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Abstract

Lifelong person re-identification (LReID) suffers from
the catastrophic forgetting problem when learning from
non-stationary data. Existing exemplar-based and knowl-
edge distillation-based LReID methods encounter data pri-
vacy and limited acquisition capacity respectively. In this
paper, we instead introduce the prototype, which is under-
investigated in LReID, to better balance knowledge for-
getting and acquisition. Existing prototype-based works
primarily focus on the classification task, where the pro-
totypes are set as discrete points or statistical distribu-
tions. However, they either discard the distribution in-
formation or omit instance-level diversity which are cru-
cial fine-grained clues for LReID. To address the above
problems, we propose Distribution-aware Knowledge Pro-
totyping (DKP) where the instance-level diversity of each
sample is modeled to transfer comprehensive fine-grained
knowledge for prototyping and facilitating LReID learn-
ing. Specifically, an Instance-level Distribution Mod-
eling network is proposed to capture the local diver-
sity of each instance. Then, the Distribution-oriented
Prototype Generation algorithm transforms the instance-
level diversity into identity-level distributions as proto-
types, which is further explored by the designed Prototype-
based Knowledge Transfer module to enhance the knowl-
edge anti-forgetting and acquisition capacity of the LReID
model. Extensive experiments verify that our method
achieves superior plasticity and stability balancing and
outperforms existing LReID methods by 8.1%/9.1% aver-
age mAP/R@1 improvement. The code is available at
https://github.com/zhoujiahuan1991/CVPR2024-DKP

1. Introduction
As a conventional task in computer vision, person re-
identification (ReID) [1, 19] has achieved remarkable per-
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Figure 1. The comparison of different prototype generation meth-
ods. (a) Various methods [3, 8, 10] treat the prototype as a fea-
ture center point but ignore the important distribution information.
(b) Some approaches [46] calculate the prototype as a statistical
feature distribution but suffer from inaccurate distribution estima-
tion. (c) Our method models the instance-level distribution of each
sample, from which the obtained distribution-aware prototypes are
more informative and discriminative.

formance in static datasets where the training data are pro-
vided all at once for learning. However, the real-world de-
ployment of these ReID models in dynamic scenarios, par-
ticularly in the context of extensive streaming data gener-
ated by surveillance systems, exposes a significant perfor-
mance limitation [6, 34]. Therefore, recent efforts have
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shifted towards addressing a more challenging and practical
lifelong person re-identification (LReID) problem [24, 34],
where the training data from different scenarios come con-
tinually and the trained model can not only acquire new in-
formation but also preserve already learned old knowledge.

As well-known in existing lifelong learning tasks [30],
how to alleviate catastrophic forgetting is also the bottle-
neck for LReID. Note that this catastrophic forgetting phe-
nomenon becomes even more critical in LReID due to the
large intra-person divergences and small inter-person vari-
ations. Specifically, as a fine-grained task, the data dis-
tribution for the same person in LReID can significantly
vary, stemming from temporal and environmental changes.
Moreover, different persons may exhibit subtle nuances of
individual information which results in severe distribution
overlapping, causing the forgetting of valuable discrimina-
tion knowledge for each individual.

To tackle this crucial issue, most existing LReID meth-
ods leverage additional memory to reserve past exemplars
for reusing when learning new data [6, 34, 36], but in-
evitably raise severe privacy concerns and computational
costs [25]. As an alternative, various rehearsal-free meth-
ods [24–26, 29] have been proposed to perform knowl-
edge distillation by imposing output consistency constraints
when encountering new datasets. However, such strict con-
straints would seriously limit the plasticity of the ReID
model and lead to insufficient learning of the new data.

