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Abstract

In video super-resolution, it is common to use a frame-
wise alignment to support the propagation of information
over time. The role of alignment is well-studied for low-
level enhancement in video, but existing works overlook
a critical step – resampling. We show through extensive
experiments that for alignment to be effective, the resam-
pling should preserve the reference frequency spectrum
while minimizing spatial distortions. However, most ex-
isting works simply use a default choice of bilinear inter-
polation for resampling even though bilinear interpolation
has a smoothing effect and hinders super-resolution. From
these observations, we propose an implicit resampling-
based alignment. The sampling positions are encoded by
a sinusoidal positional encoding, while the value is es-
timated with a coordinate network and a window-based
cross-attention. We show that bilinear interpolation inher-
ently attenuates high-frequency information while an MLP-
based coordinate network can approximate more frequen-
cies. Experiments on synthetic and real-world datasets
show that alignment with our proposed implicit resampling
enhances the performance of state-of-the-art frameworks
with minimal impact on both compute and parameters.

1. Introduction
Video super-resolution (VSR) recovers a high spatial reso-
lution sequence of frames from a low-resolution sequence.
While image super-resolution can be applied naively to
each frame individually, the temporal correlations across
the frames give an extra source of information to im-
prove the super-resolved output. As such, the main differ-
ence in video versus image super-resolution architectures
lies in the use of temporal dependencies. Previous works
[2, 9, 26, 28] have shown that spatial alignment is an essen-
tial pre-processing step for effective information exchange
across the frames. Given the frame-to-frame camera and
object motions, alignment provides indications of sub-pixel
information which can benefit the super-resolution.

Frame-wise alignment estimates and compensates for
motion. Motion estimation determines pixel displacements
based on optical flow or additional offset prediction net-
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Figure 1. Comparisons with super-resolved outcomes employing
nearest-neighbor interpolation, bilinear and bicubic resampling.
The red arrow highlights smoothing effects for bilinear and bicu-
bic interpolation, while the blue arrow highlights the ragged edge.

works [3, 18, 28]. Motion compensation warps the refer-
ence to be aligned with the current frame. During compen-
sation, resampling is necessary because the warping may
require non-discrete pixel values which are not present in
the reference image.

Alignment is well-studied in low-level vision [2, 19, 31],
but the role of resampling in alignment has been over-
looked. In fact, almost all existing works [2, 3, 18, 28] use
a default bilinear interpolation due to its simplicity. Yet re-
sampling is a critical step of alignment which should not
be overlooked. As Fig. 1 shows, the choice in resampling
method can greatly impact the output. Resampling with bi-
linear and bicubic interpolation preserves the spatial struc-
tures of the original image, but tends to smooth out the in-
tensity values. Resampling with nearest-neighbour interpo-
lation gives sharper results, albeit with spatial distortions
and ragged edges.

To our knowledge, we are the first to investigate resam-
pling in alignment for super-resolution; we take a deep dive
and show the significant impact it can have. The distinc-
tions between resampling methods, particularly their impact
on frequency reconstruction for sub-pixel values, become
more evident when estimated motion can provide accurate
sub-pixel offsets, that is, when the flow algorithms are more
precise. As the resampling accuracy is hard to evaluate sep-
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arately from the motion estimation accuracy, we examine
the performance of resampling methods under ideal optical
flow conditions using a synthetic dataset. This is the first
study to isolate the effect of the resampling strategy with
fixed flow in both synthetic and real-world settings. Our
findings show that for a resampling method to be effective
in alignment, it should avoid quantization in the coordinate
transform and refrain from imposing low-pass filtering on
the original signal.

Inspired by recent image implicit representations [6, 30],
we propose a new alignment module with an implicit resam-
pling. The resampling is achieved through a coordinate net-
work with an local cross-attention module, applied to a fea-
ture window based on the motion offset. Rather than explic-
itly interpolating on the reference frame for the sub-pixel
feature value, we aggregate reference values with an affin-
ity matrix based on the feature and positional encoding sim-
ilarity. Such an aggregation does not impose any smooth-
ness constraints on the resampling process. It also avoids
spatial distortions by encoding the sub-pixel coordinate in-
formation into the sinusoidal positional encoding. Conse-
quently, our implicit resampling-based alignment module
significantly outperforms both the state-of-the-art bilinear
resampling-based alignments [3, 17, 18] and the nearest-
neighbour resampling-based alignment [26].

