predict a diverse set of feasible
grasp poses by processing the object point cloud only once.

However, we observe that DGTR faces an optimization
challenge in our task, which results in the dilemma between
model collapse and unacceptable object penetration of the
predicted grasps. As depicted in Figure 2 (a), applying a
large weight on the object penetration loss causes the model
to learn a trivial solution where all predictions are nearly
identical. On the contrary, a zero weight for the penetra-
tion loss leads to severe object penetration of the grasps,
as shown in Figure 2 (b). We identify the main cause of
this challenge to be the instability of the Hungarian algo-
rithm, which is exacerbated by the powerful object pene-
tration loss. As the weight of the object penetration loss in-
creases, the matching process becomes more unstable. Con-
sequently, the unstable matching results misguide the opti-
mization process of the model, ultimately causing the model
collapse. We conduct abundant analysis and experiments
for this in Section 3.3 and 4.5.1.

To overcome this challenge, we propose progressive
strategies for both the training and testing phases, which
simultaneously enhance the diversity and quality of grasp
poses as demonstrated in Figure 2 (c). Firstly, we present a
dynamic-static matching training (DSMT) strategy, which
is built on the insight of guiding the model to learn appro-
priate targets through dynamic matching training and sub-
sequently optimize object penetration through static match-
ing training. This strategy ensures effective optimization of
the object penetration loss while directing the model opti-
mization reasonably. Secondly, we present an adversarial-
balanced test-time adaptation (AB-TTA) strategy to refine
the predicted grasp poses directly in the parameter space of
the dexterous hand. Specifically, we utilize a pair of adver-
sarial losses: one repels the hand from the interior of the
object, while the other attracts it towards the object’s sur-
face. The strategic interaction of the adversarial losses sub-
stantially enhances the quality of the grasp and mitigates the
penetration. Notably, our AB-TTA neither relies on any 3D
mesh information of the objects nor involves complex force
analysis or auxiliary models.

Extensive experiments on DexGraspNet dataset show
that our methods are capable of generating high-quality and

(a) λpen = 500 (b) λpen = 0 (c) Ours

Figure 2. Comparison of grasp quality and diversity under dif-
ferent penetration loss weights. We visualize 3 grasps for each
circumstance. (a) large object penetration weight; (b) zero object
penetration weight; (c) our progressive strategies.

high-diversity grasp poses on thousands of objects. To the
best of our knowledge, this is the first work to predict a di-
verse set of dexterous grasp poses by processing the input
object just once, without any need for data preprocessing.

2. Related Works

2.1. Dexterous Grasp Generation

Dexterous grasping is a promising task as it endows robots
with the capability to manipulate objects like humans.
Meanwhile, it also presents significant challenges due to the
high degree-of-freedom design of dexterous hands. Early
methods focus on analytical methods [8, 20, 28] and opti-
mize the hand poses with kinematics and physical mech-
anisms to a force-closure state. Several works [18, 39]
synthesize datasets for dexterous grasps with [20], but face
challenges in the generating speed and success rate.

Recently data-driven methods [17, 22, 33, 35, 37, 45]
have received increasing research attention with the devel-
opment of deep neural networks. GraspTTA [12] utilizes a
CVAE [34] to synthesize grasps with their hand-object con-
sistency constraints. UnidexGrasp [41] proposes two vari-
ants of IPDF [25] and Glow [14] to predict object orienta-
tion, translation and articulation for the dexterous hand re-
spectively. Some works [3, 11, 36] explore conditioned nor-
malizing flow [14, 26], generative adversarial network [10]
and conditioned diffusion models [30] to learn the prob-
abilistic distribution of the dexterous grasps. In contrast,
DDG [19] exploits a non-generative model and a differen-
tiable Q1 loss to learn one grasp pose for each instance.