Recently, a few works aim to explore prototypes to
mitigate catastrophic forgetting in other lifelong learning
tasks, e.g., class incremental learning (CIL) [30]. These
prototype-based CIL methods [8, 10, 30, 37] usually calcu-
late or learn the feature center of a class as the prototype in
Fig. 1 (a). Nevertheless, solely using a feature point as the
prototype ignores the intra-class diversity information, re-
sulting in serious forgetting caused by insufficient distribu-
tion knowledge of historical data [46]. Thus, several meth-
ods [39, 46] consider calculating a statistic feature distribu-
tion of all sample features from the same class to enhance
the representation ability of prototypes. However, as illus-
trated in Fig. 1 (b), they simply treat all samples equally and
neglect the individual characteristics. As mentioned above,
in LReID, samples from the same person can show sig-
nificant differences because of temporal and environmen-
tal changes. Thus, their obtained prototypes inevitably drift
from the real data distribution, misleading subsequent learn-
ing by the conveyed inaccurate knowledge, especially for
LReID that aims to achieve fine-grained matching.

In this paper, we propose a novel non-exemplar LReID
method named Distribution-aware Knowledge Prototyp-
ing (DKP), that readily models the instance-level distribu-
tion of each sample to generate a more informative person-
specific prototype as shown in Fig. 1 (c), thereby transfer-
ring the useful distribution knowledge to the new model and

achieving better anti-forgetting capacity. To this end, an
Instance-level Distribution Modeling (IDM) network is de-
signed to estimate the distribution for each input instance,
which is accomplished based on the sampling strategy and
the proposed distribution-aware losses. Besides, to incor-
porate the prototypes with comprehensive instance-specific
knowledge, we propose a Distribution-oriented Prototype
Generation (DPG) strategy that transforms the predicted
instance-level distributions into a multivariate Gaussian dis-
tribution which is registered as the distribution-aware pro-
totype. To effectively utilize the preserved knowledge in
prototypes, a Prototype-based Knowledge Transfer (PKT)
module is explored to guide the new model learning via en-
hancing the discriminant of new identity features with the
aid of historical distributions, which mitigates the forget-
ting of the old knowledge and guarantees new knowledge
acquisition. In summary, our contributions are three-fold:
(1) A novel non-exemplar LReID method is proposed that
models the instance-level distribution for each input sam-
ple to achieve distribution-aware prototyping. (2) An ef-
fective knowledge transfer scheme is designed to fully ex-
plore the obtained distribution-aware prototypes for enhanc-
ing the discriminant across datasets and consolidating the
learned knowledge. (3) Extensive experiments on various
datasets and settings have verified the superiority of our
method against the state-of-the-art LReID approaches.

2. Related work
2.1. Lifelong Person Re-Identification
Lifelong person re-identification (LReID) aims to improve
the person matching capacity of the model by learning
from non-stationary data [24, 34], where catastrophic for-
getting is the key challenge [30, 41]. Existing LReID works
could be categorized into two branches, rehearsal-based and
knowledge distillation-based. The former ones [6, 15, 34,
36] aim to mitigate forgetting by storing the exemplar im-
ages of previous steps and replaying them when learning
the new data. However, storing human images is often im-
practical in real scenarios due to privacy. The knowledge
distillation-based approaches [14, 24–26, 29] try to preserve
the old knowledge by constraining the output consistency
between the old and new models. Though promising anti-
forgetting capacity has been exhibited, their acquisition ca-
pacity of the new data is limited due to such strict con-
straints hindering model plasticity. Instead, in this paper,
we investigate the non-exemplar LReID scenario by lever-
aging prototypes of different persons for anti-forgetting.

2.2. Prototype-based Class Incremental Learning
Recently, various prototype-based class incremental learn-
ing (CIL) methods are proposed to continually learn new
classes without preserving any historical exemplars [28, 37,
46, 48]. Some methods treat the prototype of each class as a
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Figure 2. The pipeline of our proposed Distribution-aware Knowledge Prototyping (DKP) model. (a) Our model is built upon a dual-
branch convolution network where the branches predict the instance-specific distribution center and variance, respectively. Furthermore,
three novel modules are designed to accomplish the learning procedure. (b) The Instance-level Distribution Modeling (IDM) module
incorporates the random sampling and the ReID losses Ltrip−d, Lce−d to facilitate the distribution learning of each instance. (c) The
Prototype-based Knowledge Transfer (PKT) module utilizes the previous step prototypes Pt−1 to mitigate forgetting. (d) The Distribution-
oriented Prototype Generation (DPG) transforms the learned insistence-level center and variance into prototypes of the current step Pt.