Our proposed implicit resampling-based alignment once
learned, can be applied across diverse alignment scenarios.
In comparison, alignment modules in competing methods
using deformable convolution [28] and deformable atten-
tion [18] must be learned specifically for fixed feature scales
and alignment configurations. Our implicit resampling-
based alignment is trained to handle all feature scales and
alignment configurations, enhancing generalization and re-
ducing parameter size. We summarize our contribution as
follows:

• We highlight the previously overlooked role of resam-
pling in alignment. Our studies show that effective resam-
pling methods should both preserve the frequency spec-
trum while limiting spatial distortions.

• We propose an implicit resampling-based alignment
method, where features and estimated motion are jointly
learned through coordinate networks, and alignment is
performed implicitly through window-based attention.
Our implicit resampling-based alignment, once trained,
can generalize to any feature scales and alignment con-
figurations.

• Our proposed implicit resampling-based alignment sur-
passes current state-of-the-art alignment methods on
video super-resolution tasks for both synthetic and real-
world datasets, using either CNNs or Transformers as the
backbone models.

2. Related Work

Image Resampling Aligning the reference frame to the
destination frame requires resampling sub-pixel values on
the discrete reference image. Nearest-neighbour resam-
pling directly looks up the values of nearest-neighbours; it
is simple, but also has choppy distortions. Smoother re-
sults can be achieved with bilinear (or bicubic) interpola-
tion, which guarantees an L0- (or higher-order) smoothness
on the resulting image intensity surface [7]. While smooth,
the results are not edge preserving and as a result, can also
be blurry [29]. Recently, implicit representations in the
form of neural networks have been proposed for encoding
scenes [21] and images [6]. [16] leverage coordinate net-
work as a prior for scene flow regularization. Our method
shares the same insight, where we model the entire resam-
pling and alignment process with coordinate networks and
cross-attention mechanism.

Video Super-Resolution Video super-resolution recovers
a spatially high-resolution sequence from low-resolution
frames. Its difference with image super-resolution lies in
the use of temporal information. Early methods [8, 11–13]
did not consider spatial alignment from frame to frame. Ini-
tially, VSR methods applied optical flow-based warping to
align the neighbouring image inputs [14, 31]. However, in-
accurate flows lead to degradation and more recently, strate-
gies have shifted either to align feature maps instead of
images [2] or use the flow to guide deformable convolu-
tions [3, 17, 28] and deformable attention schemes [18]. To
increase the robustness toward inaccurate optical flow, [26]
propose patch alignment; they align blocks by averaging the
motions within predefined grids. We also consider a patch
(referred to as a window in our work) context for cross-
attention. However, our strategy differs as our window is
dynamic, i.e. each pixel’s reference window is determined
by its optical flow.

Spatial & Temporal Super-resolution Image super-
resolution aims to provide an up-sampled image from the
low-resolution image and serves as the basis for video
super-resolution. The recent work [6, 30] proposed to learn
a continuous representation from the discrete image with an
MLP. Video frame interpolation can be seen as a form of
temporal super-resolution. The interpolated frame is aggre-
gated from adjacent frames by alignment and propagation
[31]. Recently, [23] proposed softmax splatting based on
softmax resampling for interpolating frames in time. In this
work, the resampling weights are related to the depth mask
and the resampled value is based on relative occlusions. In
contrast, our framework encodes sub-pixel information into
positional encodings, reconstructing content at a higher fre-
quency for VSR.
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Figure 2. (a). Motion estimation provides a transformation that maps the reference frame Xr to the current frame Xt. Compensation
performs resampling on Xr to obtain the aligned value Xa[x, y] at each pixel location. (b) The estimated motion offsets are decomposed
into integral offsets and decimal offsets. The integral offsets are used for window queries and the decimal offsets are used for position
encoding for the query pixel Xt. The features along with the positional encodings are modeled with coordinate networks, and the aligned
pixel Xa is obtained by a cross-attention mechanism.

3. Preliminaries

3.1. Spatial Alignment

In video super-resolution, inter-frame propagation enhances
information across time. The propagation is facilitated by
spatial alignment; the aligned frame gets concatenated with
the current frame, and the two are fed together into subse-
quent network blocks. The alignment can be performed on
either input images or intermediate feature maps. We refer
to both as frame-wise alignment within a general formula-
tion and denote both images and features simply as some
X ∈ RH×W×C where H , W and C are the height, width
and channels, respectively. To focus on the spatial opera-
tions in the subsequent discussion, we omit the C dimen-
sion and mention it explicitly only where needed.