However, these methods struggle to generate feasible
and diverse grasps given the same input point cloud, either
because the condition (e.g., object point cloud) significantly
restricts the generation direction of the model, or because
of the limitation of the model architecture. To alleviate this
problem, our work learns to predict a diverse set of grasps of
an object at one time with a transformer-based framework
specially designed for dexterous grasp generation.
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Figure 3. Overview of our DGTR framework. The input of DGTR is the complete point cloud O of an object. First, the PointNet++ [29]
encoder downsamples the point cloud and extracts a set of object features. Next, the transformer decoder takes N learnable query embed-
dings as well as the object features as input and predicts N diverse grasp poses in parallel. In the dynamic matching training stage, our
model is trained with the matching result produced by Hungarian Algorithm [15] and without object penetration loss. In the static matching
training stage, we use static matching recorded in the DMT stage to train the model with object penetration loss. At test time, we adopt an
adversarial-balanced loss to directly finetune the hand pose parameters.

2.2. Vision Transformer

Vision transformers [2, 4, 13, 21, 44, 46] have received an
extensive amount of research attention in recent years, and
several of them [1, 5, 40, 43] introduce novel paradigms for
computer vision tasks. In our work, dexterous grasp genera-
tion from a complete point cloud is considered a set predic-
tion task, which is one of the strengths of detection trans-
formers [1, 24]. However, conventional detection trans-
formers, which are specially designed for object detection,
are unsuited for dexterous grasp generation, because of the
absence of supervision for feasible grasps, as well as the
optimization challenge arising from the grasp losses. To
tackle this problem, we equip our model with a series of
grasp losses for learning diverse and high-quality grasps,
and progressive strategies for stable training and penetra-
tion optimization.

3. Dexterous Grasp Transformer

3.1. Problem Formulation

In this work, we focus on generating high-quality and di-
verse grasp poses from the complete object point cloud.
Specifically, given an object point cloud O ∈ RM×3 of size
M , our model learns to generate a set of N dexterous grasp
poses {gi}Ni=1 = {(ri, ti,qi)}Ni=1, where ri ∈ SO(3) and
ti ∈ R3 are the global rotation and translation in the world
coordinate, and qi ∈ RJ is the joint angles of the J-DoF
dexterous hand (J = 22 for ShadowHand [32]).

3.2. DGTR Architecture

The model architecture of Dexterous Grasp Transformer
(DGTR) contributes most to the diversity and efficiency (i.e.

N various grasp poses in one forward pass) of our frame-
work. As shown in Figure 3, it mainly consists of three
components: 1) a point cloud encoder to extract the object
feature, 2) a transformer decoder, and 3) feed-forward net-
works to predict the grasp poses.

Encoder. We adopt a three-layer PointNet++ [29] as the
encoder to extract a set of object features. Given an object
point cloud O ∈ RM×3, our encoder outputs the down-
sampled point cloud O′ ∈ RM ′×3 and the corresponding
features F ′ ∈ RM ′×C′

.
Decoder. Inspired by previous set-prediction frame-

works [1, 24], we cascade Transformer blocks [38] as our
decoder to predict an unordered set of grasp poses in paral-
lel. This decoder takes as input the point features F ′ and a
set of learnable grasping queries {qi}Ni=1 to produce grasp
features {Gi}Ni=1. Since there is no explicit position infor-
mation among the point features, we encode the raw points
O′ ∈ RM ′×3 with an MLP module as the position embed-
ding of encoder features F ′.

Prediction Heads. The grasp pose set {gi}Ni=1 =
{(Ri, ti,qi)}Ni=1 are predicted with the final decoder fea-
tures {Gi}Ni=1 by three independent MLPs. Both the trans-
lation and the joint angle predictions are passed through a
sigmoid activation to form a normalized value w.r.t. the lim-
its of each dimension. And the rotation prediction is nor-
malized to a unit quaternion with the L2 normalization.