learnable embedding vector [2, 33, 47], and others calculate
the mean feature of all samples from the same class as the
prototype [10, 28, 46]. When learning the new classes, the
obtained prototypes are utilized to represent the knowledge
of old classes for classifier training [28]. Considering using
a single feature center point will inevitably result in the lack
of informative distribution of data, the latest methods [46]
proposed to simultaneously calculate the mean feature vec-
tor and its variance from all samples to depict the distribu-
tion information of a class. However, such a strategy simply
assumes each sample has the same impact on the estimated
distribution regardless of the intra-class diversity of sam-
ples. Therefore, the obtained prototype exhibits a distribu-
tion drift, thereby misleading the sequential learning steps.

2.3. Distribution Learning

In computer vision, the information of distribution is cru-
cial to describe the inherent probabilistic knowledge of
data [20, 49]. Existing distribution learning methods fo-
cus on modeling the data uncertainty to handle the out-of-
distribution data [23, 38, 45]. Specifically, [20] estimated
the uncertainty of labels in domain adaptive semantic seg-
mentation to recognize and rectify the noise labels. Simi-
larly, [38] adopted distribution learning to alleviate the neg-
ative impacts of label noises and outliers on model training.
In this paper, we propose to model the instance-level distri-
bution of each sample in LReID, based on which the fine-

grained instance-specific information could be mined and
integrated into the obtained distribution-aware prototypes
to mitigate catastrophic forgetting of historical knowledge.

3. The Proposed DKP Method
3.1. Problem Formulation

In non-exemplar LReID, a stream of T training datasets
D = {Dt}Tt=1 collected from different domains are pro-
vided step by step. At the t-th training step, the images of
previous t-1 datasets are unavailable. Given a dataset Dt

with Nt identities, our method obtains a prototype set Pt =
{pi}

Nt
i=1 for all identities. For each instance, our method

learns a multivariate Gaussian distributionN (c,v2), where
c ∈ Rd is the feature center vector of dimension d, and
v2 ∈ Rd is the diagonal element vector derived from the
diagonal covariance matrix Σ ∈ Rd×d.

3.2. The Overall Pipeline of DKP

At the t-th learning step, the overall pipeline of our pro-
posed DKP model, as depicted in Fig. 2 (a), is based on
a dual-branch convolutional network M t. Given a set of
n input images {xi}ni=1 from Dt, a backbone network is
utilized to extract image features. Then, one branch con-
sisting of a pooling layer followed by a linear layer is re-
sponsible for predicting the distribution centers of each in-
put instance, denoted as C = {ci}ni=1. Meanwhile, the other
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branch which comprises a convolution layer, followed by a
pooling layer and a linear layer, is adopted to estimate the
distribution variances of the instances V = {v2

i }ni=1. To en-
hance the model capability of knowledge acquisition and
anti-forgetting, three innovative modules are accordingly
designed to leverage the prototypes from the previous step
Pt−1, as well as generate prototypes of the current step Pt.

3.3. Instance-level Distribution Modeling

In this section, we aim to guide the model to learn the
instance-level distribution which contains fine-grained data
knowledge as illustrated in Fig. 2 (b). Specifically, once the
instance centers C = {ci}ni=1 and variances V = {v2

i }ni=1

are predicted by the model, for each instance xi, we adopt a
Gaussian sampler parameterized as N (ci,v

2
i ) to sample m

feature candidates {f (j)
i }mj=1, where each f

(j)
i is assigned

the same identity label as ci. To ensure identity consis-
tency between {f (j)

i }mj=1 and ci, a distribution-aware cross-
entropy loss Lce−d is calculated as below:

Lce−d =
1

m+ 1
[yi logρ(Wtci) +

m∑
j=1

yi logρ(Wtf
(j)
i )], (1)

where yi is the identity label of image xi, ρ represents the
softmax function, and Wt denotes the linear projection pa-
rameter to map the features to logits.