As shown in Fig. 2a, alignment can be broken down into
two steps: (1) motion estimation and (2) motion compen-
sation. Basic implementations of alignment perform these
two steps in a one-off manner [2]. More advanced meth-
ods make multiple motion estimates and ensemble multiple
compensations with convolution, through deformable con-
volution [3, 28], or with attention mechanisms, through de-
formable attention [18].

Consider a current frame Xt indexed by t with spatial
coordinates [x, y] 1, and a reference frame Xr indexed by
r. Corresponding points in Xt and Xr are related by a
motion displacement field M ∈ RH×W×2. Each element
M[x, y] = (∆x,∆y) represents the displacement of the
pixel at coordinate [x, y] in Xt to its corresponding point
in the reference frame Xr, with coordinates in the reference

1In our work, we will use square and round braces to emphasize the
difference between discrete coordinates on a pixel grid versus continuous
coordinates on a continuous plane.

given by (x+∆x, y+∆y). A simple way to estimate M is
by solving for the optical flow between Xt and Xr. More
recent works [3, 18, 28] estimate additional offsets to refine
the predicted optical flow.

Based on M, frame-wise alignment estimates
Xa ∈ RH×W×C , which can be regarded as a motion-
compensated version of the reference frame Xr :

Xa = W(Xr,M), (1)

where W indicates a warping function that performs the
motion compensation. The standard strategy for compen-
sation is through backward warping, where the following
estimation is iterated on all spatial locations for Xa:

Xa[x, y] = Xr(x+∆x, y +∆y). (2)

Note that estimating Xr(x+∆x, y+∆y) requires a resam-
pling operation on Xr, as (∆x,∆y) are continuous values.

3.2. Spatial Resampling for Alignment

Spatial resampling estimates sub-pixel values on a discrete
image or feature grid X. The support of a resampling
method indicates the window on X which is required to es-
timate the value X(a, b) for continuous coordinates (a, b).
Common methods for spatial resampling interpolate from
the support on a heuristic basis. Examples include nearest-
neighbour, bilinear and bicubic interpolation.
Nearest-neighbour Interpolation The resampled value is
taken as the value of X at the discrete coordinates [x, y]
nearest to (a, b):

X(a, b)nn = X[x∗, y∗], (3)
where [x∗, y∗] = argmin

(x,y)

||(a, b)− (x, y)||2. (4)
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Bilinear / Bicubic Interpolation estimates the resampled
value as a weighted sum of the 4 (bilinear) or 16 (bicubic)
discrete neighbours around (a, b), which we denote in short
form as ⌊a, b⌉:

Xr(a, b)bi =
∑

(x,y)∈⌊a,b⌉bi

wxy ·X[x, y], (5)

where wxy are the associated weighting coefficients
based on either a linear (bilinear) or quadratic (bicubic) in-
terpolation of a and b with respect to the neighbouring co-
ordinates2. We refer the reader to Sec. A of the Supplemen-
tary for the precise definitions.

Without prior knowledge on how the original discrete
image Xr is sampled, most interpolation methods impose
smoothness assumptions for resampling. By virtue of as-
suming linear or quadratic interpolants, bilinear and bicu-
bic interpolation enforce an L0 / L1 smoothness constraint
on the underlying image plane. Such constraints are equiva-
lent to applying low-pass filters on the source frame’s inten-
sity or features [33], hence the blurry interpolated results.
Notably, nearest-neighbour interpolation does not have any
smoothness requirements, and hence does not have a low-
pass effect. However, it introduces spatial distortions by
shifting the sampled position to the nearest pixel grid.

3.3. Analysis on Resampling for Alignment

We examine the frequency response of the nearest and bilin-
ear interpolation methods. Let fs denote the sampling fre-
quency. The nearest-neighbour interpolator corresponds to
a rectangular function in the spatial domain and its Fourier
transform is a sinc function given by Fnn(f) = sinc(f/fs),
which has a decay rate of fs/f in the out-of-band region.
The bilinear interpolator corresponds to a triangular func-
tion in the spatial domain and its Fourier transform is a
squared sinc function given by Fbi(f) = sinc2(f/fs),
which has a decay rate of (fs/f)2 in the out-of-band region.