The unordered predictions are usually matched with their
nearest ground truths using the Hungarian Algorithm [15]
before the loss calculation. However, while the Hungarian
Algorithm provides an effective solution to train the model
regardless of the permutation of the predictions, it also
brings ambiguity to the optimizing process of the model,
which is a major factor of the dilemma of model collapse
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Figure 4. Comparative analysis of grasp poses similarity and
object penetration with various penetration loss weights. Sim-
ilarity is measured by the cosine similarity of N predicted grasp
poses, which represents the non-diversity. Penetration is the object
penetration from the object point cloud to the hand mesh. Ours de-
notes the model trained with our proposed DSMT strategy.

and unacceptable object penetration. We alleviate this prob-
lem with a dynamic-static matching training strategy (Sec-
tion 3.3) and propose an adversarial-balanced loss to further
enhance the practicality of the generated grasps at test time
(Section 3.4).

3.3. Dynamic-Static Matching Training Strategy

Model Collapse vs. Object Penetration. We discover the
optimization challenge when DGTR attempts to learn mul-
tiple grasping targets of one object simultaneously. As il-
lustrated in Figure 4, DGTR encounters a dilemma between
model collapse and the issue of unacceptable object pen-
etration. On one hand, if we impose a heavy penalty on
object penetration (e.g. λpen = 500), the model tends to be
stuck in a trivial solution where it predicts nearly identical
grasps for the object. On the other hand, if we reduce this
penalty (e.g. λpen = 5) or even remove it (λpen = 0), the
predicted grasps suffer from severe object penetration.

We analyze the reasons why the object penetration
penalty could cause model collapse in the case of set predic-
tion. Intuitively, there is a non-trivial gap between the op-
timizing difficulties of object penetration and hand pose re-
construction. The object penetration loss could be reduced
easily by “pulling” the hand away from the object. While
the latter involves a high-dimensional and non-convex op-
timization problem, which is inherently difficult to solve.
Empirically, the object penetration loss increases the in-
stability of Hungarian Algorithm matching results, which
profoundly disturbs the optimizing process. As depicted in
Figure 5, the instability of Hungarian matching increases as
λpen becomes larger, which results in ambiguous optimiza-
tion goals for each query [7, 16] and eventually causes the
model to learn similar grasp poses for all queries.

DSMT. We serialize the optimizing process and pro-
pose a Dynamic-Static Matching Training (DSMT) strat-
egy, aiming to alleviate the optimization challenge arising
from the instability of the Hungarian Algorithm and the
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Figure 5. Hungarian matching instability during training of
different penetration loss weights. The instability is measured
by the IS metric introduced in [16], where a higher value indicates
greater instability.

strong impact of object penetration loss. The key insight
is to guide the model learning towards appropriate targets
through dynamic training, and subsequently optimizing ob-
ject penetration through static training.

As illustrated in Algorithm 1, DGTR optimization be-
gins with regular training with the hand regression loss
and no object penetration loss for T0 epochs (DMT). The
matching results between the predictions and the targets are
dynamically generated by the Hungarian Algorithm. The
learnable queries are adequately trained to learn diverse
grasping patterns in this stage.

In the Static Matching Warm-up (SMW) stage, we re-
move the Hungarian Matching process and utilize fixed and
stable matching results recorded in the DMT stage. The
objective of this stage is to finetune the model and make it
adapt to the given static matching. Thus, we still exclude
the object penetration loss in this stage.

In the Static Matching Penetration Training (SMPT)
stage, the object penetration loss and the hand-object dis-
tance loss (Eq. (1)) are incorporated into the training pro-
cess. The matching results used in the previous stage are
preserved to maintain a stable optimization environment. In
this way, the severe penetration issue arising from the lack
of object penetration penalty in the previous training stages
is significantly alleviated.