Moreover, we further extend the widely used triplet loss
in existing LReID models [29, 36] to a distribution-oriented
version, denoted as Ltri−d. Given n images {xi}ni=1 and
their sampling set Fs = {(f (j)

i , yi)|1 ≤ i ≤ n, 1 ≤ j ≤
m}, the Ltri−d for an instance xi is calculated by:

Ltri−d = log
(
1 + exp(∥ ci − f ′

p ∥
2

2
− ∥ ci − f ′

n ∥
2

2)
)
,

(2)
where ci, f ′

p, and f ′
n indicate the anchor point, positive

point, and negative point respectively. Specifically, f ′
p and

f ′
n is obtained by:

f ′
p = arg max

(f ′,y′)∈Fs,y′=yi

∥ ci − f ′ ∥22

f ′
n = arg min

(f ′,y′)∈Fs,y′ ̸=yi

∥ ci − f ′ ∥22
, (3)

where (f ′, y′) is the feature candidate and identity label
pair. Based on Lce−d and Ltri−d, the instances of the same
identity can be pushed together and the ones of different
identities would be pulled away which promotes discrim-
inative knowledge learning. Besides, when an instance is
away from its corresponding identity center, it tends to learn
a larger v2

i to generate samples closer to other instances of
the same identity [5, 38].

3.4. Distribution-oriented Prototype Generation

To preserve abundant and informative knowledge of each
identity without retaining any exemplar, the joint distribu-

(a) PASS (b) Ours

Figure 3. Visualization of our instance-level distribution-aware
prototype and statistical feature distribution-based prototype [46].

tion of all instances within an identity k is formulated as
the distribution-aware prototype, which is parameterized as
N (µk,σ

2
k) where µk ∈ Rd and σ2

k ∈ Rd represent the
mean and variance respectively. Specifically, given identity
k with nk instances {xk

i }
nk
i=1 in the training set (For simplic-

ity, we denote these nk instances as {xi}nk
i=1), the identity

distribution center µk could be obtained by:

µk =
1

nk

nk∑
i=1

ci, (4)

where ci is the learned enter of the instance xi. Besides, the
identity distribution variance σ2

k could be obtained by:

σ2
k =

∫
x2φ(x,µk,σk)dx− (

∫
xφ(x,µk,σk)dx)

2

=
1

nk

nk∑
i=1

(c2i + v2
i )− (

1

nk

nk∑
i=1

ci)
2,

(5)
where

φ(x,µk,σk) =
e−

1
2 (x−µk)

⊤Σ−1
k (x−µk)

(2π)d/2|Σk|1/2
(6)

is the distribution function denoted by N (µk,σ
2
k) and Σk

is a diagonal matrix whose diagonal elements are σ2
k. Sim-

ilarly, φ(x, ci,vi) is the distribution functions denoted by
N (ci,v

2
i ). More derivation of Eq. (4) and Eq. (5) is pro-

vided in the Supplementary Material. Compared to the sta-
tistical feature distribution-based prototypes [46] that only
utilize ci to obtain identity-level divergence, our proposed
distribution-oriented prototype simultaneously considers ci
and vi when calculating σ2

k, making our prototype more
informative. To be noted, v2

i is important in describing
the precise distribution of an identity. As illustrated in
Fig. 3, our predicted distribution could better depict the
area of identities with fewer outliers and more discrimina-
tive boundaries between identities.

In this paper, µk and σ2
k are calculated after the comple-

tion of the t-th training step, and Pt = {(µk,σ
2
k)}

Nt

k=1 is
preserved for the next step.
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Market1501 CUHK-SYSU DukeMTMC MSMT17 CUHK03 Seen-Avg Unseen-AvgMethod mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1

CIL

Joint-Train 75.3 90.1 84.5 86.0 66.9 81.6 31.6 57.1 58.5 61.4 63.4 75.2 55.2 48.2
LwF [21] 56.3 77.1 72.9 75.1 29.6 46.5 6.0 16.6 36.1 37.5 40.2 50.6 47.2 42.6
SPD [31] 35.6 61.2 61.7 64.0 27.5 47.1 5.2 15.5 42.2 44.3 34.4 46.4 40.4 36.6
PRAKA∗ [28] 37.4 61.3 69.3 71.8 35.4 55.0 10.7 27.2 54.0 55.6 41.3 54.2 47.7 41.6
PRD∗ [2] 7.3 18.0 33.5 35.6 3.7 7.6 0.8 2.4 33.8 33.8 15.8 19.5 23.0 17.7