Compared to the nearest-neighbour interpolator, which
has a decay rate of fs/f , the bilinear interpolator with a de-
cay rate of (fs/f)2 can suppress more out-of-band aliasing
artifacts. This explains why the nearest-neighbour interpo-
lator introduces more artifacts and distortion. However, the
bilinear interpolator also causes more smoothing effect on
the in-band frequency than the nearest-neighbour interpo-
lator. In the following section, we investigate the use of
coordinate networks as function approximators for the ideal
interpolator.

2Strictly speaking, the interpolation is only linear (or quadratic) for
along lines parallel in the x and y directions, i.e. at fixed points.

4. Methodology
4.1. Coordinate Network for Implicit Resampling

A coordinate network is a network that uses coordinates as
inputs to represent signals. We use a coordinate network
as a prior for resampling and encode the prior as trainable
weights in an PE-MLP. Such a use of coordinate networks
was first explored in neural priors for scene flow regulariza-
tion [16] though an implicit optimization at runtime.

During training, the coordinate network is jointly opti-
mized with an L2 loss on all alignment instances. Being a
universal approximator in theory [10], MLPs can represent
any function and frequency. Moreover, we use positional
encoding(PE)-MLPs, as they have been shown to have good
learning capacity for high frequency content. [21]

Specifically, given the input feature X and its coordi-
nates p, the coordinate network F jointly modelling feature
and its position.

R = F (X+ γ(p)) (6)

where γ(p) denotes a positional encoding and R is the out-
put feature. The positional encoding γ(p) ∈ R2 → R4D is
computed by projecting low-dimensional input coordinates
p to a 4D dimensional hypersphere.

γ(p)=
[
[sin(ωp), cos(ωp)], . . . , [sin(ωD−1p), cos(ωD−1p)]

]
,

(7)
where ω is the angular speed and D controls the number
of frequency bands from ω to ωD−1. A larger D provides
higher capacity for encoding higher frequency.

Coordinate networks offer several advantages over con-
ventional alignment methods. First, they can theoreti-
cally represent any frequency component of the signal, thus
avoiding the low-pass filtering effect. Second, they can
serve as a general alignment prior that can be applied to
any alignment scenario, regardless of the feature scale or
the alignment configuration. In contrast, existing alignment
modules are usually tailored for specific feature scales and
alignment configurations, which may limit their generaliza-
tion ability and increase their parameter size.

4.2. Alignment with Implicit Resampling

Having obtained the output feature through the coordi-
nate network, we conducting spatial alignment via a cross-
attention mechanism. Our key insight is that in spatial align-
ment, the values of the current frame Xt can also benefit
the compensation. In conventional methods, including de-
formable convolution and deformable attention, the support
for the compensation is based only on the values of the ref-
erence frame Xr. The values of the current frame Xt, be-
yond estimating the displacement field M, are not used. In
contrast, we use as support values from both Xr and Xt,
which we find can help us improve the alignment accuracy.
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To that end, we propose an alignment where the resampling
is implicit. Rather than estimate the resampled value with
an explicit function, as the examples given in Sec. 3.2, we
align with a cross-attention operation between the the corre-
sponding outputs from reference and current frames, where
the Xt serves as query, Xr as key and the values.

4.3. Window-based Cross Attention

We define the motion-compensation for coordinate [x, y]:

Xa[x, y] = softmax
(QKT

√
C

)
V (8)

where

Q = Fq(Xt + Pt), (9)
K = Fk(Wr +Pr), (10)
V = Fv(Wr +Pr) (11)

are the corresponding output from the coordinate networks;
softmax

(
QKT

√
C

)
is the affinity matrix encoding the similar-

ity of pixel Xt ∈ R1×C from the current frame and a win-
dow of pixels Wr ∈ Rw×w×C from the reference frame.

The window center is based on the estimated displace-
ment, where w is the chosen window size. Specifically,
for M(x, y) = (∆x,∆y), we can split it into integer part
(zx, zy) and decimal part (dx,dy):

(∆x,∆y) = (zx, zy) + (dx,dy). (12)

The integer part selects the window of support in Xr, while
decimal part is encoded into a positional encoding to esti-
mate the sub-pixel information from the window of support.
The sub-pixel information is then used to encode coordinate
information for Xt and Xa, as it reflects the relative position
between queried pixel and neighbouring pixels.
Integral Offsets as Window Queries The window Wr is
centered on (x + zx, y + zy) and selects the neighbouring
w × w pixels, where

Wr[i, j] = Xr[x+zx+i, y+zy+j] (13)
Pr[i, j] = γ([i, j]/w) (14)

for all −⌊w/2⌋ ≤ i, j ≤ w−⌊w/2⌋−1.
For window pixels, the positional encoding is given as

a normalized relative position to the window center, hence
the scaling by 1/w.