3.4. Adversarial-Balanced Test-Time Adaptation

Object Contact vs. Object Penetration. To further im-
prove the practicality of the predicted grasps, we propose an
adversarial-balanced test-time adaptation (AB-TTA) strat-
egy to refine the predicted grasps during the test phase. It is
worth noting that our AB-TTA eliminates the need for com-
plex force analysis or auxiliary models. Specifically, this
strategy mainly minimizes a pair of adversarial losses, the
object penetration loss Lpen and hand-object distance loss
Ldist in the parameter space of the dexterous hand. How-
ever, the comprehensive optimization of these two losses
is challenging. The penetration loss can be easily reduced
(i.e., pulling the hand away from the object) in the parame-
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Algorithm 1 Dynamic-Static Matching Training

Input: Object point clouds O, target grasp poses ĝ, train-
ing epochs T0, T1, T2, and model parameters Θ
for t = 1 to T0 do ▷ DMT

gt = Θ(O)
ρ̂t = HungarianAlgorithm(gt, ĝ)
L(gt, ĝ, ρ̂t) = Lregress(gt, ĝ, ρ̂t)
Update Θ with ∇ΘL(gt, ĝ, ρ̂t)

end for
gT0 = Θ(O)
ρ̂T0 = HungarianAlgorithm(gT0 , ĝ)
for t = 1 to T1 do ▷ SMW

gt = Θ(O)
L(gt, ĝ, ρ̂T0

) = Lregress(gt, ĝ, ρ̂T0
)

Update Θ with ∇ΘL(gt, ĝ, ρ̂T0
)

end for
for t = 1 to T2 do ▷ SMPT

gt = Θ(O)
L(gt, ĝ, ρ̂T0

) = Lregress(gt, ĝ, ρ̂T0
)

+ Lpen(gt,O) + Lvan−dist(gt,O)
Update Θ with ∇ΘL(gt, ĝ, ρ̂T0

)
end for

Output: Optimized model parameters Θ

ter space without appropriate constraints, causing the hand-
object distance loss to lose efficacy. Hence, we incorporate
two key designs to facilitate a balanced decrease of these
adversarial losses, which brings considerable improvement
in both hand-object contact and hand-object penetration.

AB-TTA. Our AB-TTA is based on the perception that
the generated grasp poses are already or nearly valid, only
requiring slight adjustments. Firstly, we propose to mod-
erate the displacement of the global translation of the root
link of the dexterous hand during the optimization process
by downscaling its gradient with βt. Moderating the global
translation constrains the over-optimization of object pene-
tration loss, which promotes the effectiveness and stability
of the adaptation.

Secondly, we present a generalized tta-distance loss to
address the ineffectiveness of vanilla distance loss used in
[39]. The vanilla distance loss is defined as:

Lvan−dist =
∑
i

I(d(pi) < τ) ∗ d(pi), (1)

where I(·) is the indicator function, τ is a contact threshold
to filter out the outliers, and d(pi) is the distance between
the nearest point on the object point cloud and the ith key-
point pi on the predicted hand. We observe that the vanilla
distance loss will be 0 if the hand is too far away from the
object, where no point meets the conditions (d(pi) < τ).
As a result, the hand is unlikely to be “pushed” towards the
object again since the distance loss has been 0. We improve

the hand-object distance loss by defining a more general
condition which constrains the hand keypoints that initially
touched the object to remain in contact during optimization.
The generalized tta-distance loss is defined as:

Ltta−dist =
∑
i

I((d(pci ) < τ) ∨ (d(pri ) < τ)) ∗ d(pri ),

(2)
where pci and pri are the ith keypoints of the initial coarse
hand and the refined hand at the current iteration, respec-
tively. As a result, a input hand which is nearly valid would
not be pulled too far away from the object.

In addition, due to the high DoF of dexterous hands, we
also add self-penetration loss Lspen in AB-TTA. Thus, the
overall loss function for AB-TTA is

Lab−tta = α1 ∗ Lpen + α2 ∗ Ltta−dist + α3 ∗ Lspen. (3)

The details of all losses are in Section 3.5 and Appendix A.

3.5. Grasp Losses

The optimization of DGTR involves the grasp losses and the
bipartite matching between the predictions and the ground
truths. We denote the ith predicted item as xi and the jth

ground-truth item as x̂j (x ∈ {g, t, r,q}) in the following
paragraphs of this section.