LReID

CRL [42] 58.0 78.2 72.5 75.1 28.3 45.2 6.0 15.8 37.4 39.8 40.5 50.8 47.8 43.5
AKA [24] 51.2 72.0 47.5 45.1 18.7 33.1 16.4 37.6 27.7 27.6 32.3 43.1 44.3 40.4
AKA† [24] 58.1 77.4 72.5 74.8 28.7 45.2 6.1 16.2 38.7 40.4 40.8 50.8 47.6 42.6
PatchKD [29] 68.5 85.7 75.6 78.6 33.8 50.4 6.5 17.0 34.1 36.8 43.7 53.7 49.1 45.4
MEGE [26] 39.0 61.6 73.3 76.6 16.9 30.3 4.6 13.4 36.4 37.1 34.0 43.8 47.7 44.0
DKP(Ours) 60.3 80.6 83.6 85.4 51.6 68.4 19.7 41.8 43.6 44.2 51.8 64.1 59.2 51.6

Table 1. Training Order-1: Market-1501 → CUHK-SYSU → DukeMTMC-reID → MSMT17-V2→ CUHK03. ∗ denotes the results are
reproduced by the released official code. † denotes the results reported by [29].

DukeMTMC MSMT17 Market1501 CUHK-SYSU CUHK03 Seen-Avg Unseen-AvgMethod mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1

CIL

Joint-Train 66.9 81.6 31.6 57.1 75.3 90.1 84.5 86.0 58.5 61.4 63.4 75.2 55.2 48.2
LwF [21] 42.7 61.7 5.1 14.3 34.4 58.6 69.9 73.0 34.1 34.1 37.2 48.4 44.0 40.1
SPD [31] 28.5 48.5 3.7 11.5 32.3 57.4 62.1 65.0 43.0 45.2 33.9 45.5 39.8 36.3
PRAKA∗ [28] 31.2 48.7 6.6 19.1 47.8 69.8 70.4 73.0 54.9 56.6 42.2 53.4 48.4 41.1
PRD∗ [2] 3.6 8.2 0.6 1.8 8.9 22.3 34.6 36.1 35.4 35.3 16.6 20.7 20.7 15.0

LReID

CRL [42] 43.5 63.1 4.8 13.7 35.0 59.8 70.0 72.8 34.5 36.8 37.6 49.2 45.3 41.4
AKA [24] 32.5 49.7 - - - - - - - - - - 40.8 37.2
AKA† [24] 42.2 60.1 5.4 15.1 37.2 59.8 71.2 73.9 36.9 37.9 38.6 49.4 46.0 41.7
PatchKD [29] 58.3 74.1 6.4 17.4 43.2 67.4 74.5 76.9 33.7 34.8 43.2 54.1 48.6 44.1
MEGE [26] 21.6 35.5 3.0 9.3 25.0 49.8 69.9 73.1 34.7 35.1 30.8 40.6 44.3 41.1
DKP(Ours) 53.4 70.5 14.5 33.3 60.6 81.0 83.0 84.9 45.0 46.1 51.3 63.2 59.0 51.6

Table 2. Training Order-2: DukeMTMC-reID → MSMT17-V2→ Market-1501 → CUHK-SYSU → CUHK03. ∗ denotes the results are
reproduced by the released official code. † denotes the results reported by [29]. ‘-’ denotes the result was not reported in the original paper.

3.5. Prototype-based Knowledge Transfer

In our method, the prototypes from the previous step de-
scribe the old identity distributions in the feature space.
When new data is introduced, the extracted new features
should be distinguishable from the old distributions. To
achieve this, we propose a Prototype Knowledge Transfer
scheme: Firstly, as illustrated in Fig. 2 (c), given a set of
prototypes Pt−1 = {(µi,σ

2
i )}

Nt−1

i=1 , we sample Nt−1 pro-
totype featuresFp = {gi}

Nt−1

i=1 according to the distribution
N (µi,σ

2
i ), whereFp is formed as a matrix Fp ∈ RNt−1×d.