The window-based attention reduces the computational
cost to O(w2 ·HW ) from the quadratic cost O(HW ·HW )
of the global attention. The choice in window size w is
flexible for different motion accuracies. Generally, larger
w is more robust to noisy motion estimation while smaller
w provides sharper results.

Decimal Offsets as Positional Encoding For the query en-
coding for pixel [i, j], we have

Xt = Xt[x, y] (15)
Pt = γ([dx,dy]/2w), (16)

where the positional encoding is again normalized with re-
spect to the window center. As [dx,dy]/w is a decimal, a
high angular speed ω is required to represent this informa-
tion. For

ω = T−D, (17)

we set T = 0.01 and form a geometric progression from
2π to 100π on the angular speed to represent more precise
sub-pixel position information.

5. Experiments on Resampling for Alignment
We perform alignment studies under a synthetic dataset
with ground truth optical flow, as well as two commonly
used optical flows in video super-resolution, namely RAFT
[27] and SPyNet [25]. The former is a precise and slow
method, while the latter is faster but less accurate.

For the synthetic data, we split the training videos of the
clean data track of Sintel [1] into 20 training and 3 test-
ing videos and report the testing results. We generate low-
resolution training pairs with bicubic down-sampling of the
high-resolution counterparts. As only first-order forward
backward optical flow (t→ t+ 1) ground-truth is provided,
we perform image alignment from (t+1 → t) and con-
catenate with original frame before feeding into the super-
resolution network.

We use a VSR transformer [17] as the super-resolution
backbone. We consider the following baselines and align-
ment strategies: (1) w/o Prop.: An image super-resolution
baseline with no propagation. (2) w/o Align.: propagation
without alignment. (3) Optical flow warping with nearest-
neighbour , bilinear and bicubic interpolations. (4) Flow-
Guided Deformable Convolution (FGDC) [28]. (5) Flow-
Guided Deformable Attention (FGDA) [18] (6) Patch align-
ment (PA) [26]. (7) Our implicit resampling-based Align-
ment (IA).

5.1. Results Analysis

The Impact of Resampling Fig. 3 compares PSNR values
across various alignment methods. Intriguingly, nearest-
neighbour interpolation outperforms bilinear interpolation
for image alignment, while the opposite is true for feature
alignment. This observation highlights inherent limitations
associated with both interpolation techniques. Specifically,
nearest-neighbour introduces distortions, whereas bilinear
interpolation techniques introduce smoothing effects. Our
conclusion is grounded in two primary observations.

Firstly, for image alignment, the frames have relatively
high frequency components as it has not passed through
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Alignment Params Resamp. GT RAFT SpyNet
(M) Flow Flow Flow

OF Warp 1.35
nearest. 31.84 31.87 31.78
bilinear 31.92 31.87 31.85
bicubic 31.93 31.90 31.89

FGDC [28] 1.60 bilinear 32.08 31.99 31.98
FGDA [18] 1.56 bilinear 32.03 31.91 31.94
PA [26] 1.35 nearest. 31.81 31.85 31.82
IA (ours) 1.36 implicit 32.14 32.03 32.05

Table 1. Comparisons on feature alignment. Implicit
Resampling-based Alignment (IA) outperforms all three
state-of-the-art alignment methods.

Figure 3. Comparison of PSNR on alignment utilizing optical flow with different accuracies. Nearest-neighbour interpolation outperforms
bilinear interpolation for image alignment, while the opposite is true for feature alignment. This observation highlights inherent limitations
associated with both interpolation techniques.

any convolution layers (which themselves act as smooth-
ing filters). As such, any spatial distortions introduced by
nearest-neighbour interpolation are outweighed by its abil-
ity to preserve high-frequency components.

Secondly, for feature alignment, there is reduced sensi-
tivity to high-frequency components because the features
are likely concentrated in lower frequency spectrums due
to the spectral bias of neural networks [5, 24]. Thus the
gains from preserving high-frequency are outweighed by
the introduced spatial distortions for nearest-neighbour in-
terpolation. In light of these observations, we posit that an
optimal resampling method should not impose smoothness
constraints to avoid attenuating high-frequency components
and mitigate the distortions resulting from coordinate quan-
tization.