Hand Parameters Regression Loss. We utilize the
smooth L1 loss [9] as Ltrans and Ljoints to regress the
translations and joint angles. For the rotation, we maximize
the similarity of the predicted and ground-truth quaternions
with Lrotation(ri, r̂j) = 1.0 − |ri · r̂j |, where (·) is the in-
ner product operation. The overall regression loss for hand
parameters is a weighted sum of the above losses:

Lparam(gi, ĝj) = λ1 ∗ Ltrans(ti, t̂j)

+ λ2 ∗ Ljoints(qi, q̂j) + λ3 ∗ Lrotation(ri, r̂j).
(4)

Hand Chamfer Loss. We incorporate a hand chamfer
loss Lchamfer(gi, ĝj) to explicitly minimize the discrepan-
cies between the actual shapes of the predicted and ground-
truth hands. Specifically, we apply gi and ĝj to the dexter-
ous hand and obtain the hand meshes H(gi) and H(ĝj) by
forward kinematics. Then we sample the hand point clouds
Φ(gi) and Φ(ĝj) from the corresponding meshes and cal-
culate the Chamfer distance [6] between them.

Penetration Loss. We employ two penetration losses:
1) Lpen(gi,O) [41]: object penetration calculated by the
signed squared distance function from object point cloud
to the hand mesh, and 2) Lspen(gi) [39]: self penetration
depth from the keypoints of the hand to themselves.

Cost Function for Bipartite Matching. To obtain a bi-
partite matching between predictions and ground truths, the
cost function for each pair of (gi, ĝj) is defined as:

C(gi, ĝj) = ω1 ∗ Ltrans(ti, t̂j) + ω2 ∗ Ljoints(ri, r̂j)

+ ω3 ∗ Lrotation(qi, q̂j). (5)
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Figure 6. Visualization of predicted dexterous hand poses. We visualize four grasp poses in five images for each object. The first image
visualizes all grasps together to demonstrate their global positions. The following four images mainly visualize the details of the grasp
pose. These visualization results qualitatively indicate that the proposed DGTR framework is capable of generating diverse and feasible
grasps with the same input and only in one forward pass. More visualization results can be found in Appendix C.

Let ρ ∈ PN be a permutation of N elements, and assume
that K = M = N . We utilize Hungarian Matching Algo-
rithm [15] to compute the optimal assignment ρ̂:

ρ̂ = argmin
ρ∈PN

K∑
i

C(gi, ĝρi). (6)

The process of computing ρ̂ when M ̸= N is similar, except
that we leave the redundant predictions or ground truths un-
matched. As a result, there are K = min{M,N} matched
pairs accounting for the overall loss.

Overall Loss Function. The overall grasp loss for
DGTR training is a weighted sum of the aforementioned
losses, which is formulated as:

Lgrasp(gi, ĝρi
,O) = Lparam(gi, ĝρ̂i

)

+ λ4 ∗ Lchamfer(gi, ĝρ̂i
) (7)

+ λ5 ∗ Lspen(gi) + λ6 ∗ Lpen(gi,O).

This loss is averaged among all matched pairs {gi, ĝρ̂i}Ki=1.

4. Experiments
4.1. Dataset and Evaluation Metrics

We evaluate the proposed DGTR framework in the chal-
lenging dexterous grasping benchmark DexGraspNet [39],
which contains 1.32 million grasps of ShadowHand [32] for
5355 objects from more than 133 object categories. The of-
ficial training-validation split is used in our experiments.

We use five metrics to conduct comprehensive evalua-
tions of the generating quality of DGTR. That is, 1) Mean
Q1 [8] reflects grasp stability. We follow [39] to set the con-
tact threshold to 1cm and set the penetration threshold to
5mm. 2) Maximal penetration depth (cm) (Pen.), which
is the maximal penetration depth from the object point cloud
to hand meshes. 3) Non-penetration ratio ηnp (%), which
is the proportion of the predicted hands with a maximal pen-

etration depth of less than 5mm. 4) Torque balance ratio
ηtb (%), denoting the percentage of torque-balanced grasps
(i.e. Q1 > 0). 5) Grasping success rate ηsuccess (%) in
Isaac Gym [23]. Following [39], we consider a grasp pose
valid if the grasp can hold the object steadily under any one
of the six gravity directions.