For a batch of n images where the predicted feature cen-
ters are transformed into a matrix Fc ∈ Rn×d, we obtain a
prototype-aware coordinate matrix Cp by:

Cp = ρ(FcF⊤
p /λ1), (7)

where the softmax function ρ is applied row-wisely and λ1

is the temperature parameter [12] to scale the matrix val-
ues. Note that each row of Cp encodes the relative distance
between xi and all prototypes. Then, to ensure the dis-
criminant between the new and old data, and additionally

guide the new model learning with old knowledge, we co-
optimize the inter-instance affinity with the proposed Proto-
type Knowledge Transfer loss which is calculated by:

Lproto−d = LKL(ρ(CpC⊤
p /λ2)||ρ(FcF

⊤
c /λ2)), (8)

where LKL is the Kullback Leibler divergence [11] and λ2

is another temperature parameter. ρ(CpC⊤
p ) and ρ(FcF

⊤
c )

are the inter-instance affinity matrix where each row repre-
sents the relative similarity between an instance xi and all
instances. Because Cp is obtained by integrating old distri-
bution knowledge with the new feature, optimizing Eq. (8)
guarantees the acquisition of new data and mitigates forget-
ting of old knowledge.

3.6. Training and Inference

During training, we follow the procedure illustrated in
Fig. 2 and the overall loss is:

L = Lce−d + αLtri−d + βLproto−d, (9)

where α and β are hyperparameters to balance the loss
weights. In this paper, we set α = 1.5 and β = 0.1 re-
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spectively. At the end of the t-th learning step, to further
blend the knowledge, we fuse the learned model M t and
the old model M t−1 as post-processing

M t ← (M t +M t−1)/2. (10)

During testing, we use the predicted feature center c of in-
put image x as shown in Fig. 2 (a) for person matching.

4. Experiments
4.1. Experimental Settings

Benchmarks. We conduct the experiments on the LReID
benchmark [24] which comprises a total of twelve ReID
datasets. Among them, five datasets (Market1501 [44],
DukeMTMC-reID [27], CUHK-SYSU [35], MSMT17-
V2 [32], and CUHK03 [18]) are used as seen domains for
lifelong training and testing. To verify the performance
consistency of the models, two different dataset orders are
adopted to form various lifelong learning scenarios 1 2.
Additionally, the other seven datasets (CUHK01 [17],
CUHK02 [16], VIPeR [7], PRID [13], i-LIDS [4],
GRID [22], and SenseReID [43]) are tested as the unseen
domains to show the generalization capacity of the models.
Evaluation Metrics. The mean Average Precision (mAP)
and Rank@1 accuracy (R@1) on each dataset are utilized to
evaluate the model on specific domains. Besides, the aver-
age mAP and average R@1 on all seen and unseen domains
are calculated to compare the overall lifelong learning and
generalization capacity of the models respectively.
Implementation Details. For a fair comparison with exist-
ing LReID methods [24, 29], we utilize the ResNet50 archi-
tecture as our backbone. For both training orders, we train
the first dataset for 80 epochs, and the subsequent datasets
for 60 epochs each. A mini-batch size of 128 is adopted,
where 32 identities are sampled with 4 images for each
identity during training. For model optimization, the SGD
optimizer with a learning rate of 0.008 and a weight decay
of 0.0001 is used. Furthermore, the temperature parameter
λ1 and λ2 are set as 0.1.

4.2. The Compared Methods

To extensively evaluate our method, various state-of-the-
art non-exemplar LReID approaches including CRL [42],
AKA [24], PatchKD [29], MEGE [26] are compared. Ad-
ditionally, the latest class incremental learning (CIL) meth-
ods, LwF [21], SPD [40], PRAKA [28], and PRD [2], are
also tested. To ensure a fair comparison, all models are im-
plemented with the same backbone and training settings.
Thus for the CIL models, we incorporate the widely adopted

1Training Order-1: Market1501 → CUHK-SYSU → DukeMTMC →
MSMT17 → CUHK03.

2Training Order-2: DukeMTMC → MSMT17 → Market1501 →
CUHK-SYSU → CUHK03.

Figure 4. Performance tendency on seen domains. After each
training step, the model is evaluated on the already-seen domains.