Comparison with State-of-the-Art Alignment Methods
Given the established effectiveness of feature alignment
over image alignment, our comparison focuses solely on
state-of-the-art approaches in feature alignment. From Tab.
1, Implicit Resampling-based Alignment (IA) outperforms
all three state-of-the-art alignment methods, owing to its ca-
pacity to implicitly learn resampling weights. In contrast,
FGDC, FGDA, and PA rely on adaptations of bilinear and
nearest-neighbour interpolation, introducing either smooth-
ing priors or distortions, contributing to their comparative
performance inferiority. FGDA is inferior to FGDC due to
the limited training data. As PA is a robust method designed
to counter inaccurate optical flow. The synthetic dataset
with GT flow is not the ideal case for PA so it doesn’t do
well. Regarding parameter size considerations, IA, func-
tioning as a coordinate network, shares parameters across
all alignment operations, resulting in a modest parameter
increase of 0.01M compared to FGDC (0.25M) and FGDA
(0.21M).

6. Comparison with State-of-the-Art Methods
on Large-Scale Datasets

On standard video SR datasets REDS [22], Vimeo90K [31],
Vid4 [20] and UDM10 [32], we incorporate implicit
resampling-based alignment into two state-of-the-art net-
works: a convolutional neural network (CNN) based model
(BasicVSR [2]) for first-order VSR, which leverages in-
formation from one neighboring frame, and a recurrent
Transformer based model (PSRT-recurrent [26]) for second-
order VSR, which utilizes information from two neighbor-
ing frames. We denote our models as IA-CNN and IA-RT,
respectively. We refer the reader to Sec. B of the Supple-
mentary for exact experimental configurations.

6.1. Results Analysis

Table 2 presents a quantitative comparison with state-of-
the-art (SOTA) methods. For CNN-based models, IA-CNN
outperforms its baseline BasicVSR with only marginal in-
crease in parameters. For Transformer-based models, IA-
RT outperforms its baseline, PSRT-recurrent, by 0.18 on
PSNR and 0.0032 on SSIM for REDS4, 0.19 on PSNR and
0.0032 on SSIM for Vid4 for BI degradation. It establish it-
self as the current state-of-the-art on REDS4 and Vid for BI
degradation and UDM10 and Vid4 for BD degradation. Yet
our implicit alignment module only introduce 0.2% param-
eters compare to its baseline [26]. IA-RT is slightly below
PSRT and VRT on Vimeo90k, primarily due to challenges
in estimating accurate optical flow, limiting the benefits of
accurately sampling at a sub-pixel level.
Qualitative Results for IA-CNN and IA-RT Fig. 4 shows
qualitative comparisons between BasicVSR and IA-CNN
on the REDS4 dataset. Fig. 5 shows qualitative compar-
isons between BasicVSR++, PSRT, RVRT and IA-RT. The
IA-CNN and IA-RT exhibit enhanced ability to propagate
high-frequency contents and reconstruct finer patterns com-
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Method
BI degradation BD degradation

Params REDS4[22] Vimeo-90K-T [31] Vid4 [20] UDM10 [32] Vimeo-90K-T [31] Vid4 [20]
(M) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TOFlow [31] - 27.98 0.7990 33.08 0.9054 25.89 0.7651 36.26 0.9438 34.62 0.9212 25.85 0.7659
EDVR [28] 20.6 31.09 0.8800 37.61 0.9489 27.35 0.8264 39.89 0.9686 37.81 0.9523 27.85 0.8503
MuCAN [15] - 30.88 0.8750 37.32 0.9465 - - - - - - - -
BasicVSR [2] 6.3 31.42 0.8909 37.18 0.9450 27.24 0.8251 39.96 0.9694 37.53 0.9498 27.96 0.8553
IA-CNN (ours) 8.5 31.68 0.8959 37.34 0.9463 27.42 0.8315 - - - - - -
BasicVSR++ [3] 7.3 32.39 0.9069 37.79 0.9500 27.79 0.8400 40.72 0.9722 38.21 0.9550 29.04 0.8753
VRT [17] 35.6 32.19 0.9006 38.20 0.9530 27.93 0.8425 41.05 0.9737 38.72 0.9584 29.42 0.8795
RVRT [18] 10.8 32.75 0.9113 38.15 0.9527 27.99 0.8462 40.90 0.9729 38.59 0.9576 29.54 0.8810
PSRT-recurrent [26] 13.4 32.72 0.9106 38.27 0.9536 28.07 0.8485 - - - - - -
IA-RT (ours) 13.4 32.90 0.9138 38.14 0.9528 28.26 0.8517 41.15 0.9750 38.62 0.9579 29.68 0.8884