For diversity, we introduce the new metrics, 6) occu-
pancy proportion of translations δt, rotations δr and joint
angles δq (%), to quantitatively measure the ability of a
model to grasp objects from a diverse range of directions,
orientations, and joint angles. Generally, we discretize the
continuous parameter space into ξ = 16 uniform bins and
calculate the proportion of occupied spaces for different
grasps of each object. For δt, we uniformly sample ξ points
as the bins on a unit sphere with Fibonacci sampling, and
then assign each grasp to a bin based on the cosine simi-
larity between its global translation and the corresponding
direction of the point. For δr and δq , we discretize the range
of Euler angle into ξ bins. Intuitively, higher values of δt
indicate that the predicted grasps can move to more areas of
the object and grasp it from more directions, while higher δr
and δq suggest more various hand orientations and gestures.
All details of metrics can be found in Appendix A.

4.2. Implementation Details

Our DGTR is implemented with PyTorch [27] and trained
on a single RTX 4090 GPU. The number of queries N is
set to 16. The training epochs for each stage in DSMT are
T0 = 15, T1 = 5, T2 = 5. We set ω1 = 2.0, ω2 = 1.0,
and ω3 = 2.0 for the Hungarian Algorithm cost function.
During DMT and SMW, the loss weight are λ1 = 10.0,
λ2 = 10.0, λ3 = 10.0, λ4 = 1.0, λ5 = 10.0, λ6 = 0.0. In
the SMPT stage, λ6 is set to 50.0, and distance loss weight
is 10.0. For AB-TTA, we set βt = 0, α1 = 5, α2 = 3, and
α3 = 5. More details can be found in Appendix A.
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Method Quality Diversity
Q1 ↑ ηnp ↑ ηtb ↑ ηsuccess ↑ Pen. ↓ δt ↑ δr ↑ δq ↑

GraspTTA [12] 0.0271 18.95 15.90 24.5 0.678 8.09 7.53 7.90
UniDexGrasp [41] 0.0462 97.29 50.94 37.1 0.121 9.64 7.49 29.29
SceneDiffuser [11] 0.0129 96.21 22.88 25.5 0.107 54.84 52.27 39.75

DGTR (ours) 0.0515 75.78 69.62 41.0 0.421 47.77 51.66 27.81

DDG [19] 0.0582 84.53 56.63 67.5 0.173 6.25 6.25 6.25
DGTR* (ours) 0.0921 99.51 81.28 66.6 0.313 19.66 20.68 15.11

Table 1. Results on DexGraspNet[39] compared with the state-of-the-art in one forward pass condition. DGTR* is a practical variant of
DGTR concentrating on grasp quality. Note that DDG [19] is not in the same setting as ours and serves as a quality reference here.

Method npass ngrasp Tinf (ms) ↓ δt ↑ δr ↑ δq ↑

Uni. [41] 1 16 58.3 ± 4.1 9.64 7.49 29.29
Uni. [41] 4 4 153.7 ± 8.8 18.37 22.20 36.36
Uni. [41] 16 1 530.6 ± 12.2 25.04 44.31 38.65

Ours 1 16 20.4 ± 3.3 47.77 51.66 27.81

Table 2. Comparison with multiple pass methods. Tinf is the
total time to generate all grasp poses. npass refers to the times
of object’s point cloud being rotated and passed to the grasping
model. ngrasp is the number of grasp poses generated per pass.

Method Q1 ↑ Pen. ↓ ηnp ↑ ηtb ↑

DGTR 0.0515 0.421 75.78 69.62
w/o AB-TTA 0.0278 0.466 52.36 65.10
w/o DSMT 0.0115 0.869 7.69 96.84

Table 3. Effectiveness of each component of DGTR.