Figure 5. Performance tendency on unseen domains. After each
training step, the performance of all unseen domains is evaluated.

triplet loss [9] to align with the LReID methods. In addition,
the Joint-Train result, the upper bound of the LReID mod-
els where all datasets are given at once for training, is also
reported. Besides, we also implement Finetune that trains
on the datasets step by step without anti-forgetting designs.

4.3. Seen-Domain Performance Evaluation

We present the results of different methods on each seen do-
main and the average performance across all seen domains
(Seen-Avg) in Tab. 1 and Tab. 2, corresponding to Training
Order-1 and Training Order-2 respectively. The best and
second best results are marked in Bold and underlined.

Compared to LReID Methods: As reported in Tab. 1
and Tab. 2, our DKP outperforms all existing LReID models
significantly. Compared to the second-best player PatchKD,
our method achieves an improvement of 8.1%/10.4% and
8.1%/9.1% on the average mAP/R@1 performance for
seen domains. Notably, PatchKD performs better than ours
on the initial dataset because it employs a strict knowl-
edge distillation constraint that enforces output consis-
tency on the new and old models, thereby enhancing the
model’s anti-forgetting capacity. However, the learnability
of PatchKD is severely limited to new data, resulting in in-
ferior performance on subsequent datasets.

Compared to CIL Methods: Our DKP outperforms
the CIL methods on the Market1501, CUHK-SYSU,
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(a) The weight of Ltri−d (b) The weight of Lproto−d (c) Stored prototype stages (d) Feature candidates number

Figure 6. Ablation studies on hyperparameters. The values marked by the dashed lines are adopted by our proposed method.

Seen-Avg Unseen-Avg
Baseline IDM DPG&PKT mAP R@1 mAP R@1

✓ 44.0 53.4 46.8 39.8
✓ ✓ 46.1 60.0 51.6 45.5
✓ ✓ 50.0 62.2 57.7 49.9
✓ ✓ ✓ 51.8 64.1 59.2 51.6

Table 3. Ablation study of different components.

DukeMTMC, and MSMT17 datasets, exhibiting an average
mAP/R@1 improvement of 10.5%/9.9% and 9.1%/9.8%
across both training orders for seen domains. We observe
that although the prototype-based model PRAKA excels our
DKP on the last domain CUHK03, our model achieves re-
markably higher performance than PRAKA in the early-
stage domains and superior average performance on both
seen and unseen domains, owing to the knowledgeable in-
formation encoded by our distribution-aware prototypes,
which mitigates the forgetting caused by domain shifts.

Seen Domain Performance Tendency. Fig. 4 demon-
strates the anti-forgetting capacity of different models.
Compared to other methods, our DKP initially obtains
slightly inferior performance. This disparity arises mainly
because our proposed instance-level distribution learning
component partially slows down the convergence. With the
increase in training steps, our model exhibits superior av-
erage performance. These results indicate that our method
excels in the long-term consolidation of knowledge.

4.4. Unseen-Domain Generalization Evaluation

The average performance on unseen domains is shown in
the last two columns of Tab. 1 and Tab. 2. Our method
demonstrates superior generalization capabilities compared
to state-of-the-art CIL models, exhibiting an average
mAP/R@1 improvement of 11.5%/9.0% and 10.6%/10.5%
across both training orders. Furthermore, our model also
significantly outperforms the LReID models by a margin of
10.1%/6.2% and 10.4%/7.5% average mAP/R@1 improve-
ment. These results substantiate that our model effectively
consolidates more generalizable knowledge.

(a) Epoch-10 (b) Epoch-20

(c) Epoch-30 (d) Epoch-40

Figure 7. The visualization of the learned distributions under dif-
ferent training epochs.

Generalization Curves. We further analyze the average
performance on the unseen domains along the lifelong train-
ing steps, as depicted in Fig. 5. The results show that our
DKP could preserve more generalizable knowledge com-
pared to existing methods. Additionally, our method ex-
hibits faster performance growth across the training steps,
further highlighting its superior generalization capability.