Table 2. Quantitative comparison on REDS4 [22], Vimeo-90K-T [31], UDM10 [32] and Vid4 [20] dataset for 4× Video SR. The first part
presents methods with first-order propagation, while the second part presents methods with second-order propagation.

Figure 4. Qualitative comparisons on REDS4 dataset. IA-CNN provides more details on the wall and more uniform patterns on the window.

Figure 5. Qualitative comparisons on REDS4 and Vid4. IA-RT provides sharper results and more fine-grained patterns.

pared to other methods. Additional qualitative results can
be found in the Sec. C of the Supplementary.

Real-World Video SR is a variant of the video SR task
where the low-resolution inputs are corrupted with non-
deterministic degradation such as blur, noise, and compres-
sion artifacts. In the face of such degradation, existing
methods often yield excessively smoothed results. Quali-
tative comparisons in Fig. 6 showcase that, when integrated

into RealBasicVSR [4], our implicit alignment method pro-
duces results that are more realistic and fine-grained.

6.2. Ablation Studies
Positional Encoding Table 3 shows that having positional
encoding yields a noteworthy improvement in PSNR by
0.28 compared to the naive window-based cross-attention.
When positional encodings are only enabled for window in-
dices, a large drop on PSNR is observed, suggesting the sce-
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Figure 6. Qualitative comparison on VideoLQ dataset. Our proposed IA method recovers the brick textures and the wall patterns, which
RealBasicVSR does not recover. We highlight the detail regions with yellow boxes.

nario where the estimated motion is quantized to integers
will leads to degraded results. When only introducing po-
sitional encodings on decimal offsets, the model collapse.
This outcome is attributed to the absence of relative posi-
tional information for the window features.

PE on decimal offsets PE on window indices PSNR SSIM
✗ ✗ 30.43 0.8700
✓ ✗ 28.71 0.8184
✗ ✓ 30.54 0.8730
✓ ✓ 30.71 0.8776

Table 3. Ablations on positional encodings.

Window Size 2x2 3x3 4x4
GT Flow 32.06/0.9024 32.06/0.9021 32.05/0.9019

SpyNet Flow 31.97/0.9004 31.95/0.9005 31.96/0.9005

Table 4. Ablations on different window sizes for GT flow and
SpyNet flow on Sintel dataset.

Window Size The PSNR/SSIM results corresponding to
different window sizes for the cross-attention operation are
presented in Tab. 4 on Sintel. Larger window sizes result in
a more extensive receptive field, but concurrently diminish
alignment quality due to increased noise. However, a larger
window size proves advantageous, contributing to increased
model robustness in the context of Real-World Video Super-
Resolution (VSR), where predicting accurate optical flow
poses challenges.

6.3. FLOPS and Runtime Comparison

Tab. 5 gives he comparison of parameters, FLOPs, and run-
times for IA-RT and other VSR model. We re-estimate the
inference time for both PSRT-recurrent on RTX-A5000.

Method Param. (M) FLOPs (T) Runtime (ms)
EDVR [28] 20.6 2.95 -
VRT [17] 35.6 1.30 -
PSRT-recurrent [26] 13.4 1.50 2020†

IA-RT (ours) 13.4 1.62 2105

Table 5. The comparison of parameters, FLOPs, and runtimes.

7. Conclusion
This paper investigates the impact of resampling on align-
ment for video super-resolution through experiments con-
ducted on a synthetic dataset employing ground-truth op-
tical flow. Our findings underscore the necessity for re-
sampling techniques to preserve the original sharpness of
features and avoid distortions for effective alignment. We
propose an implicit resampling-based alignment method us-
ing coordinate networks and window-based cross-attention,
by incorporating estimated motions encoded into positional
encoding. Our proposed method exhibits superior perfor-
mance compared to state-of-the-art alignment techniques
on both synthetic and real-world datasets. A drawback of
implicit resampling-based alignment is the reduced inter-
pretability, which can be validated through further testing
and experiments.
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