4.3. Dexterous Grasp Generation Performance

4.3.1 Comparison with SOTA in one forward pass

We first compare SOTA dexterous grasp generation meth-
ods with DGTR in our setting, where each method is al-
lowed to infer once. DDG [19] takes multi-view images
as input and only predicts one grasp pose for each object,
which serves as a quality reference. SceneDiffuser [11],
GraspTTA [12] and UniDexGrasp [41] samples 16 times in
a batch, with the same object point cloud as condition.

The evaluation results are shown in Table 1. For grasp
quality, DGTR surpasses the SOTA generative models in
several important metrics. Note that UniDexGrasp has re-
markable performance in ηnp and Pen. but with a low ηtb,
which suggests low contact with the object, while DGTR
has a more balanced performance and higher success rate.
Moreover, owing to the capability of generating diverse
grasps, DGTR can efficiently select top-4 results (DGTR*)
by the number of contact points and object penetration dur-
ing inference without extra inputs. In this scenario, DGTR*

has comparable results with DDG [19].
For diversity, DGTR surpasses UniDexGrasp [41] and

GraspTTA [12] by a large gap in terms of δt and δr, which
indicates that DGTR is able to grasp the object from a va-
riety of directions. SceneDiffuser [11] has higher diver-
sity but with much lower quality. More comparisons with

(a) GraspTTA [12] (b) UniDexGrasp [41] (c) Ours

Figure 7. Comparison of grasp diversity in one forward pass with
4 outputs. The diversity of our DGTR significantly surpasses [12]
and [41] in one forward pass.

SceneDiffuser are in Appendix B. The results demonstrate
that DGTR achieves overall SOTA performance and excels
in generating high-quality and diverse grasps.

We visualize the predicted grasp poses of several ob-
jects in Figure 6 to provide a qualitative result of DGTR.
DGTR is capable of generating high-quality grasps of an
object from various directions with different poses in one
forward pass. Furthermore, Figure 7 highlights the diversity
of DGTR in comparison to two other generative methods.

4.3.2 Comparison with SOTA in multiple forward pass

Table 2 presents a comparison of grasping diversity and
inference time between UniDexGrasp in multiple forward
passes and DGTR in one forward pass. UniDexGrasp
first utilizes a probabilistic model to sample rotations and
then rotates object point clouds to generate grasps in mul-
tiple passes. As shown in Table 2, DGTR exhibits sig-
nificantly lower time consumption compared to the multi-
pass UniDexGrasp. More importantly, DGTR outperforms
UniDexGrasp with 16 forward passes in δt and δr. This in-
dicates that DGTR offers more diverse grasping hand posi-
tions and enables grasping from a wider range of directions.

4.4. Ablation Study

4.4.1 Dynamic-Static Matching Training Strategy

As demonstrated in Table 3, our DSMT significantly en-
hances Q1 by 3.5 times, while reducing Pen. by nearly
50%. Table 4 provides more details on the performance af-
ter each training stage (DMT, SMW and SMPT) in DSMT.
The results highlight the critical role of static matching,
which optimizes the model towards the proper direction and
significantly reduces object penetration.
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Method Q1 ↑ Pen. ↓ ηnp ↑ ηtb ↑

DMT 0.0115 0.869 7.69 96.74
DMT + SMW 0.0100 0.879 6.55 97.25

DMT + SMW + SMPT 0.0278 0.466 52.36 65.10
w/o Static 0.0064 0.600 36.84 56.67
w/o Warm 0.0271 0.482 50.03 67.15

Table 4. Ablation study for three stages in DSMT.
Static and Warm are static matching and warm-up
for SMPT. The complete DSMT is colored in gray.

N Q1 ↑ δt ↑ δr ↑ δq ↑

4 0.0392 18.40 21.85 9.60
8 0.0305 28.26 33.64 12.96
16 0.0278 47.77 51.66 27.81
32 0.0275 72.13 65.88 19.48
64 0.0170 89.57 78.41 25.50

Table 5. Analysis of the Number of
grasp queries. N is the number of
queries.