4.5. Ablation Studies
Influence of Different Components. As shown in Tab. 3,
the Baseline model is the framework excluding our IDM,
DPG and PKT. We then add these modules to evaluate
their impacts. Because the DPG module does not inde-
pendently influence the model training, we integrate it as
the front module of PKT, formulating the combined mod-
ule as DPG&PKT. As we can see, the utilization of both
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Figure 8. The t-SNE visualization results of the learned features on five seen datasets.

the IDM and DPG&PKT modules consistently leads to per-
formance improvements on both seen and unseen domains.
The instance-level distribution modeling in IDM guides the
model to learn more discriminative features. Additionally,
DPG&PKT facilitates the transfer of distribution knowl-
edge encoded in the prototypes to the new model that ef-
fectively mitigates forgetting. When both two modules are
used together, the performance is further improved because
the instance distributions modeled by IDM promote the
knowledge transfer capacity of DPG&PKT.

Influence of Hyperparameters. We analyze the effects
of weights for Ltri−d and Lproto−d in Fig. 6 (a) and (b).
The results indicate that the model performance varies sig-
nificantly as α changes. This is because Ltri−d is power-
ful in guiding the model to learn discriminative knowledge.
However, an excessively large value of Ltri−d can lead to
optimization instability. In contrast, Lproto−d has a more
stable influence on the model since it imposes a looser con-
straint. In this paper, we set α = 1.5 and β = 0.1 by
default according to the results in Fig. 6 (a) and Fig. 6 (b).
In Fig. 6 (c), we examine the impact of storing the proto-
types from previous K stages during lifelong training. The
results show a declining tendency as K increases. This is
due to the prototypes from older steps becoming outdated
as the model evolves. Thus, we only utilize the prototypes
of the previous step in this paper. Lastly, we investigated
the influence of the sampled feature candidate number m
in Fig. 6 (d). The findings reveal that a higher sampling
number leads to better performance, as it enables more ac-
curate modeling of the instance distribution. For the sake of
performance and effectiveness, we set m = 6.

4.6. Visualization Results
To illustrate the distribution modeling process of our DKP,
the t-SNE visualization in Fig. 7 shows the learned centers
and variances of training samples at different epochs. At
the initial epochs, the features exhibit a dispersed pattern
and the learned variance is large. As the epoch number in-
creases, the features become well-clustered and the learned
variances are smaller. Simultaneously, the discriminative
boundaries between different clusters are obtained, indicat-
ing that different individuals are better distinguished.

Besides, we also visualize the features of different
datasets shown in Fig. 8 in comparison with Joint-Train,
Finetune, and PatchKD. Joint-Train represents all the data
is available at once and different datasets are automati-
cally learned to be separate. Due to the non-stationary data
stream, both Finetune and PatchKD struggle to accumu-
late enough knowledge to separate the datasets. However,
owing to the effective knowledge accumulation capacity of
our distribution-aware knowledge prototyping model, each
dataset can be discriminatively separated. This can be at-
tributed to our prototype knowledge transfer loss Lproto−d

which facilitates both cross-step discriminant enhancement
and consolidation of historical knowledge.

4.7. Discussion and Future Work
Our proposed method outperforms existing methods on the
average performance over all datasets, but it still falls short
compared to PatchKD and PRAKA on the first and last
datasets, respectively, indicating potential space for perfor-
mance improvement. Additionally, the prototypes from ear-
lier steps do not contribute to knowledge transfer in our
method due to their outdated nature, while they still con-
tain valuable distribution information to some extent which
should be investigated in the future.

5. Conclusion
In this paper, we focus on the non-exemplar LReID and pro-
pose a prototype-based method Distribution-aware Knowl-
edge Prototyping (DKP). To encode more fine-grained
knowledge into the prototypes, we propose Instance-level
Distribution Modeling and Distribution-oriented Prototype
Generation modules to capture the instance-level distribu-
tion and generate distribution-aware prototypes. Besides, a
Prototype-based Knowledge Transfer module is developed
to consolidate the old knowledge from the prototypes into
the new model. Extensive experimental results show DKP
outperforms existing LReID models by a large margin. To
our knowledge, DKP is a pioneer LReID work that adapts
the prototype to model distribution knowledge.
Acknowledgments. This work was supported by the Na-
tional Natural Science Foundation of China (62376011,
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