λpen Q1 ↑ Pen. ↓ ηnp ↑ ηtb ↑

0 0.0115 0.869 7.69 96.84
5 0.0203 0.717 22.94 84.79
50 0.0109 0.662 36.76 60.62

500 0.0020 0.207 78.19 16.75
0 → 50 0.0061 0.651 31.45 59.86

Table 6. Analysis of different object pen-
etration loss weight. λpen is the penetra-
tion weight.

Pen VDis GDis TM CN Q1 ↑ ηnp ↑ ηtb ↑

✓ ✓ 0 100 0
✓ ✓ 0.0125 77.15 28.08
✓ ✓ 0.0295 75.31 48.56
✓ ✓ 0.0435 98.54 50.50
✓ ✓ ✓ ✓ 0.0491 78.24 64.80
✓ ✓ ✓ 0.0515 75.78 69.62

Table 7. Ablation study for designs in AB-TTA. Pen and Dis de-
note penetration and distance loss. GDis and TM are our gener-
alized tta-distance loss and translation moderation strategy. CN
refers to ContactNet [12]. Our whole AB-TTA is colored in gray.

4.4.2 Adversarial-Balanced Test-Time Adaptation

We conduct ablation studies on our AB-TTA module and
the results are in Table 3, Table 7, and Figure 8. As shown
in Table 3, our AB-TTA significantly increases Q1 by 1.85-
fold, and enhances ηnp, and ηtb at the same time. Fur-
thermore, Table 7 shows that the integration of our key de-
signs (i.e., generalized tta-distance loss (GDis) and transla-
tion moderation strategy (TM)) are indispensable, while the
simple implementation of TTA (i.e., penetration and vanilla
distance loss (VDis)) has limited effect. Furthermore, our
AB-TTA module demonstrates superior grasp quality com-
pared to ContactNet-TTA [12], and it can even boost the Q1

and ηtb performance of ContactNet-TTA.

4.5. DGTR Analysis

We conduct a series of analytic experiments for DGTR. We
discuss object penetration weight and the number of queries
below. Please refer to the Appendix B for more analysis.

4.5.1 Loss Weight for Object Penetration

The results in Table 6 show that the object penetration de-
creases as λpen increase, but a severe non-contact issue oc-
curs concurrently. As illustrated in Figure 4 and Figure 5,
the instability of Hungarian matching leads to model col-
lapse when we apply a large penetration loss. And it is
worth noting that gradually increasing λpen from 0 to 50
after several warm-up epochs cannot tackle this problem
(λpen = 0 → 50 in Table 6). We believe that learning
to predict multiple grasps simultaneously is a more difficult
optimization process compared to the previous one-to-one

Figure 8. Visualization of grasps before and after AB-TTA.

grasping learning. And our proposed progressive strategies
(i.e., DSMT and AB-TTA) tackle this challenge effectively.

4.5.2 Number of Grasping Queries

We conduct experiments to analyze the effect of the num-
ber of grasping queries. As shown in Table 5, the grasp
quality Q1 tends to decrease as the number of queries in-
creases, which suggests that simultaneous learning a larger
set of grasping poses is a challenge. Furthermore, the di-
versity increases as the number of queries becomes larger,
implying that DGTR can learn a more diverse set of grasp
with a greater number of queries.

5. Conclusions

In this work, we propose DGTR (Dexterous Grasp Trans-
former), a novel discriminative framework for dexterous
grasp generation. Our progressive strategies, including
dynamic-static matching training (DSMT) strategy and
adversarial-balanced test-time adaptation (AB-TTA), sub-
stantially improve grasping stability and reduce penetration.
To the best of our knowledge, DGTR is the first work to in-
troduce set prediction formulation into dexterous grasp do-
main and achieves both high quality and diversity with one
forward pass. We believe that DGTR holds good develop-
ment potential in robotic dexterous grasping scenarios, such
as task-oriented and real-world dexterous grasp generation.
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